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Abstract. I will survey algorithms for testing whether two point sets
are congruent, that is, equal up to an Euclidean isometry. I will intro-
duce the important techniques for congruence testing, namely dimension
reduction and pruning, or more generally, condensation. I will illustrate
these techniques on the three-dimensional version of the problem, and
indicate how they lead for the first time to an algorithm for four di-
mensions with near-linear running time (joint work with Heuna Kim).
On the way, we will encounter some beautiful and symmetric mathe-
matical structures, like the regular polytopes, and Hopf-fibrations of the
three-dimensional sphere in four dimensions.

1 Problem Statement

Given two n-point sets A,B ⊂ Rd, we want to decide whether there is a transla-
tion vector t and an orthogonal matrix R such that RA+ t := {Ra+ t | a ∈ A }
equals B, that is, A and B are congruent. Congruence asks whether two objects
are the same up to Euclidean transformations, or in other words, whether they
are considered equal from a geometric viewpoint. Congruence is therefore one of
the fundamental basic notions.

The translation vector t can be easily eliminated from the problem by initially
translating the two sets A and B such that their centers of gravity lie at the
origin O.

If we do not restrict the dimension d, congruence becomes equivalent to
graph isomorphism: a given graph G = (V,E) with n vertices v1, . . . , vn can be
represented by n + |E| points in n dimensions. We simply take the n standard
unit vectors e1, . . . , en and add a point (ei + ej)/2 for each edge vivj ∈ E.
Then two graphs are isomorphic if and only if their corresponding point sets are
congruent.

We thus restrict our attention to small dimensions. In two and three dimen-
sions, algorithms with a running time of O(n log n) have been known. We review
some of these algorithms, because their techniques are also important for higher
dimensions.

The Computational Model: Exact Real Arithmetic. We use the Real Random-
Access Machine (Real-RAM) model, as is common in Computational Geometry.
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We assume that we can compute arithmetic operations and square roots of real
numbers exactly in constant time. The reason for this choice is not so much
convenience, but the range of possible input instances. With rational inputs, for
example, one cannot even realize a regular pentagon. Thus, the difficult problem
instances, which are the symmetric ones, as we will see, would disappear.

It makes sense to ask for approximate congruence within some given toler-
ance ε. This problem is, however, NP-hard already in two dimensions (Iwanowski
1991). It becomes polynomial when the input points are sufficiently separated
in relation to ε, and thus there is hope to solve the approximate congruence
problem in higher dimensions, under suitable assumptions and at least in an
approximate sense. This is left for future work.

2 Two Dimensions

In the plane, congruence can be tested by string-matching techniques (Man-
acher 1976). We sort the points clockwise around the origin, in O(n log n) time,
and represent the point set as a cyclic string alternating between n distances
from the origin and n angular distances between successive points. Two n-point
sets A and B are then congruent if and only if their string representations α
and β are cyclic shifts of each other. This is equivalent to asking whether α is a
substring of ββ, and it can be tested in linear time.

This idea can be extended to symmetry detection for a single set A: We
find the lexicographically smallest cyclic reordering of the string. The starting
point of this string, together with the cyclic shifts which yield the same string,
gives rise to a set of p equidistant rays starting from the origin, which we call
the canonical axes. Then the set A has a rotational symmetry group of order p,
consisting of all rotations that leave the set of canonical axes invariant.

3 Three Dimensions

For testing congruence in space, there are several algorithms, which use different
tools (Sugihara 1984, Atkinson 1987, Alt, Mehlhorn, Wagener, and Welzl 1988).
We describe a variation which is very simple and illustrates the principal tech-
niques that are used in this area: dimension reduction, pruning, and condensa-
tion.

