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Abstract

We discuss some new geometric puzzles and the complexity of their extension to arbitrary
sizes. For gate puzzles and two-layer puzzles we prove NP-completeness of solving them. Not
only the solution of puzzles leads to interesting questions, but also puzzle design gives rise to
interesting theoretical questions. This leads to the search for instances of partition that use
only integers and are uniquely solvable. We show that instances of polynomial size exist with
this property. This result also holds for partition into k subsets with the same sum, if k is a
constant: We construct instances of n integers with subset sum O(nk+1), for fixed k.

1 Introduction

Many good puzzles are instances of problems that are in general NP-complete. Conversely, NP-
complete problems may be the inspiration for the design of nice puzzles. This is true for puzzles
based on combinatorics, graphs, and geometry.

A puzzler’s classification system of geometric puzzles exists that includes the classes Put-
Together, Take Apart, Sequential Movement, and various others [1]. Although instances of puz-
zles in these classes have constant size, the natural generalization of many of them to sizes based
on some parameter are NP-complete. For example, Instant Insanity is NP-complete [7, 10], slid-
ing block puzzles like the 15-puzzle, Sokoban, and Rush Hour are NP-complete or PSPACE-
complete [2, 6, 9], and puzzles related to packing like Tetris are NP-complete [5]. Some overviews
are given by Demaine [3] and Demaine and Demaine [4].

In this paper we discuss some new geometric puzzles of the Put-Together type and analyze
their complexity. We also discuss the creation of good instances of certain geometric puzzles based
on set partition.

Gate puzzles. Gate puzzles consist of a board that is a regular square grid of holes and a number
of pieces called gates. Gates consist of three rods, two vertical and one horizontal, connecting the
tops of the vertical rods. The vertical rods are called legs and have a certain leg distance that
allows the gate to be placed on the board. A gate has a leg distance of 1 if the two legs are in
adjacent holes. Furthermore, gates have a height, taken from a small set of values. To solve a gate
puzzle, a given set of gates must be placed in the board. Every hole of the board must contain
exactly one of the legs, and two gates can only intersect in the vertical projection if they have a
different height, and the intersection is not at the vertical rods of the higher gate. Figure 1 shows
an example. On the left, a 5×5 grid is shown with eleven normal gates of heights 2, 3, and 4, and
three loose pegs (one-legged gates) of height 1. On the right, a variation is shown where many
gates have an extra leg: Two gates have two legs and seven gates have three legs. Most puzzlers
take half an hour to a full hour to solve one of these puzzles. Gate puzzles were first described by
the third author in [12]. In this paper we show that solving gate puzzles is NP-complete, which
we prove by reduction from the strongly NP-complete problem 3-partition (see for instance [7]).

∗Department of Computer Science, FU Berlin. {alt,rote}@inf.fu-berlin.de
†Department of Information and Computing Sciences, Utrecht University. {hansb,marc,gerard}@cs.uu.nl

1



Figure 1: Gate puzzles. Left with two-legged gates, right also with three-legged gates.

Two-layer puzzles. Two-layer puzzles consist of a set of pieces that must be arranged in two
layers, where touching pieces from opposing layers must fit. The simplest type of such a puzzle
consists of 2k pieces of base k × 1, and every 1 × 1 unit has a height 1 or 2. The pieces must be
arranged to make a solid k × k × 3 block. To this end, k of the pieces must be arranged as rows,
and the other k pieces must be arranged upside down and as columns. Other two-layer puzzles
can have pieces that use more than two heights, or pieces that do not have different heights, but
use slanted tops in one of the four orientations [11]. See Figure 2 for two examples.

Figure 2: Examples of two-layer puzzles.

A different realization of simplest type of two-layer puzzle is also known as the 16-holes puzzle.
It consists of eight flat pieces of 4× 1, with one, two or three holes. The objective is to cover the
16 holes of a 4× 4 grid by placing the pieces on the grid in two layers, see Figure 3.

Two-layer puzzles are NP-complete to solve, which we prove by reduction from Hamiltonian
Circuit on graphs of degree three.

