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Abstract

Yew-Kwang Ng (Quart. Appl. Math. 49 (1991), 289{301) listed several \reasonable prop-

erties" for equivalent changes of probabilities and other proportions. He produced a family

of functions satisfying all properties and asked whether there exist essentially di�erent ones.

We show that this is the case, by constructing uncountably many families of functions satis-

fying all properties. We show also that there are no other solutions. Our method establishes

connections with webs (nets) and iteration groups. This may be of interest both in itself and

for applications.

1 Introduction

In the paper [12], Yew-Kwang Ng deals with the question how equivalent changes for prob-

abilities (or proportions and percentages) should be calculated. To show that this is not

obvious, we quote a more recent example: an article in Newsweek (\Endangered Family",

August 30, 1993, p. 26 or p. 38 in di�erent editions) notes that between 1960 and 1989,

the proportion of young white women giving birth out of wedlock rose from 9 to 22 percent

\markedly faster" than it did for blacks. Had the rate for blacks | 42 percent in 1960 |

\kept pace with the white rate, it would have topped 100 percent by now. As things stand,

it's 70 percent." (Our emphasis.) This makes one wonder about the author's standards for

comparing changes in proportions. We see that di�erent changes in proportions (and prob-

abilities) can certainly not be compared by taking quotients; and taking di�erences does not

work either, for the same reason: Probabilities cannot go under 0 or above 1 (percentages

not below 0% or above 100%).

Ng lists several \reasonable properties" for equivalent changes or, equivalently, for the

family of functions representing them. Then he gives explicitly one family of functions which

have all these properties and asks whether this is essentially the only family satisfying these
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requirements and possibly an additional convexity property (although the word convexity

is not used; the rest of the terminology there is also unconventional but recognizable and,

with one exception to be stated below, clearly formulated).

In this paper we show how to construct, with aid of functional equations, all families of

functions satisfying the requirements in [12], both with and without convexity. One family

is closely related to the normal (Gaussian) probability distribution. It turns out that there

is a great variety of possibilities for de�ning equivalent changes. Ng suspected that one

might be able to single out a \natural" or \best" solution. This is in fact not possible, at

least on the basis of his explicit requirements alone. However, as will be discussed at the

end, our characterization of all solutions leads to an interpretation of equivalent changes

which allows us to select the functions de�ning equivalent changes in a problem-speci�c

way.

We arrive at our results by showing that the graphs of the functions form a regular

geometric web (net) and that by reparametrization this family of functions becomes an

iteration group. This establishes connection to iteration theory which is of great importance

nowadays for mathematics and its applications (think for instance of dynamical systems and

fractals [7, 13]).

In section 2 we will discuss the basic properties listed in [12] and in section 3 we will

show that they de�ne equivalence relations. In section 4 we will prove a characterization

theorem for the families of functions de�ned by ten of these properties. In sections 5 and 6,

we will deal with an additional symmetry property and an additional convexity property,

respectively. We will discuss in which way these properties restrict the families of functions

and prove corresponding characterization theorems. These two sections are complemented

by several examples which demonstrate the diversity of possibilities of realizing the proper-

ties. The �nal section discusses the results. It turns out that our characterization theorems

yield a very natural interpretation of the functions which furnish equivalent changes of

probabilities.

2 The basic properties

The article [12] starts with the question (slightly rephrased): \Suppose that a probability

(or other proportion) changes from x1 to x2. Given y1, for what probability (or proportion)

y2 can one say that the change from y1 to y2 is equivalent to the change from x1 to x2?"

Noting that y2=y1 = x2=x1 or y2 � y1 = x2 � x1 will not do because probabilities have

to stay between 0 and 1 (and percentages between 0 and 100), the paper lists \reasonable

properties" which the function

y2 = F(x1; y1; x2) (1)

should have. In what follows, we list these properties, in slightly di�erent order, with the

names given to them by Y.-K. Ng in quotation marks (except for property 12 which we call

convexity rather than monotonicity in dy=dx). We modi�ed Ng's properties 1, 5, 8, and

12, and accordingly we write 10, 50, 80, 120, and 1200 for our corresponding properties.

