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General Problem Statement

GIVEN:
a combinatorial type of
3-dimensional polytope
(a 3-connected planar graph)

[ + additional data ]

CONSTRUCT:
a geometric realization of
the polytope

[ with additional properties ]
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General Problem Statement

GIVEN:
a combinatorial type of
3-dimensional polytope
(a 3-connected planar graph)

[ + additional data ]

CONSTRUCT:
a geometric realization of
the polytope

[ with additional properties ]

e.g.: small integer vertex coordinates
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Polytopes with Small Vertex Coordinates

Every polytope with n vertices can be realized with integer
coordinates less than 148n.

[ Ribó, Rote, Schulz 2011, Buchin & Schulz 2010 ]

Lower bounds: Ω(n1.5)

Better bounds for special cases:
O(n18) for stacked polytopes [ Demaine & Schulz 2011 ]



Günter Rote, Freie Universität Berlin Realizing Planar Graphs as Convex Polytopes Graph Drawing, Eindhoven, 21.–23. 9. 2011

Schlegel Diagrams

project from a center O
close enough to a face

O
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Schlegel Diagrams

project from a center O
close enough to a face

O

a Schlegel diagram:
a planar graph with
convex faces
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3-Connectivity

Assume a, b separate the graph G.
Choose a third vertex v. Take a plane π through a, b, v.

a b v
π
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3-Connectivity

Assume a, b separate the graph G.
Choose a third vertex v. Take a plane π through a, b, v.

a b v
π

vmax

vmin

Every vertex has a
monotone path to
vmax or vmin.

v has both paths.

=⇒
G− {a, b} is connected.

[ this proof: Grünbaum ]

d-connected in d dimensions
[ Balinski 1961 ]
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The Theorem of Steinitz (1916)

The graphs of convex three-dimensional polytopes are
exactly the planar, 3-connected graphs.

Whitney’s Theorem:

3-connected planar graphs have a unique face structure.

( =⇒ they have a combinatorially unique plane drawing up to
reflection and the choice of the outer face.)

=⇒ The combinatorial structure of a 3-polytope is given by
its graph.

We have seen “ =⇒ ”.
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Constructive Approaches

1. INDUCTIVE
Start with the simplest polytope and make local modifications.

2. DIRECT
Obtain the polytope as the result of
• a system of equations [ Tutte ]
• an optimization problem
• an iterative procedure
• (and existential argument)

[ Steinitz ]

[ Das & Goodrich 1995 ]

}
[ Koebe–Andreyev–Thurston ]
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The Realization Space

ajx+ bjy + cjz ≤ 1

assume: origin in the interior of P .

(aj , bj , cj)

(xi, yi, zi)

P

n vertices, m edges, f faces
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The Realization Space

ajx+ bjy + cjz ≤ 1

assume: origin in the interior of P .

(aj , bj , cj)

(xi, yi, zi)

P

n vertices, m edges, f faces

x1 y1 z1
x2 y2 z2
. . .
xn yn zn
a1 b1 c1
a2 b2 c2
. . .
af bf cf


(aj , bj , cj) · (xi, yi, zi)

{
= 1, if face j contains vertex i

< 1, otherwise
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The Realization Space

R0 = {



x1 y1 z1
x2 y2 z2
. . .

xn yn zn
a1 b1 c1
a2 b2 c2
. . .

af bf cf

 ∈ R(n+f)×3 :

(aj , bj , cj) · (xi, yi, zi)

{
= 1, if face j contains vertex i

< 1, otherwise

3n+ 3f variables, 2m equations
THEOREM: dimR0 = 3n+ 3f − 2m = m+ 6.
R0 is contractible.

n vertices, m edges, f faces

In 4 and higher dimensions, realization spaces can be arbitrarily
complicated. [ Mnëv 1988, Richter-Gebert 1996 ]
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The Realization Space

R0 = {



x1 y1 z1
x2 y2 z2
. . .

xn yn zn
a1 b1 c1
a2 b2 c2
. . .

af bf cf

 ∈ R(n+f)×3 :

(aj , bj , cj) · (xi, yi, zi)

{
= 1, if face j contains vertex i

< 1, otherwise

n vertices, m edges, f faces

• triangulated (simplicial) polytopes

vertices can be perturbed.
(aj , bj , cj) variables are redundant.
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The Realization Space