Partition puzzles. Partition puzzles are puzzles that are based on the well-known Partition
problem: Given a set of positive integers v1, . . . , vn, partition them in two subsets of equal total
value. This problem is NP-complete [7]. The easiest realization as a geometric puzzle is to consider
each integer value vi as a 1× 1× vi block and the puzzle is to pack the blocks in a (very long) box
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Figure 3: The 16-holes puzzle by Wim Zwaan.
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Figure 4: Partition puzzle by Kunio Saeki.

of dimensions 1× 2× V/2, where V =
∑n

i=1 vi.
Another partition problem that is NP-complete is 3-partition, which involves partitioning a

set of 3n positive integers into n sets of three elements each and with the same subset sum. One
puzzle that appears to be directly based on 3-partition is Kunio Saeki’s Pipes in Pipe, designed
for the 18th International Puzzle Party in 1998. It has 21 little cylinders of different lengths that
must fit in seven holes of equal length, see Figure 4.

Obviously, partitioning a set of integers into three or four subsets of the same total sum is also
NP-complete. A realization of a partition puzzle that uses three subsets is shown in Figure 5. In
this puzzle, the slant of π/3 and the different ways to deal with the corners make it a variation on
a 3-partition puzzle.

Not only solving puzzles based on partition problems is difficult, the creation of geometrically
good instances of such partition puzzles is also challenging. A good geometric puzzle has the
property that it is clear whether a particular solution is the correct solution. Furthermore, it
should not be too large, physically. Finally, most good puzzles have only few pieces but are still
very hard. The last property can be interpreted for partition puzzles that there should be only
one solution. The presence of equal pieces tends to make the solution easier, since it reduces the
number of different potential solutions. Therefore, we require that all pieces are distinct. We thus
restrict our attention to sets of numbers instead of multisets.

The discussion on clearness of the correct solution can be interpreted as follows: if a set of
reals has a solution with two sums of value V , then there should not be a small ε > 0 such that a
different partition into two sets has sums of values V + ε and V − ε. Here the ratio of V and ε is
important. We will only consider the partition problem for integers. This automatically gives a
difference in the subset sums between a correct partition and non-correct partition of 2. Since a
difference of length of 2 mm is clearly visible, we could take millimeters as units of measurement.
But then the sum of a subset that gives a correct solution is the size of the puzzle in millimeters.
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Figure 5: Partition puzzle based on covering an equilateral triangle with nine pieces of different
lengths and shapes.

We would like to find the smallest instance of partition, meaning that the sum of all integers is as
small as possible.

We show that for Partition, a set of n values exists that has a unique partition into two
subsets of equal sum, and of which the sum is O(n3). Similarly, we show for k-subsets partition
that a set of n values exist that has a unique partition into k subsets of equal sum, and the sum
is O(nk+1). The proofs are constructive: we give schemes that give instances of the partition
problems. In all cases, the k subsets have equal cardinality.

2 The complexity of gate puzzles

In this section we show that solving gate puzzles is NP-complete. We consider the simplest form
where only two-legged gates occur, and only two heights are used.

Theorem 1. Given a grid of n×m, and nm/2 gates of height 1 or 2, it is NP-complete to decide
if they can be placed on the grid.

Proof. Clearly the problem is in NP. To prove NP-hardness we make a reduction from 3-partition,
which is NP-complete in the strong sense [7]. An instance of 3-partition consists of 3N pos-
itive integers v1, . . . , v3N , where each integer is between B/4 and B/2 for some given B, and∑3N

i=1 vi = NB. The problem is to decide whether a partition of the 3N integers into N subsets
exist such that each of these subsets has sum B.

We transform an integer vi into one gate with leg distance 2viN
2−1 and height 2, and viN

2−1
gates of leg distance 1 and height 1. We ask if all gates fit on a grid of size (2N2B − 1)×N .

We first show that gates of height 2 only fit horizontally. It is obvious that they do not fit
vertically, but they might fit as the diagonal of a Pythagorean triangle. Note that any gate of
height 2 has leg distance L > N2. It can easily be seen that such a gate cannot fit diagonally,
since L− 1 >

√
(L− 2)2 + (N − 1)2, see Figure 7.