The property 1 given in [12]: \F exists for all values x1, y1, x2 between and inclusive of 0

and 1", should be slightly changed because, as it stands, it contradicts the other properties,

in particular properties 6, 3, 2, and 4. Indeed in the solution given by equation (1) on p. 294

of [12] (formula (20) in the present paper), the function F is not de�ned for x1 = x2 = 0;
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x1 = y1 = 0; x2 = 0; y1 = 1; x1 = x2 = 1; x1 = y1 = 1; and for x2 = 1; y1 = 0. (There is also

a similar ambiguity and a slight misprint in property 5 as formulated in [12].) Property 1

should be replaced by the following:

Property 10 (\Completeness"). F(x1; y1; x2) is de�ned for all values of x1; y1 strictly

between 0 and 1 and for all values of x2 between 0 and 1 (0 and 1 included.)

Some combinations of 0 and 1 values would also be permissible for x1 and y1, but they

are not needed.

Property 2 (\Uniqueness") just states that F is a function.

Property 3 (\Interchangeability") establishes the possibility of simultaneously

exchanging x1 with x2 and y1 with y2:

F(x1; y1; x2) = y2 implies F(x2; y2; x1) = y1; (2)

that is, F(x2; F(x1; y1; x2); x1) = y1.

From here on x1 and y1 are regarded as �xed while x2 is variable, and we denote

F(x1; y1; x2) by f
[i](x) = F(x1; y1; x). (This is denoted by fi(x) in [12].) It soon turns out

that there is a whole family ff[i]g of such functions.

Property 50 requires that the graph of exactly one f[i] go through each point of ]0; 1[
2
,

the interior of the unit square. (The word \interior" is missing in [12] but it is clear from

properties 6 and 7 that, for example, no graph goes through (x; 0) for x > 0.) This statement

consists of two parts. The �rst is Ng's original property 5, \Identity",

F(x1; y1; x1) = y1; (3)

whose meaning is obvious: If x remains unchanged, then also y has to remain unchanged.

It implies that at least one function f[i] goes through the point (x1; y1). The statement that

at most one function goes through this point is contained in [12] only as an afterthought to

property 7. In terms of F it can be phrased as follows. Every function f[j](x) = F(x2; y2; x)

whose graph also goes through the point (x1; y1) must coincide with the above function

f[i](x) = F(x1; y1; x):

F(x2; y2; x1) = y1 and F(x2; y2; x3) = y3 imply F(x1; y1; x3) = y3: (4)

The interpretation of this is natural: If a change of x from x2 to x1 is equivalent to a change

of y from y2 to y1 and another change from x2 to x3 is equivalent to a change from y2 to y3,

then the direct change from x1 to x3 should be equivalent to a change from y1 to y3. We

note that property 3 follows from this interpretation of property 50. Indeed, choose in (4)

x3 = x2, y3 = y2 in order to get

F(x2; y2; x1) = y1 and F(x2; y2; x2) = y2 imply F(x1; y1; x2) = y2:

By (3) the second equality is always ful�lled, and by renaming x1; y1 to x2; y2 and vice

versa we get (2).

A consequence of property 50 is that there are uncountably many functions f[i] in the

family. (Their cardinality is the same as that of the set R of real numbers.)

Property 4, which is called \Parity" in [12], establishes that the family ff[i]g contains
the identity function given by y = x or, in terms of F, by F(x1; x1; x2) = x2: If y1 = x1, i. e.,
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y starts at the same value as x, then we should have y = x for all x to e�ect a corresponding

change.

Property 7 (Monotonicity) makes all functions f[i] strictly increasing on the closed

interval [0; 1].