Pruning and condensation tries to successively reduce A to a smaller and
smaller point set A′ while not losing any symmetries that A might have. Initially,
we set A′ := A. We compute the convex hull H(A′) of A′ in O(|A′| log |A′|) time.
Let Ā′ denote the set of vertices of the polytope H(A′). We classify the points
of Ā′ by degree in the graph of H(A′). In case there are at least two different
degrees in the graph, we replace A′ by the smallest degree class in Ā′ and repeat
the convex-hull computation. In each iteration, the size of A′ is reduced to half
or less. We simultaneously carry out all steps for the set B. If at any stage, we
notice an obvious difference between A′ and B′, for example, if |A′| 6= |B′|, we
conclude that A and B are not congruent, and we terminate.
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This pruning loop ends when all vertices in H(A′), and also in H(B′), have
the same degree. At first glance, this procedure looks dangerous because we have
thrown away points (including all points interior to the hulls of A and B) and
have thereby thrown away information: The sets A′ and B′ might be congruent,
whereas the original sets A and B are not. However, the prime goal of successive
pruning steps is to eventually reduce the points sets to some sets A′ and B′

which are so small that we can afford to try all possibilities of mapping a fixed
chosen point u0 ∈ A′ to some point v ∈ B′. This is done as follows:

Once we have picked the point v, we can reduce the dimension of the problem
by one: we choose some rotation R that brings u0 to v. We denote by P the
plane perpendicular to the axis through Ru0 = v, and we project the sets RA
and B onto P . (Here we must take the original sets A and B again.) To each
projected point, we attach the signed distance from P as a label. We then look
for two-dimensional congruences in P , but for labeled point sets. The labeling
information can be easily incorporated into the algorithm of Sect. 2.

Thus, when |A′| = |B′| is small, we can finish the problem by |A′| instances
of two-dimensional congruence in O(|A′|n log n) time.

Let us now see how we continue when our pruning process gets stuck. We
will describe the steps only for the set A′, but the reader has to keep in mind
that they are carried out for the set B′ in parallel. If the convex hull H(A′) is
one-dimensional or two-dimensional, then we have found an axis or a plane with
a corresponding axis or plane in H(B′). This allows us to reduce the question
to one or two two-dimensional problems, as described above.

We are left with the case that H(A′) is a three-dimensional polytope. By
pruning, we can assume that all vertices of the graph of H(A′) have the same
degree d. By Euler’s formula, d can be 3, 4, or 5. Euler’s formula also yields
the number of faces F in terms of the number n′ of vertices of H(A′): |F | =
(d − 2)/2 · n′ + 2 ≤ 3

2n
′ + 2. We now try to prune the faces by face degrees. If

there are at least two different face degrees, the smallest degree class F ′ of faces
has at most 3

4n
′ + 1 elements. This number is smaller than n′ unless n′ = 4 and

H(A′) is a tetrahedron. We compute the centers of gravity of the faces in F ′, and
replace A′ by the set of these centers. We call this procedure a condensation. Like
pruning, it reduces A′ to a smaller set, but in contrast to pruning, the smaller
set is not necessarily a subset of A′.

With the new condensed set A′ we restart the whole procedure from scratch,
beginning with the convex hull computation. The only case where neither con-
densation, nor pruning, nor dimension reduction is possible is a convex polytope
H(A′) in which all vertices and all faces have the same degree. Such a poly-
tope must have the combinatorics of one of the five regular polytopes (Platonic
solids): the tetrahedron, the octahedron, the icosahedron, the cube, or the do-
decahedron. We know therefore that |A′| ≤ 20, and we can resort to dimension
reduction, which leads to at most 20 two-dimensional instances.

In all the above-mentioned pruning and reduction steps, we must avoid that
the reduced set A′ contains only the origin. When such a case would arise, we
artificially select a different class of vertices or faces.
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4 Pruning and Condensation

Pruning is very versatile: we can use any criterion of points that we can think
of, as long as it is not too expensive to compute. For example, in our algorithm
for four dimensions, we will build the closest-pair graph G, which connects all
pairs of points of A′ whose distance equals the smallest inter-point distance in
the set, and try to prune by degree in this graph. If, however, all vertices happen
to have degree 1 in G, thus forming a perfect matching of A′, we condense A′ to
the set of midpoints of the matching edges.