We showed that there are 3N gates that only fit horizontally. There are N rows, and every
row will contain three gates of height 2 in any solution. The gates of height 1 are only for making
the gate puzzle valid by filling the holes of the whole grid. They fit under the height 2 gate with
which they were created.

It is clear that the gate puzzle has a solution if and only if 3-partition has a solution. The
reduction is polynomial because 3-partition is NP-complete in the strong sense: even if we write
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N positions

2N2B − 1 positions

Figure 6: Reduction of 3-partition to gates.

L positions = length L− 1

√
(L− 2)2 + (N − 1)2

length
N − 1

Figure 7: Since gates have large enough leg distance, they cannot be placed diagonally.

all values in unary notation on the input, the problem is NP-complete. Therefore, the number of
gates obtained after the reduction is polynomial in the input size.

3 The complexity of two-layer puzzles

For the NP-completeness proof of two-layer puzzles, we choose a version with 2n pieces of length n.
Every piece is a row of elements, each of which has height 1 or 2. We must place n pieces as rows,
and the other n pieces upside down as columns on top, such that if a position of the bottom, row
layer contains a 1, then the corresponding position of the top, column layer contains a 2, and vice
versa.

Figure 8: A two-layer piece with two heights, for a 10× 10× 3 block.

Theorem 2. Given a set of 2n two-layer pieces of length n, it is NP-complete to decide if they
can be placed to form a solid block of n× n× 3.

Proof. Clearly, the problem is in NP. To prove NP-hardness, we transform from Hamiltonian
Circuit for cubic graphs [8].

Let G = (V,E) be a cubic graph, i.e., each vertex in V has exactly three neighbours. Write
nG = |V |. Note that nG is even, as G is cubic. Without loss of generality, assume that nG ≥ 8.
Assume V = {v1, . . . , vnG

}.
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We build a collection of 4nG +8 two-layer pieces of length n = 2nG +4, and distinguish certain
types. The main ones are the H-type and V-type. Each of these types has subtypes, and the
following pieces per subtype:

• Type HF: four pieces with all positions at height 2. (Horizontal, Full)

• Type HC: nG pieces with all but three positions at height 2. For 1 ≤ i ≤ nG − 1, we have a
piece with positions 1, i+2, and i+3 at height 1 and all other positions at height 2. We also
have a piece with positions 1, 3, and 2 + nG at height 1, and all other positions at height 2.
(Horizontal, Circuit, as these will be used to model the Hamiltonian circuit. The last piece
models the edge that closes the circuit.)

• Type HM: nG pieces with all but two positions at height 2. For 1 ≤ i ≤ nG/2, we have
two pieces with positions 2 and 2 + nG + i at height 1, and all other positions at height 2.
(Horizontal, Matching, as these model a matching in G.)

• Type V1: two pieces with positions 1 until nG (inclusive) at height 2, and all other positions
at height 1.

• Type VE: one piece for each of the 3nG/2 edges in E. If {vi, vj} ∈ E, then we take a piece
with positions i and j at height 2, and all other positions at height 1. (Vertical, Edge, as
these model the edges of G.)

• Type VF: nG/2 + 2 pieces with all positions at height 1.

We claim that this collection of pieces has a solution if and only if G has a Hamiltonian circuit.
This claim and the fact that the collection of pieces can be constructed in polynomial time, given
G, show the NP-hardness.

Suppose vj1 , vj2 , . . . , vjnG
is a Hamiltonian circuit in G. Let M be the set of edges in G that

do not belong to the circuit. As each vertex in G is incident to two edges on the circuit, M is a
matching in G. We place the pieces as follows, see also Figure 9. Pieces of H-type will always be
placed horizontally, pieces of V-type vertically. If we do not state that a piece is reversed, it is
placed like its description above.

nG

nG

nG

nG/2

4

type HC

type HM

type HF

Figure 9: The horizontal pieces for the reduction; grey is height 2 and white is height 1.

• One piece of type V1 is placed in the first column.