Property 6 (\Limitation") postulates that f[i](0) = 0, f[i](1) = 1 for all f[i], that

is, the graph of each f[i] goes through (0; 0) and (1; 1). In terms of F this means that

F(x1; y1; 0) = 0 and F(x1; y1; 1) = 1 for all x1; y1 in the open interval ]0; 1[. In other

words, the (only) change of probability from y1 2 ]0; 1[ which is equivalent to a change of

probability from x1 2 ]0; 1[ to 0 or 1 is the change from y1 to 0 or 1, respectively.

Property 8 in [12] demands that all f[i] be continuously di�erentiable on [0; 1]. We will

need only continuity (in fact, we will derive di�erentiability from the additional convexity

property in section 6, see theorem 3):

Property 80 (Continuity). All functions f[i] (or all F(x1; y1; �)) are continuous on [0; 1].

Property 9 is a certain symmetry property, which we will discuss in section 5.

Property 10 (\Anonymity") postulates that the inverse function of each f[i], which

exists by properties 6, 7 and 80, also belong to the family. This means in terms of F that

F(y1; x1; �) is the inverse function of F(x1; y1; �), that is,
F(x1; y1; x2) = y2 implies F(y1; x1; y2) = x2;

or F(y1; x1; F(x1; y1; x2)) = x2, a property similar to property 3, this time establishing that

x1 and x2 can be exchanged for y1 and y2: If the change from x1 to x2 is equivalent to

the change from y1 to y2 then the change from y1 to y2 is clearly equivalent to that from

x1 to x2. (It should not matter whether we call the �rst variable x or y; this explains the

name anonymity.)

Property 11 (Transitivity) requires the following: \If
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Figure 1. The transitiv-
ity property (Reidemeister
condition).

the change in the variable x from x1 to x2 is equivalent to the

change in y from y1 to y2 and to the change in z from z1 to

z2 then the change in y from y1 to y2 is also equivalent to the

change in z from z1 to z2." The geometric interpretation is

interesting: \If (x1; y1) and (x2; y2) lie on the same graph and

(x1; z1) and (x2; z2) lie on the same graph (possibly di�erent

from the previous graph) then also (z1; y1) and (z2; y2) lie on

the same graph (possibly di�erent from the previous two)." See

�gure 1.

We have already seen above that property 3 is a consequence

of property 50. We will now show that property 11, in conjunc-

tion with properties 4 and 50, is even more powerful: it implies

that every f[i] is a one-to-one mapping (bijection). From this we will be able to show that

several properties can be omitted.

Let us set x1 = y1 and x2 = y2 in property 11. Then we get the following special case:

\If (x1; x1) and (x2; x2) lie on the same graph (which they always do, by property 4) and

(x1; z1) and (x2; z2) lie on the same graph then also (z1; x1) and (z2; x2) lie on the same

graph." Thus we observe that the set of graphs of the functions f[i] is invariant under the

exchange of coordinates; in other words, they must lie symmetric with respect to the 45�

line y = x. This implies that the functions are bijections, as is formulated in the following

lemma.
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Lemma Properties 10, 2, 4, 50, and 11 imply that all functions f[i] are bijections of the

interval ]0; 1[ onto itself.

Proof. To show that the functions are injective, assume that the points (x1; z) and (x2; z)

with x1 6= x2 lie on the same curve. By the above observation, the points (z; x1) and (z; x2)

lie also on the same curve, contradicting the fact that the curve is the graph of a function

(properties 1 and 2).

Surjectivity means that the equation z2 = f[i](x2) has a solution x2 for all functions f
[i]

and all z2 2 ]0; 1[. Set x1 = 1=2 (or any other value in ]0; 1[ ), z1 = f[i](x1), and consider

the function f[j] going through the point (z1; x1), which exists by property 50. We show

that x2 = f[j](z2) is the required solution. Indeed, the point (z2; x2) lies on the same curve

as (z1; x1). Hence, by the above observation, the point (x2; z2) lies on the same curve

as (x1; z1). By property 50, this curve is unique, namely the graph of f[i]. Thus we get

z2 = f[i](x2) and we are done.