R0 = {



x1 y1 z1
x2 y2 z2
. . .

xn yn zn
a1 b1 c1
a2 b2 c2
. . .

af bf cf

 ∈ R(n+f)×3 :

(aj , bj , cj) · (xi, yi, zi)

{
= 1, if face j contains vertex i

< 1, otherwise

n vertices, m edges, f faces

• simple polytopes (with 3-regular graphs)

faces can be perturbed.
(xi, yi, zi) variables are redundant.
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The Realization Space

R0 = {



x1 y1 z1
x2 y2 z2
. . .

xn yn zn
a1 b1 c1
a2 b2 c2
. . .

af bf cf

 ∈ R(n+f)×3 :

(aj , bj , cj) · (xi, yi, zi)

{
= 1, if face j contains vertex i

< 1, otherwise

n vertices, m edges, f faces

Polarity:
interpret (aj , bj , cj) as vertices and (xi, yi, zi) as half-spaces.

→ the polar polytope: VERTICES ↔ FACES exchange roles.
→ the (planar) dual graph
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Inductive Constructions of Polytopes
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Inductive Constructions of Polytopes
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Inductive Constructions of Polytopes

an additional (triangular) face

+ apply polarity when necessary [ Steinitz 1916 ]

Everything can be done with rational coordinates.
→ integer coordinates of size 2exp(n)

COMBINATORIAL + GEOMETRIC arguments
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Inductive Constructions of Polytopes

Das & Goodrich [1997]: 2poly(n) for triangulated polytopes

perform this operation on n/24 independent vertices in parallel

→ O(log n) rounds
Each round multiplies the number of bits by a constant factor.
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Inductive Constructions of Polytopes

Das & Goodrich [1997]: 2poly(n) for triangulated polytopes

perform this operation on n/24 independent vertices in parallel

→ O(log n) rounds
Each round multiplies the number of bits by a constant factor.
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Direct Constructions of Polytopes

A) construct the Schlegel
diagram in the plane.

B) Lift to three dimensions.
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When is a Drawing a Schlegel Diagram?

strictly convex faces!
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When is a Drawing a Schlegel Diagram?

strictly convex faces!

1
2

3
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When is a Drawing a Schlegel Diagram?

strictly convex faces!

1
2

3
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When is a Drawing a Schlegel Diagram?

strictly convex faces!

1
2

3
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The Maxwell-Cremona Correspondence

Equilibrium stress: Assign a scalar ωij = ωji to every edge ij.

vi

vj
force = ωij

(vj − vi)

ωij

(∗)
∑

j:ij∈E
ωij(vj − vi) = 0

THEOREM: [ Maxwell 1864, Whiteley 1982 ]
A drawing is a Schlegel diagram ⇐⇒ it has an equilibrium
stress that is positive on each interior edge.

equilibrium at vi:

Equilibrium stress: equilibrium at every vertex.
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Tutte Embedding [1960, 1963]

1) Fix the vertices of the outer face

2) Set ωij ≡ 1. Compute positions of interior vertices by (∗)
3) Lift to three dimensions.

(∗)
∑
j∼i

ωij(vj − vi) = 0 =⇒ vi =

∑
j∼i ωijvj∑
j∼i ωij

Every vertex vi is the (weighted) barycenter of its neighbors.
SPIDERWEB EMBEDDING
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Tutte Embedding [1960, 1963]

1) Fix the vertices of the outer face

2) Set ωij ≡ 1. Compute positions of interior vertices by (∗)
3) Lift to three dimensions.

(∗)
∑
j∼i

ωij(vj − vi) = 0 =⇒ vi =

∑
j∼i ωijvj∑
j∼i ωij

Every vertex vi is the (weighted) barycenter of its neighbors.
SPIDERWEB EMBEDDING

If the outer face is a triangle, equilibrium at interior vertices is
enough.
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Tutte Embedding [1960, 1963]

Coefficient matrix (for ω ≡ 1) = the Laplacian Λ

Λ =



3 −1 −1 −1 0 0 0
−1 3 −1 0 −1 0 0
−1 −1 4 0 0 −1 −1
−1 0 0 3 −1 0 −1
0 −1 0 −1 3 −1 0
0 0 −1 0 −1 3 −1
0 0 −1 −1 0 −1 3


degrees

negative adjacency matrix

degreei · vi =
∑
j∼i

vj

vi =

(
xi
yi

)
xi, yi =

det(·)
det Λ
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Tutte Embedding [1960, 1963]