• The second piece of type V1 is placed in the second column, but reversed, that is, the height
2 squares are at the intersection with rows nG + 5 until 2nG + 4.
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• For 1 ≤ i < nG, the VE-piece which models the edge {vji
, vji+1} is placed in column i + 2.

• The VE-piece that models the edge {vjnG
, vj1} is placed in column nG + 2.

• The nG/2 VE-pieces that model the edges in M are placed reversed in some arbitrary order
in the columns nG + 3, . . . , 3nG/2 + 2.

• The VF-pieces are placed in columns 3nG/2 + 3, . . . , 2nG + 4.

• The HF pieces are placed in rows nG + 1, nG + 2, nG + 3, nG + 4.

• The HC-piece with height 1 positions at 1, i + 2, i + 3 is placed in row ji. Note that it fits
with the VE-pieces!

• The HC-piece with height 1 positions at 1, 3, and 2 + nG is placed in row jnG
.

• For each i, 1 ≤ i ≤ nG/2: consider the edge {vk1 , vk2} ∈ M whose VE-piece is placed reversed
in column nG + 2 + i. The two HM-pieces with height 1 at positions 2 and nG + 2 + i are
placed in rows 2nG + 4− k1 and 2nG + 4− k2. Note that this fits with the VE-pieces; here
we use that M is a matching.

One can verify that we indeed have a solution for the puzzle.
Suppose the collection of pieces has a solution. Consider an arbitrary piece of type HF. Without

loss of generality, suppose it is placed horizontally. Then, all other pieces of type HF must be
placed horizontally, otherwise we would have a mismatch at the position where the pieces intersect.
Each piece of type HC and HM has at most three positions of height 1, so it cannot be placed
vertically. (Otherwise, it would share a position with each of the four HF-type pieces, and at least
one of these positions it would also have height 2.) As all 2nG + 4 pieces of H-type are placed
horizontally, all pieces of V-type are placed vertically.

V1-type pieces have nG positions of height 2. So, if a V1-type piece is placed in column i, then
there are nG H-type pieces with height 1 at position i or 2nG +5−i. For each i ∈ {3, . . . , 2nG +2},
there are at most six H-type pieces with height 1 at positions i or 2nG + 5 − i. There are nG

H-type pieces with height 1 at position 1, and nG H-type pieces with height 1 at position 2. Thus,
one V1-type piece must be placed in column 1 or 2nG + 4, and one V1-type piece must be placed
in column 2 or 2nG + 3.

Without loss of generality, we suppose one V1-type piece is placed in column 1, and it is not
reversed. Consider the H-type pieces at rows 1, . . . , nG. At their first position, they meet the
height 2 position of the V1-type piece, so they must have height 1 at their first position, and hence
be a HC-type piece. Also, their orientation cannot be reversed.

For 1 ≤ i < nG, if the HC-piece with height 1 positions at 1, i+2, i+3 is in row j, set vji
= j.

Similarly, if the piece with height 1 positions at 1, 3, 2 + nG is in row j, set vjnG
= j. This gives

a Hamiltonian Circuit. Consider a pair of successive vertices vji
, vji+1 . Note that the HC-type

pieces in rows ji and ji+1 have height 1 at their position i + 3. So the V-type piece in column
i + 3 must have height 2 at positions ji and ji+1. It cannot be a V1-type piece, see above. So, we
have a VE-type piece with height 2 at positions ji and ji+1, and hence {vji

, vji+1} ∈ E. A similar
argument shows that {vjnG

, vj1} ∈ E, and hence we have a Hamiltonian circuit.

4 Designing of partition puzzles

In this section we consider partition problems for integers. From the introduction we know that
we are mostly interested in instances that are uniquely solvable and have a small total value. We
will concentrate on instances of 2n, or more generally, kn integers that have a unique partition
into 2 subsets (or k subsets, respectively). Moreover, we want all subsets of the partition to have
the same cardinality n. It is easy to adapt the instances to subsets of different cardinalities, by
simply combining pieces.
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Lemma 1. Let S be a set of integers that has a partition into two subsets S1 and S2, each of total
value 1

2 ·
∑

v∈S v. Then this is the unique partition with this property, if and only if no proper
subset of S1 has equal value to any proper subset of S2.