Property 10 follows directly from the above observation. A one-to-one mapping f[i] of

an interval onto an interval is continuous if and only if it is strictly monotonic. So the

properties 7 and 80 are equivalent. (Monotonically decreasing continuous functions can be

excluded since the graph of such a function would cross the graph of the identity function,

contradicting property 50.) Properties 7 and 80 together clearly imply property 6.

To summarize, we have seen that properties 3, 6, 10, and 7 or 80 can be omitted, and it

is su�cient to assume properties 10, 2, 4, 50, 11, and one of 7 and 80.

3 Equivalence relations between pairs of probabilities

Before we investigate further consequences of our properties, we step back and look at them

from a di�erent point of view. The function F, with

y2 = F(x1; y1; x2); (1)

establishes a quaternary relation between x1, y1, x2, and y2.

However, the very wording of the interpretation that we have given to this relation, \the

change from y1 to y2 is equivalent to the change from x1 to x2", suggests that we should

view it as a binary relation between the pairs (x1; x2) and (y1; y2) and moreover, that it

should be an equivalence relation. Using the more suggestive notation

(x1 y x2) � (y1 y y2)

instead of (1), we �nd the properties of an equivalence relation in our properties: Reexivity

| (x1 y x2) � (x1 y x2) | is just a translation of x2 = F(x1; x1; x2), which is property 4.

Symmetry | (x1 y x2) � (y1 y y2) implies (y1 y y2) � (x1 y x2) | is found as

property 10 about the inverse function. And �nally, transitivity | (x1 y x2) � (y1 y y2)

and (x1 y x2) � (z1 y z2) together imply (y1 y y2) � (z1 y z2) | was already identi�ed

as a transitivity property, namely as property 11.

On the other hand, we may view (1) also as a relation between the pairs (x1; y1) and

(x2; y2). (In order to get on equal footing, we here restrict also x2 and y2 to ]0; 1[.) The

statement

(x1; y1) s (x2; y2)
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may be given the interpretation: \The pair (x1; y1) of initial values for x and y corresponds

to the pair (x2; y2) of �nal values for these quantities." Again, the wording suggests that this

is an equivalence relation, which is indeed the case: Reexivity | (x1; y1) s (x1; y1) | is

the existence part of property 50; symmetry | (x1; y1) s (x2; y2) implies (x2; y2) s (x1; y1)

| is property 3; and �nally transitivity | (x2; y2) s (x1; y1) and (x2; y2) s (x3; y3) imply

(x1; y1) s (x3; y3) | is the uniqueness part of property 50.

Note that we formulated transitivity in such a way that, in conjunction with reexivity,

it should imply symmetry. The usual formulation of transitivity, a � b and b � c implies

a � c, can then be directly obtained by symmetry.

All properties mentioned so far in this section (3, 4, 5, 10, and 11) are purely algebraic in

the sense that they assume nothing about the set of values which the quantities x, y, z can

take. Properties 1 and 2 are basic in the sense that they establish the objects that one deals

with. The only further properties in section 2 which have not been identi�ed as properties

of equivalence relations are 6, 7, and 80. These have to do with the particular form of the

functions and are of a di�erent type. Properties 120 and 1200 will be further requirements of

this type. Only property 9, which will be introduced in section 5, is of an algebraic nature

again. It uses the structure of the involutory mapping x 7! 1�x (complementation) on the

underlying set.

4 Geometric webs; iteration groups; the �rst characteriza-

tion theorem

We now continue to explore the consequences of the properties and, in particular, we take

a closer look at property 11.

By properties 6, 7, and 80, the functions f[i] are continuous strictly increasing bijections

of the interval ]0; 1[ onto itself. By property 50, the graphs of these functions and the

x = constant, y = constant lines form a geometric web or net (see [1, 2, 5, 6]), three

families of continuous curves on a subset of the plane, in this case on ]0; 1[
2
, such that

each point of the subset lies on exactly one curve of each family and two curves of di�erent

families always meet in exactly one point. Property 11 is just the Reidemeister condition

(see �gure 1 and [1, 2, 5]) for three curves of the same family together with the line y = x,

which belongs, by property 4, also to the family.