Coefficient matrix (for ω ≡ 1) = the Laplacian Λ

Λ =



3 −1 −1 −1 0 0 0
−1 3 −1 0 −1 0 0
−1 −1 4 0 0 −1 −1
−1 0 0 3 −1 0 −1
0 −1 0 −1 3 −1 0
0 0 −1 0 −1 3 −1
0 0 −1 −1 0 −1 3


degrees

negative adjacency matrix

degreei · vi =
∑
j∼i

vj

vi =

(
xi
yi

)
xi, yi =

det(·)
det Λ′

det Λ′ = the number of
(certain) spanning forests < 6n

common denominator< 6n =⇒ . . . all coordinates < constn.
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Easy bound on spanning trees

#T ≤
n∏

v=1

dv (product of the degrees)

follows from the Hadamard bound for the determinant of
positive semidefinite matrices.

#T ≤
n∏

v=1

dv ·
1

2m
(1 + 1

n−1 )n−1 ≤
n∏

v=1

dv ·
e

2m

for graphs with m edges [Grone, Merris 1988]

For planar graphs: #T ≤
n∏

v=1

dv ≤

(
n∑

v=1

dv
/
n

)n

< 6n
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The Outgoing Edge Method

Pick a root r

r
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv

Every spanning tree

arises once as a rooted
directed spanning tree

#T ≤
∏
v 6=r

dv

r
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv

Every spanning tree

arises once as a rooted
directed spanning tree

#T ≤
∏
v 6=r

dv

r
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv

Every spanning tree

arises once as a rooted
directed spanning tree

#T ≤
∏
v 6=r

dv

r

< 6n
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv

Every spanning tree

arises once as a rooted
directed spanning tree

#T ≤
∏
v 6=r

dv

r

< 6n

#T ≤ O(5.29n) [ K. Buchin & A. Schulz 2010 ]
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Tutte Embedding [1960, 1963]

If the outer face is NOT a triangle, equilibrium at interior
vertices is NOT enough.
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Tutte Embedding [1960, 1963]

If the outer face is NOT a triangle, equilibrium at interior
vertices is NOT enough.

Solution 1)
Realize the polar polytope instead!

≤ n169n3

[ Onn & Sturmfels 1994 ]

(Either the graph or its dual
contains a triangle face.)

≤ 218n
2

[ Richter-Gebert 1996 ]
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Tutte Embedding [1960, 1963]

If the outer face is NOT a triangle, equilibrium at interior
vertices is NOT enough.

Solution 2)
Choose the outer face carefully.
For the case of 4-gons and 5-gons,
have to analyze the resulting
stresses on the outer face.

For the case of 4-gons and 5-gons,
have to analyze the resulting
stresses on the outer face.

< 188n [ Ribó, Rote, Schulz 2011 ]

< 148n [Buchin & Schulz 2010,
by better bound on spanning trees]
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Lower Bounds

Every n-gon with integer vertices needs area Ω(n3).
[ Andrews 1961, Voss & Klette 1982, Thiele 1991,
Acketa & Žunić 1995, Jarńık 1929 ]

=⇒ side length ≥ Ω(n1.5)

For comparison:
Strictly convex drawings of 3-connected planar graphs on an
O(n2)×O(n2) grid. [ Bárány & Rote 2006 ]
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Example: the Dodecahedron

Algorithm gives

z ≤ 1.11× 1025

(general bound ≈ 1047)

remove common factors
=⇒ 0 ≤ xi ≤ 1374

0 ≤ yi ≤ 898
0 ≤ zi ≤ 406.497
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Example: the Dodecahedron

Algorithm gives

z ≤ 1.11× 1025

(general bound ≈ 1047)

remove common factors
=⇒ 0 ≤ xi ≤ 1374

0 ≤ yi ≤ 898
0 ≤ zi ≤ 406.497
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Example: the Dodecahedron