Proof. If two such subsets exist, they can be exchanged and the partition is not unique. Conversely,
let S′1, S′2 be a different partition with equal sums. Since S′1 =

(
S1 \ (S1 − S′1)

) ∪ (S′1 − S1)
)
, the

sets S1 − S′1 and S′1 − S1 are nonempty proper subsets of S1 and of S2 with equal sums.

For k ≥ 3, the condition of Lemma 1 applied to pairs of sets, is not sufficient to guarantee
uniqueness. For example, no pair from the three sets S1 = {8, 14, 78}, S2 = {9, 15, 76},
S3 = {10, 13, 77}, has proper subsets with equal sums, but S′1 = {9, 13, 78}, S′2 = {10, 14, 76},
S′3 = {8, 15, 77} is a different solution.

We present schemes that generate instances of partition with a set S of 2n or kn integers that
have a unique solution and a polynomial bound on

∑
vi∈S vi.

A simple scheme for partition. Suppose we wish to generate a set S of 2n integers that has
a unique partition into two subsets S1 and S2 of cardinality n each.

S1 = { 1, 2, . . . , n− 1, N }
S2 = { 1

2n(n− 1) + 1, 1
2n(n− 1) + 2, . . . , 1

2n(n− 1) + n− 1, 1
2n(n− 1) + n }

where N =
∑n

i=1(
1
2n(n− 1) + i)− 1

2n(n− 1). Since all integers in S2 are larger than the sum of
the smallest n− 1 integers in S1, and the n-th integer from S1 is larger than all integers from S2,
no proper subset sum from S1 can be equal to any proper subset sum of S2.

Theorem 3. For any n ≥ 2, an instance of Partition exists with 2n values which has a unique
solution in two subsets. Both subsets have n integers, and the subset sum is O(n3).

The obvious lower bound corresponding to the theorem is
∑2n

i=1 i = Ω(n2).

A simple scheme for partition into k subsets. The scheme for partition can easily be ex-
tended to a scheme for partition into k subsets. The scheme gives subset sums that are polynomial
in n, but exponential in k. We write Vi for the sum of the smallest n− 1 elements in Si.

S1 = { 1, 2, . . . , n− 1, N1 }
S2 = { V1 + 1, V1 + 2, . . . , V1 + n− 1, N2 }
S3 = { V2 + 1, V2 + 2, . . . , V2 + n− 1, N3 }
. . . . . .

Sk−1 = { Vk−2 + 1, Vk−2 + 2, . . . , Vk−2 + n− 1, Nk−1 }
Sk = { Vk−1 + 1, Vk−1 + 2, . . . , Vk−1 + n− 1, Vk−1 + n }

The integers N1, . . . , Nk−1 are chosen so that all subsets have the same subset sum as Sk. As
before we can argue that N1 is such that only 1, . . . , n − 1 are small enough to be with N1 and
give the right subset sum. Since this fixes S1, we can repeat the argument by observing that N2

is such that of the remaining integers, only V1 + 1, . . . , V1 + n− 1 are small enough to be with S2

and give the right subset sum.

Theorem 4. For any k ≥ 2 and n ≥ 2, an instance of Partition into k Subsets exists with
kn values which has a unique solution in k subsets. All subsets have n integers, and the subset
sum is O(nk+1), if k is fixed.

Although we presented a scheme that gives uniquely solvable instances of partition of cubic
size, the scheme is not satisfactory from the puzzle point of view. It contains an integer that is so
large that it is clear which other integers should go in the same subset (which was the argument
for uniqueness). So in this case, uniqueness of solution does not imply that a puzzle using this
scheme will be difficult. Therefore, we will present another partition scheme and its extension for
k subsets that does not have this problem. We will bound the value of the largest integer in the
partition problem while obtaining the same bound on the subset sum.
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An improved scheme for partition. To obtain a scheme that does not have the disadvantage
of the simple scheme, choose two sets of integers 1, 2, . . . , n and 1, 2, . . . , n − 1, n + 1. Multiply
each integer in the first set by n. Multiply each integer in the second set by n and subtract 1.
This way we get S1 and S2:

S1 = { n, 2n, 3n, . . . , (n− 1)n, n2 }
S2 = { n− 1, 2n− 1, 3n− 1, . . . , (n− 1)n− 1, n2 + n− 1 }

Every subset sum from S1 is a multiple of n. No proper subset sum from S2 is a multiple of n,
because each integer is ≡ −1 mod n. Hence, no proper subset sum of S1 can be equal to any
proper subset sum of S2. Obviously, the sum of all integers in S1 is equal to the sum of all integers
in S2, and is equal to 1

2n(n + 1) · n = (n3 + n2)/2.

Theorem 5. For any n ≥ 2, an instance of Partition exists with 2n values which has a unique
solution in two subsets. Both subsets have n integers, all integers have value Ω(n) and O(n2), and
the subset sum is O(n3).

It is easy to adapt the scheme to yield a partition in subsets of different cardinalities: we let
n be the desired cardinality of the larger subset in the scheme, and generate S1 and S2. Then we
add n−m+1 values in S2 to get any cardinality m for the smaller subset, and the partition itself
remains unique.

For small values of n, we have computed the uniquely solvable instances of Partition with
smallest subset sum with the help of a computer, by an enumeration algorithm. The instances
in the following table turned out to be the unique instances with the given sums, where the two
subsets have equal cardinality. For decompositions into parts of distinct cardinalities, there are
smaller solutions. For example {1, 3, 4, 5, 6, 7}∪{2, 24} is the unique solution for an 8-element set,
with sums 26, but clearly, this leads to a very easy puzzle.

One can see in the table that the constructions of Theorems 3 and 5 are not far from the opti-
mum. Also, the instances for n = 5 and n = 6 share certain characteristics with the construction
of Theorem 5: they contain arithmetic progressions, which tends to reduce the number of different
subset sums that can be built from a given set.

minimum simple improved
n S1 S2 subset sum scheme scheme
2 1, 4 2, 3 5 5 6
3 1, 3, 9 2, 5, 6 13 15 18
4 2, 7, 10, 12 3, 5, 8, 15 31 34 40
5 2, 7, 12, 17, 22 3, 5, 10, 15, 27 60 65 75
6 3, 7, 10, 21, 28, 35 4, 11, 14, 18, 25, 32 104 111 126

An improved scheme for partition into k subsets. We now present a scheme to generate
instances of unique partition into 3 subsets, of n integers each, and bounded integers. Below we
will generalize it to larger values of k. Because we wish to avoid large integers in the instance, we
cannot use the inductive argument that was used in the simple scheme for partition into k subsets
to obtain uniqueness. Instead, we use the following property to guarantee uniqueness.

Strong Uniqueness. If the total sum of the set S is kN , there are only k subsets of S
whose sum is N .

Choose two integers p = n and q = n + 1, and let r = p · q. The sets of integers in S1, S2, and
S3 are:

S1 = { r + q, 2r + q, . . . , (n− 1)r + q, nr + q }
S2 = { r + p, 2r + p, . . . , (n− 1)r + p, nr + 2p }
S3 = { r, 2r, . . . , (n− 1)r, nr + r }

It is easy to see that the three subset sums are the same. Also,
∑

v∈S3
v = (1

2n(n + 1) + 1)pq =
( 1
2n(n + 1) + 1)n(n + 1) = Θ(n4).
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To prove uniqueness of the partition, we show strong uniqueness: S1, S2, and S3 are the only
subsets with subset sum ( 1

2n(n+1)+1)r = 1
3 ·

∑
vi∈S vi. Let S′ be any subset of S = S1∪S2∪S3, and

let S′ have h elements from S1, i elements from S2, and j elements from S3, where 0 ≤ h, i, j ≤ n.
Since elements from S1 are ≡ q mod r, and p and q are relatively prime, h > 0 implies that h = n
to obtain a total sum of S′ that is ≡ 0 mod r. This subset is already S1, and i and j have to be
0, otherwise the total sum is too large. Similarly, i > 0 implies that S′ must contain all elements
of S2 to be ≡ 0 mod r, and h = 0 and j = 0. Finally, if h = 0 and i = 0, we need j = n to get
a subset S′ of large enough total sum. Hence, S1, S2, and S3 are the only subsets of S with sum
( 1
2n(n + 1) + 1)r.