As shown in [1] (see also [2]), if the Reidemeister condition is satis�ed with one �xed

curve of the third family (the three other curves of the third family and the \curves" of the

other two families are arbitrary within the constraints of the condition) then it is always

satis�ed. Moreover, there exist continuous and strictly monotonic bijections (homeomor-

phisms) '; ; 	: ]0; 1[! R such that the \contour lines" z = constant of the equation

	(z) =  (x) + '(y):

are the curves of the third family, while, as mentioned above, the �rst two families consist

of the vertical and horizontal lines x = constant and y = constant, respectively. So the

curves of the third family are given by

y = '�1(	(z)� (x)):
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This has to be the same as f[i](x) since the curves of the third family are the graphs of

the functions f[i], and the choice of the value of z, or � = 	(z) for that matter, picks an

individual f[i] from the family of functions ff[i]g. We will thus reparameterize and introduce

a meaningful parameter � in place of i to which no particular meaning was attached, writing

f(�) = f[i] by de�nition. So we have

y = f(�)(x) = '�1(��  (x)):

As  : ]0; 1[ ! R is a bijection, � =  (z) assumes every real value. Moreover, the identity

function y = x belongs, by property 4, to ff[i]g and so now to ff(�)g. Let the parameter

belonging to it be �0, that is,

'�1(�0 � (x)) = x;

thus  (x) = �0 �'(x) and

f(�)(x) = '�1(� � �0 +'(x)):

As a slight second reparametrization we introduce the parameter t = � � �0 and write

ft = f(�). With � also t = � � �0 runs through the entire set of real numbers. Thus our

family of functions fftg is given by

ft(x) = '�1('(x) + t); for all x 2 ]0; 1[; t 2 R. (5)

As for the identity function, it clearly belongs to the parameter value t = 0:

f0(x) = x

The functions ft given by (5) satisfy

ft(fu(x)) = '�1(t+'[fu(x)]) = '�1(t+ u+ '(x)) = ft+u(x):

Thus they form an iteration semigroup or, since the identity function is included, an iteration

monoid. But, by property 10, also the inverse function of any ft belongs to this monoid,

let us call it ft
0

. By the de�nition of inverse functions we have

x = ft
0

(ft(x)) = '�1(t+ t0 + '(x));

that is, '(x) = t + t0 + '(x) for all x, and t0 = �t. Therefore f�t is the inverse of ft and
fftg is an iteration group. Concerning iteration groups, connected to webs or otherwise, see

for example [2, 3, 4, 11].

If we want the graph of ft to pass through (x1; y1), then

y1 = ft(x1) = '�1(t+'(x1));

so t = '(y1)� '(x1) and y = ft(x) = '�1('(y1)�'(x1) + '(x)). Therefore

y2 = F(x1; y1; x2) = '�1('(y1)� '(x1) + '(x2)) (6)

describes the function whose graph goes through (x1; y1), and (1) can be written as

'(y2)� '(y1) = '(x2)� '(x1): (7)
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Thus it turns out that

F(x; y; z) = F(x; z; y):

In (5) and (6) we had ' continuous and strictly monotonic. Without loss of generality we

may suppose that ' is strictly increasing, by changing t to �t if necessary.
Till now we were on the open square ]0; 1[

2
. Adding the two points (0; 0) and (1; 1)

according to property 6 would give, if we wanted to keep the representations (5) and (6),

0 = ft(0) = '�1(t+ '(0)) and 1 = ft(1) = '�1(t+ '(1));

that is,

'(0) = t+'(0) and '(1) = t+ '(1), for all t 2 R.
Thus, '(0) and '(1) cannot be �nite real numbers but we can de�ne them as �1 and +1
if we want to keep (5), (6), and the de�nitions as stated in property 6:

'(0) = �1; '(1) = +1, and accordingly, '�1(�1) = 0; '�1(+1) = 1: (8)

This de�nition keeps ' and '�1 increasing and even continuous in the following sense.