The power of the pruning technique is that we can concentrate on those cases
where pruning fails. These instances are highly symmetric and regular, and we
will capitalize on this regularity to extract structures from the point set that
allow us to proceed.

Formally, a condensation procedure is a mapping F that maps a set A to a
set A′ = F (A). This mapping must be equivariant under rotations:

R · F (A) = F (R ·A), for all rotations R

A pruning procedure is the special case where F (A) ⊆ A. We say that condensa-
tion is successful if F (A) is smaller than A and F (A) is not the empty set or just
the origin. We will be able to ensure a reduction by a constant factor for success-
ful condensation steps, and thus we need not worry about the time for iterating
the condensation, because the size of A′ decreases at least geometrically.

5 The Three-Dimensional Point Groups

We have seen that congruence testing is closely connected to symmetry: “Ran-
dom” point sets have no symmetries and are easy to check for congruence. The
hard cases are the symmetric ones. It is therefore no surprise that congruence
testing algorithms can tell us something about the symmetry groups of point
sets.

In Sect. 3, we have stopped condensation as soon as we reached the combi-
natorial structure of a Platonic solid. By further condensation, based the edge
lengths, we can achieve that the only remaining cases must also have the geom-
etry of a Platonic solid, see Algorithm K in Kim and Rote (2016) for details.
From this we can conclude the following theorem.

Theorem 1. The symmetry group of a finite three-dimensional set of points is
either

1. the symmetry group of one of the five Platonic solids,
2. the symmetry group of a prism over a regular polygon,
3. or a subgroup of one of the above groups. ut

These groups are the discrete subgroups of the orthogonal group O(3) of 3×3 or-
thogonal matrices, and they are called the three-dimensional point groups. Case 2
covers the reducible groups (and their subgroups), those groups that are direct
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products of lower-dimensional point groups. They come from the case when our
algorithm used dimension reduction. Theorem 1 is not very explicit, and quite
redundant: The octahedron and the cube are dual to each other and have the
same symmetries, and so do the dodecahedron and the icosahedron. The tetrahe-
dral group is contained both in the group of the cube and of the dodecahedron.
With some work, the explicit list of groups can be worked out from this theorem.
However, the resulting classification of three-dimensional point groups was al-
ready known in the 19th century (Hessel’s Theorem). We will mention potential
extensions to four dimensions in Sect. 8.

6 General Dimensions

The best algorithms for general dimension d are a deterministic algorithm of
Brass and Knauer (2002) and a randomized algorithm of Akutsu (1998). They
reduce the dimensionality d of the problem by three, respectively four dimensions
at a time, and achieve running times of O(ndd/3e log n) and O(nbd/2c/2 log n),
respectively, for high enough dimensions.

7 Four Dimensions

We have recently managed to solve congruence testing in four dimensions in
optimal O(n log n) time.

Theorem 2. Given two sets A and B of n points in four dimensions, it can be
decided in O(n log n) time and O(n) space whether A and B are congruent.

The algorithm is based on condensation and dimension reduction, but the details
are quite involved, see Kim and Rote (2016). We can therefore give only rough
overview, referring to the following flowchart, and glossing over many details.

points A′

circles C

circles C

points A′

O: Orbit
Cycles

R: Mirror
Case

O: Orbit
Cycles

C: Iterative
Condensation

1+3 Dimension
Reduction

2+2 Dimension
Reduction

points A′

M: Mark and
Condense

Great Circles

7.1 Iterative Pruning and Condensation Using the Closest-Pair
Graph (Algorithm C)

After pruning by distance from the origin, we can assume that A lies on the
three-dimensional sphere S3 ⊂ R4. As in Atkinson (1987), we compute the closest
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distance δ = min{ ‖a − a′‖ : a, a′ ∈ A, a 6= a′ } and the closest-pair graph G on
the vertex set A, which connects all pairs of points whose distance is δ. The
vertex degrees in H are bounded by the kissing number K3 = 12, the maximum
number of equal balls with disjoint interiors that can simultaneously touch a ball
of the same size on S3. The closest-pair graph can be computed by divide and
conquer in O(n log n) time in any fixed dimension (Bentley and Shamos 1976).