Algorithm gives

z ≤ 1.11× 1025

(general bound ≈ 1047)

remove common factors
=⇒ 0 ≤ xi ≤ 1374

0 ≤ yi ≤ 898
0 ≤ zi ≤ 406.497

← in a 4× 24× 28 box
(done by hand)−1

−2

0
1

2

−3

13
6

14

−13−14
−6

3 5

−5

12

9

−12

−9

4

−4

5

−5
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Example: the Dodecahedron

the pyritohedron

12× 12× 12

 0
±2
±1





Günter Rote, Freie Universität Berlin Realizing Planar Graphs as Convex Polytopes Graph Drawing, Eindhoven, 21.–23. 9. 2011

Example: the Dodecahedron

4

3

−4
−3

−2

2

1

−1

0

−1

−1−2−3
0 1 2 3

2−2 10

the pyritohedron

6× 4× 8

by Francisco Santos

12× 12× 12

 0
±2
±1


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Stacked Polytopes (Planar 3-Trees)

Start with K4

Repeatedly insert a new
degree-3 vertex into a face.
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Stacked Polytopes (Planar 3-Trees)

Start with K4

Repeatedly insert a new
degree-3 vertex into a face.
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Stacked Polytopes (Planar 3-Trees)

Start with K4

Repeatedly insert a new
degree-3 vertex into a face.
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Stacked Polytopes (Planar 3-Trees)

Start with K4

Repeatedly insert a new
degree-3 vertex into a face.
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Stacked Polytopes (Planar 3-Trees)

Start with K4

Repeatedly insert a new
degree-3 vertex into a face.
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Stacked Polytopes (Planar 3-Trees)

Start with K4

Repeatedly insert a new
degree-3 vertex into a face.

A stacked polytope with n vertices can be realized on an
O(n4)×O(n4)×O(n18) grid. [ Demaine & Schulz 2011 ]

Main idea: Recursive bottom-up procedure.
Choose appropriate areas for the planar drawing.
Then lift each vertex high enough.

OPEN:
Can every (triangulated) polytope be realized on a
polynomial-size grid?
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Stacked Polytopes (Planar 3-Trees)

Start with K4

Repeatedly insert a new
degree-3 vertex into a face.

A stacked polytope with n vertices can be realized on an
O(n4)×O(n4)×O(n18) grid. [ Demaine & Schulz 2011 ]

Main idea: Recursive bottom-up procedure.
Choose appropriate areas for the planar drawing.
Then lift each vertex high enough.

OPEN:
Can every (triangulated) polytope be realized on a
polynomial-size grid?
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Circle Packings

The Koebe–Andreyev–Thurston
Circle Packing Theorem (1936):
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Circle Packings

The Koebe–Andreyev–Thurston
Circle Packing Theorem (1936):

Every planar graph can be
realized as a point contact
graph of circular disks.

Simultaneously also the
dual graph.
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Stereographic Projection

Every 3-polytope can be realized with
edges tangent to the unit sphere.

unique up to Möbius transformations.

N

S
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Stereographic Projection

In addition: barycenter of vertices lies at the sphere center.
[ Schramm 1992 (?) ]
→ polytope becomes unique up to reflection.

Every 3-polytope can be realized with
edges tangent to the unit sphere.

unique up to Möbius transformations.
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Extensions of Steinitz’ Theorem

• specify the shape of a face [ Barnette & Grünbaum 1969 ]

• choose the edges on the shadow boundary [ Barnette 1970 ]

• respect all symmetries of the graph [ Mani 1971 ]
[ follows also from Schramm 1992 ]

• specify the x-coordinates of vertices (under restrictions)

• with all edge lengths integer? [ OPEN ]

• specify face areas and directions (but not the graph)
[ Minkowski 1897 ]

• specify the metric on the surface (but not the graph)
[ Alexandrov 1936 ]A
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Extensions of Steinitz’ Theorem

∑
j∼i

ωij

 · vi =
∑
j∼i

ωijvj

IDEA: Use this equation to compute some ω’s for given
x-coordinates. [ Chrobak, Goodrich, Tamassia 1996 ]

Specifying the x-coordinates of vertices:
• There must be only one local minimum and one local

maximum of x-coordinates.

see also [ A. Schulz, GD 2009 ]

A polytope with given x-coordinates exists if
• adjacent vertices have distinct x-coordinates, and
• the minimum and the maximum are incident to a common

triangle.
OPEN: Can the last constraint be removed?
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