Since ' is an increasing bijection of ]0; 1[ onto R, we have

lim
x!0

'(x) = �1; lim
x!1

'(x) =1, and lim
s!�1

'�1(s) = 0; lim
s!1

'�1(s) = 1:

It is easy to check that the functions given by (5) and (6), with the extension (8), have

all the properties 10, 2{4, 50, 6, 7, 80, 10, and 11. Indeed, we have just forced property 6 to

hold:

F(x1; y1; 0) = '�1('(y1)� '(x1)�1) = '�1(�1) = 0;

F(x1; y1; 1) = '�1('(y1)� '(x1) +1) = '�1(+1) = 1:

Property 10 is obvious, (6) de�nes F for all x1; y1; x2 2 ]0; 1[, and the cases x2 = 0 and x2 = 1

have just been discussed. Property 2 is self-evident. We check property 3 by substituting (6)

into it:

F(x2; F(x1; y1; x2); x1) = '�1('(F(x1; y1; x2))�'(x2) +'(x1))

= '�1('(y1)� '(x1) + '(x2)�'(x2) +'(x1)) = '�1('(y1)) = y1

Properties 4 and 10 we have checked already: f0 is the identity function, f�t is the inverse

function of ft. Property 50 is satis�ed because the graph of f'(y1)�'(x1) (and of no other

ft) goes through (x1; y1), by the choice of t in the derivation of (6) above:

f'(y1)�'(x1)(x1) = '�1('(x1) + '(y1)�'(x1)) = y1

Properties 7 and 80 are obvious because ' is continuous and strictly monotonic.

Finally, we check property 11. Do the equations

ft(x1) = y1; f
t
(x2) = y2; and fu(x1) = z1; f

u
(x2) = z2;

that is,

t+'(x1) = '(y1); t+'(x2) = '(y2); and u+'(x1) = '(z1); u+'(x2) = '(z2) (9)
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indeed imply that there exists a v such that fv(z1) = y1; f
v(z2) = y2, that is,

v+ '(z1) = '(y1) and v+'(z2) = '(y2) ?

Yes, and v = t � u does the job because from (9)

'(y1)� '(z1) = t� u = '(y2)�'(z2):

This concludes the proof of the following theorem.

Theorem 1 The general families of functions satisfying the requirements 10, 2, 3, 4, 50, 6,

7, 80, 10, and 11 are given by (5) and (6), where ' is an arbitrary continuous and strictly

increasing bijective mapping from ]0; 1[ onto R, extended by (8).

We show now that for a given family of functions, ' is unique up to positive a�ne

transformations '(x) 7�! a � '(x) + b with a > 0. Suppose that two functions ' and ~'

give rise to the same family of functions f ft j t 2 Rg= f gu j u 2 Rg with
ft(x) = '�1('(x) + t)

and

gu(x) = ~'�1( ~'(x) + u):

The two parameterizations must be related by some bijective function �:R! R:

g�(t)(x) = ft(x);

which is equivalent to

~'�1( ~'(x) + �(t)) = '�1('(x) + t), for all x 2 ]0; 1[ and t 2 R.
By setting � := ~' �'�1 and x = '�1(u) we obtain ~'(x) = ~'('�1(u)) = �(u) and

�(u+ t) = ~'('�1('(x) + t)) = ~'( ~'�1( ~'(x) + �(t))) = �(u) + �(t);

for all u; t 2 R. The functional equation �(u + t) = �(u) + �(t) is a Pexider equation. It

implies that �(u+ t)� �(u) depends only on t, and since � is continuous, the solution can

only be of the form

�(u) = au+ b

for some constants a and b, see [10]. Thus we get

~'(x) = �('(x)) = a'(x) + b:

Since ' and ~' are increasing, a must be positive.

We could select a unique ' representing a family of functions by stipulating for example

that '(1=2) = 0 and '(3=4) = 1. This still leaves uncountably many strictly increasing bi-

jections of ]0; 1[ ontoRwhich are not a�ne functions of each other, so there are uncountably

many families of functions satisfying the requirements 10, 2{4, 50, 6, 7, 80, 10, and 11.