Now we start an iterative pruning and condensation process on G, first based
on vertex degrees, and working its way up to higher and higher orders of regu-
larity. In the end, we will have pruned G to such a degree that all directed edge
figures, consisting of some edge uv and all adjacent edges, are congruent. This
allows us to conclude that copies of a certain pattern can be found “everywhere”
in G. This pattern is a path t0u0v0w0 with the property that its three edges t0u0,
u0v0, and v0w0 have the same length δ and the two angles t0u0v0 and u0v0w0

are equal. In G, we can then define a nonempty set S of paths aa′a′′ with the
following property.

For every path a1a2a3 ∈ S, there is a (unique) edge a3a4 ∈ G such that
a2a3a4 ∈ S and a1a2a3a4 is congruent to t0u0v0w0.

7.2 Generating Orbit Cycles (Algorithm O)

By repeatedly applying this property, we can conclude:

For every triple a1a2a3 ∈ S, there is a unique cyclic sequence a1a2 . . . a`
such that aiai+1ai+2ai+3 is congruent to t0u0v0w0 for all i. (Indices are
taken modulo l.)
Moreover, there is a rotation matrix R such that ai+1 = Rai. In other
words, a1a2 . . . a` is the orbit of a1 under the rotation R.

We call such a cyclic sequence an orbit cycle. If the points A would live in R3,
the geometric situation is easy to imagine: If the points t0u0v0w0 lie in a plane,
then the orbit cycle lies on a circle. Otherwise, they form an infinite helix that
winds around an axis. This intuition is not misleading: on S3, the situation is
the same, except that the axis of the helix is a great circle instead of a line.

The last case it the most interesting case for us: If the points t0u0v0w0 do
not lie in a plane, we can extract the axis circle from each orbit cycle. We will
then work with the set C of these circles.

7.3 Marking and Condensation of Great Circles (Algorithm M)

We are given a set C of great circles in S3. We will treat these circles as objects
in their own right, independent of the point set A from which they came.

The Distance between Circles. We start by computing the closest-pair graph
on C. To to this, we have to define a distance between great circles. We do this
by embedding them in the 5-sphere S5 ⊂ R6. Great circles in the 3-sphere can
be equivalently regarded as 2-dimensional planes through the origin in 4-space,
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and we can use Plücker coordinates to represent them. (Planes in 4-space can
be equivalently regarded as lines in (projective) 3-space, and this is the most
familiar type of Plücker coordinates.) The Plücker coordinates are a 6-tuple of
numbers in projective 6-space. We normalize them and represent each circle
as a pair of antipodal points on S5, and define the Plücker distance between
two circles as the smallest distance between the four representative points. This
distance is a geometric invariant: In a different coordinate system, a plane will
have different Plücker coordinates, but Plücker distances are unchanged.

Other distances have been considered in the literature. Conway, Hardin, and
Sloane (1996) have tried to pack lines, planes, etc. in Grassmannian spaces, using
the chordal distance (which comes from representing a plane as a symmetric 4×4
projection matrix) and the geodesic distance on the Plücker surface. For our case,
the Plücker distance gives the embedding of lowest dimension and is therefore
preferable.

The closest-pair graph G(C) is thus computed in 6 dimensions. The number
of neighbors is bounded by the kissing number K5 in 5 dimensions, which is
known to be bounded by 44.