To extend this scheme to k sets we need k − 1 integers p1, . . . , pk−1 that are at least n and
pairwise relatively prime. One way to construct such integers is as follows: Let K be the least
common multiple of 1, 2, . . . , k − 2. Select p1 in the interval n ≤ p1 < n + K, relatively prime
to K, and set pi+1 = pi + K, for i = 1, . . . , k − 2. This yields integers pi < n + (k − 1)! that are
pairwise relatively prime.

We let r =
∏k−1

i=1 pi, and construct sets based on r and p1, . . . , pk−1 as above. For i =
1, . . . , k − 1, we define

Si =
{

r + a1 · r

pi
, 2r + a2 · r

pi
, . . . , nr + an · r

pi

}
,

where (a1, a2, . . . , an) is a sequence of small positive integers summing pi. (A different sequence
(a1, a2, . . . , an) is chosen for every i.) As before, the last set is just

Sk = { r, 2r, . . . , (n− 1)r, (n + 1)r }
The subset sum of each set is 1

2n(n + 1) · r + r = Θ(nk+1).

Theorem 6. For any k ≥ 2 and n ≥ 2, an instance of Partition into k Subsets exists with
kn values which has a unique solution in k subsets. All subsets have n integers, all integers have
value Ω(nk−1) and O(nk), and the subset sum is O(nk+1), if k is fixed.

5 Conclusions and open problems

We showed that two new types of geometric puzzles—gate puzzles and two-layer puzzles—are
NP-complete to solve. For puzzles based on partition, we constructed instances with polynomially
bounded values that have unique solutions. The sum of the values relates to the physical size
of the geometric puzzle. Uniqueness tends to make a puzzle harder, but we saw that a uniquely
solvable puzzle may still be easy (for instance, in the simple scheme for partition).

The strong uniqueness property for partition in three or more subsets is stronger than necessary
for having a unique solution. Also for this reason, it may be possible to improve upon the O(nk+1)
bound on the summed value of instances with a unique solution. Moreover, the strong uniqueness
property makes the puzzle easier : if the puzzler finds a subset with the right sum, then this subset
is certainly part of the overall solution. So for puzzle design purposes, it is interesting to have
instances of partition into three or more subsets that have a unique solution, but many subsets
with the right summed value.

References

[1] Cubism For Fun website. http://cff.helm.lu/.

[2] J. Culberson. SOKOBAN is PSPACE-complete. In Proceedings in Informatics 4 (Int. Conf.
FUN with Algorithms 1998), pages 65–76, 1999.

[3] E. D. Demaine. Playing games with algorithms: Algorithmic combinatorial game theory. In
Proc. of Math. Found. of Comp. Sci., pages 18–32, 2001.

10



[4] E. D. Demaine and M. L. Demaine. Puzzles, art, and magic with algorithms. Theory Comput.
Syst., 39(3):473–481, 2006.

[5] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is hard, even to approximate.
Technical Report MIT-LCS-TR-865, MIT, 2002.

[6] G. W. Flake and E. B. Baum. Rush Hour is PSPACE-complete, or why you should generously
tip parking lot attendants, 2001. Manuscript.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, NY, 1979.

[8] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is
NP-complete. SIAM J. Comput., 5(4):704–714, 1976.

[9] D. Ratner and M. Warmuth. Finding a shortest solution for the N ∗ N -extension of the
15-puzzle is intractable. J. Symb. Comp., 10:111–137, 1990.

[10] E. Robertson and I. Munro. NP-completeness, puzzles, and games. Util. Math., 13:99–116,
1978.

[11] M. van Kreveld. Some tetraform puzzles. Cubism For Fun, 68:12–15, 2005.

[12] M. van Kreveld. Gate puzzles. Cubism For Fun, 71:28–30, 2006.

11