Note that addition of a constant b to '(x) does not change the functions de�ned by (5)

and (6) at all, because the constant simply cancels out. The multiplication by a corresponds

to a reparametrization of the family fftg given by (5). It again has no e�ect on (6), however.
We note that we may also allow ' to be decreasing. The theorem would still hold, with

the obvious modi�cations of (8). Everything else could remain unchanged.
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5 A further property: symmetry with respect to y = 1 � x;

the second characterization theorem; Y.-K. Ng's example

In [12] a further \reasonable property" is an invariance with respect to replacing all prob-

abilities x by the complementary probabilities 1� x:
Property 9 (\Complementarity"). F(1� x1; 1� y1; 1� x2) = 1� F(x1; y1; x2).
This equation is rather intuitive. Consider, for instance, the connection between changes

in employment and unemployment rates. If the change from x1 to x2 is equivalent to the

change from y1 to y2 then the change from 1 � x1 to 1 � x2 should also be equivalent to

the change from 1� y1 to 1� y2. A geometric interpretation of property 9 in conjunction

with property 10 can be derived as follows. Property 9 states that F(x1; y1; x2) = y2 implies

F(1 � x1; 1 � y1; 1 � x2) = 1 � y2, and vice versa. By property 10, the last equation is

equivalent to F(1� y1; 1� x1; 1� y2) = 1� x2. Thus we have as an equivalent formulation:

F(x1; y1; x2) = y2 implies F(1� y1; 1� x1; 1� y2) = 1� x2: (10)

Now consider an arbitrary function ft and let (x1; y1) be the point of intersection of its

graph with the line x+ y = 1. (This point exists because of properties 6 and 80.) We have

then, for all x and y,

ft(x) = F(x1; y1; x) = y

implies

1� x = F(1� y1; 1� x1; 1� y) = F(x1; y1; 1� y) = ft(1� y):
The next-to-last equation follows from x1+y1 = 1. Thus we get the following relation from

properties 9 and 10:

ft(x) = y implies ft(1� y) = 1� x; (11)

or

ft(1� ft(x)) = 1� x: (12)

Geometrically, with every point (x; y) = (x; ft(x)), also its mirror image with respect to the

135� line, (1� y; 1� x) = (1� ft(x); 1� x) lies on the graph of ft (see �gure 2), that is, the

graph of each ft is symmetric with respect to the line y = 1� x.

- x

6

y

@
@
@
@
@
@
@
@
@
@@

r

r

�
�
�
�
���

	

x

ft(x)

1�ft(x)

1� x = ft(1�ft(x))

1

1

0

Figure 2. Reection in the line x+ y = 1.

To check the converse implication

from (12) and from property 10 to prop-

erty 9, remember that F(x1; y1; x2) =

y2 means that there is an ft in the fam-

ily whose graph contains both points

(x1; y1) and (x2; y2). By the symme-

try of ft, or by (11), the same ft con-

tains the points (1 � y1; 1 � x1) and

(1 � y2; 1 � x2), that is, we conclude

that F(1 � y1; 1 � x1; 1 � y2) = 1 �
x2. So we have (10), which, as we have

seen above, is equivalent to property 9

if property 10 is also supposed.
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We will now determine the general function ft, of the form (5), which satis�es (12). First

notice that, for each �xed t, ft is a bijection of ]0; 1[ onto ]0; 1[. (We are here ignoring the

values ft(0) = 0 and ft(1) = 1.) We can write (12) with y = ft(x), that is, x = (ft)�1(y) =

f�t(y), as

ft(1� y) = 1� f�t(y):
In view of (5), this is equivalent to

'�1('(1� y) + t) = 1�'�1('(y)� t): (13)

For t = '(y) this reduces to

'�1('(1� y) +'(y)) = 1�'�1('(y)�'(y)) = 1� '�1(0):

Thus we have, for all y 2 ]0; 1[,

'(1� y) + '(y) = '(1�'�1(0));

which is constant. By setting y = 1=2 we see that the constant is 2'(1=2). Since we may

add an arbitrary constant to ' without changing the functions ft (cf. the discussion after

theorem 1), we can without loss of generality make the following simplifying assumption:

'(1=2) = 0 (14)

Our condition becomes now

'(1� y) + '(y) = 0, for all y 2 ]0; 1[.