We now look at each pair C,D of adjacent circles in G(C). When projecting D
on the plane of C, the image will generically be an ellipse D′. We use the major
axis of D′ to mark two points on C. Similarly, we project C to the plane of D
and generate two markers on D. Repeating this for all edges of G(C) produces
at most 2K5 ≤ 88 markers on each circle of C. These markers form a new set of
points A′, and we start the whole algorithm from scratch with this set of points.

We argue that the new set A′ is smaller than the original set A from which
the orbit cycles are generated. We know that every point of A can belong only
to a bounded number of orbit cycles, by the degree constraint in G(A). If all
orbit cycles are long enough, meaning that they contain sufficiently many points,
we can therefore guarantee that the number of orbit cycles is small, say |C| ≤
|A|/200, and then |A′| ≤ 88 · |C| will be a successful condensation of A. If the
orbit cycles are short, it means that the closest distance δ must be longer than
some threshold δ0. Then, by a straightforward packing argument on S3, the size
of A is bounded by a constant, and we can “trivially” solve the problem by
dimension reduction.

Isoclinic Circles and Hopf Bundles. The above procedure fails to generate mark-
ers if all projected ellipses turn out to be circles. Such planes C,D are called
isoclinic. They come in two variations, left-isoclinic and right-isoclinic. It turns
out that being isoclinic imposes a strong structure on the involved circles. We
formulate their properties for right-isoclinic pairs; analogous statements hold for
left-isoclinic pairs.

Proposition 3. 1. The relation of being right-isoclinic is transitive (as well as
reflexive and symmetric). An equivalence class is called a right Hopf bundle.

2. For each right Hopf bundle, there is a right Hopf map h that maps the circles
of this bundle to points on S2.

3. By this map, two isoclinic circles with Plücker distance
√

2 sinα are mapped
to points at angular distance 2α on the “Hopf sphere” S2.
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4. A circle can have at most K2 = 5 closest neighbors on the Plücker sphere S5
that are right-isoclinic.

The right Hopf map in Property 2 is obtained as follows (Hopf 1931, §5): Choose
a positively oriented coordinate system x1, y1, x2, y2 for which some circle C0 of
the bundle lies in the x1y1-plane. Then the map h : S3 → S2 defined by

h(x1, y1, x2, y2) =
(
2(x1y2 − y1x2), 2(x1x2 + y1y2), 1− 2(x22 + y22)

)
maps all points on a circle of the bundle to the same point on S2. A different
choice of C0 would lead to a different map, but by Property 3, the images are
related by an isometry of S2. The constant K2 = 5 in Property 4 is the kissing
number on the 2-sphere. Property 4 is a direct consequence of Properties 2 and 3.

We use Proposition 3 in the following way: If all pairs of circles in a component
of the closest-pair graph G(C) are right-isoclinic, we know that they must belong
to a common Hopf bundle. We then use a condensation procedure on the Hopf
sphere, similar to the one described in Sect. 3, to condense the set of circles, and
repeat the construction of the closest-pair graph.

If a circle C has both a left-isoclinic neighbor D and a right-isoclinic neighbor
D′, we conclude by Property 1 that D and D′ cannot be isoclinic. We can
therefore mark points on D and D′.

To summarize, we repeatedly condense the set C of circles until we can mark
some points A′ on them, or until the number of circles in C gets smaller than some
threshold. In the latter case, we apply 2+2 Dimension Reduction, as described
below in Sect. 7.5

7.4 The Mirror-Symmetric Case (Algorithm R)

The generation of orbit cycles requires that the points t0u0v0w0 don’t lie in a
plane. We can guarantee that such 4-tuples exist, unless the edge figures are
perfectly mirror-symmetric: The perpendicular bisector of every edge uv in G
acts as a mirror, reflecting the neighbors t of u to the neighbors w of v. Since
each edge tu and each edge vw has the same mirror-symmetry, the mirror images
of the mirrors are also mirrors. It follows that the component of G that contains
u is the orbit of u under the group generated by the mirror reflections for the
edges incident to u.

Such groups, groups that are generated by reflections, are called Coxeter
groups, and they have been classified in all dimensions, cf. Coxeter (1973), Ta-
ble IV on p. 297. In four dimensions, there are eight such groups, which are
related to the regular polytopes of 4-space, plus an infinite class of reducible
groups, which are direct products two-dimensional Coxeter groups.

We deal with the Coxeter groups as follows. For each group Γ in the finite
list, we determine the smallest distance δ such that the neighbors of a point
u ∈ S3 at distance δ can generate the group Γ . The smallest value δmin of these
bound implies, by a packing argument, that |A| is bounded by a constant, and
thus we can resort to dimension reduction.
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For the infinite family of reducible groups, we are able to identify the two
complementary 2-dimensional planes corresponding to the two factor groups, and
thus we can replace each component of G(A) by two circles. We process these
circles like the the circles that result from orbit cycles (Algorithm M, Sect. 7.3).

7.5 2+2 Dimension Reduction

The classical dimension reduction procedure applies when the image of a point
in A (or a line through the origin) is known. The image of the complementary
3-dimensional hyperplane is then also known, and we call this 1+3 dimension
reduction. By contrast, in 2+2 dimension reduction, we have identified a two-
dimensional plane P for the point set A and another two-dimensional plane Q
for B, and we are looking for congruences that map P to Q, besides mapping A
to B.

We first choose a joint coordinate system x1, y1, x2, y2 in which P and Q
coincide with the x1y1-plane. The allowable rotations are therefore restricted to
independent rotations in the x1y1-plane (by some angle ϕ) and in the comple-
mentary x2y2-plane (by some angle ψ). After introducing polar coordinates in
the two planes, the problem reduces to translational congruence between two
point sets Â and B̂ on the two-dimensional torus [0, 2π)2. The distance compo-
nents of the polar coordinates are attached as a label to each point on the torus,
and only points with equal label can be mapped to each other.

We now apply a sequence of condensation and relabeling steps, using Voronoi
diagrams on the torus, which eventually lead to canonical sets Â0 and B̂0. These
sets play the same role as the canonical axes of Sect. 2 for the problem of a single
rotation (or “translation on the one-dimensional torus”): If A and B are con-
gruent (under the constraint of mapping P to Q), then we can choose arbitrary
points a ∈ Â0 and b ∈ B̂0, and the unique rotation that maps a to b will map A
to B. We therefore have to test only a single candidate rotation.

8 The Four-Dimensional Point Groups

It is tempting to extend the high-level “characterization” of three-dimensional
point groups of Theorem 1 to four dimensions:

Conjecture 4. A four-dimensional point group is either

1. the symmetry group of one of the five four-dimensional regular solids,
2. a direct product of lower-dimensional point groups,
3. or a subgroup of one of the above groups.

The four-dimensional point groups have been enumerated, first by Threlfall and
Seifert (1931) for the case of direct congruences only (determinant +1), and
most lately by Conway and Smith (2003). The book of Conway and Smith gives
an explicit list of these groups (Tables 4.1–4.3, pp. 44–47). Thus, in principle,
it should be a trivial matter to settle Conjecture 4. However, these groups are
specified algebraically, and it is not easy to see geometrically what they are.
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When we started our work, we hoped that our techniques would shed light on
Conjecture 4, as was the case for three dimensions (Theorem 1), but so far, the
implications of our algorithm are not so strong. (On the other hand, the analysis
of our algorithm uses the classification of four-dimensional finite Coxeter groups,
i.e., those point groups that are generated by reflections.)

It would also be interesting to see to what extent Conjecture 4 generalizes to
higher dimensions. The regular polytopes are known in all dimensions. However,
in eight dimensions, the root lattice E8 has symmetries that don’t come from
regular polytopes, thus providing counterexamples to a straightforward gener-
alization of Conjecture 4 for eight dimensions, and most likely also for six and
seven dimensions.
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