With z = 1

2
� y this can be written as

'(
1

2
+ z) = �'(

1

2
� z):

This means that the graph of ' is symmetric about the point (
1

2
; 0) = (

1

2
; '(

1

2
)). Thus the

bijection g:
��1

2
; 1
2

�! R de�ned by

g(z) = '(
1

2
+ z) (15)

is odd:

g(�z) = �g(z):
Conversely, if we start with an arbitrary continuous strictly increasing odd bijection

g:
��1

2
; 1
2

�! R, the function

'(y) := g(y� 1

2
) (16)

will always satisfy (13). Indeed, from (16) we get

'�1(s) =
1

2
+ g�1(s): (17)

We have

'(1� y) = g(1
2
� y) = �g(y� 1

2
);

because g is odd, and therefore

'�1('(1� y) + t) =
1

2
+ g�1('(1� y) + t) =

1

2
+ g�1(�g(y� 1

2
) + t);
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while

1� '�1('(y)� t) =
1

2
� g�1('(y)� t) =

1

2
� g�1(g(y� 1

2
)� t):

The right-hand sides of the last two chains of equations are equal, since with g also g�1 is

odd. Thus (13) is satis�ed and so is (12) for all x 2 ]0; 1[ and t 2 R.
We have also, for all t 2 R,

ft(x) = '�1(t+'(x)) =
1

2
+ g�1(t+ g(x� 1

2
)), for x 2 ]0; 1[,

ft(0) = 0; ft(1) = 1:
(18)

The boundary equations for 0 and 1 come from property 6 and make (12) valid also for

x = 0 and x = 1:

ft(1� ft(0)) = ft(1) = 1� 0; ft(1� ft(1)) = ft(0) = 1� 1:

Substitution of (16) and (17) into (6) gives the representation

y2 = F(x1; y1; x2) =
1

2
+ g�1

�
g(y1 � 1

2
)� g(x1 � 1

2
) + g(x2 � 1

2
)
�
, for 0 < x2 < 1

F(x1; y1; 0) = 0; F(x1; y1; 1) = 1
(19)

So we have proved the following theorem.

Theorem 2 The general families of functions satisfying the requirements 10, 2{4, 50, 6,

7, 80, and 9{11 are given by (18) and (19), where g is an arbitrary continuous, strictly

increasing, and odd bijective mapping from
��1

2
; 1
2

�
onto R.

Like the function ' in theorem 1, the function g

- x

6

f[i](x)

1

1

0

Figure 3. The functions ft in Ng's
example, de�ned by (21), for t = 0,
�0:25, �0:5, �0:75, �1, �1:5, �2,
�2:5, and �3.

in theorem 2 can be subjected to an arbitrary a�ne

transformation g(z) 7�! a � g(z) + b with a 6= 0

without a�ecting the family ft. However, for b 6= 0

these transformations do not preserve oddness. In

fact, the requirement that g be odd can be week-

end to the symmetry of g about the point (0; g(0)):

g(�z)�g(0) = � (g(z)� g(0)). (Similarly, it does not

matter whether g is increasing or decreasing.) The

more restrictive formulation in theorem 2 comes from

the simplifying assumption (14) that'(1=2) = g(0) =

0.

Ng [12] presents an example which meets all re-

quirements 1 (really 10) and 2{11. We show how the

solution in [12] �ts into the framework of the above

theorem. That solution is

f[i](x) =
(i+ 1)x

2x+ i� 1;

or, in terms of (1),

y2 = F(x1; y1; x2) =
x2y1(1� x1)

x1(1� x2) + y1(x2 � x1)
; (20)
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see �gure 3. To see that these functions are of the forms (5) and (6), respectively, choose

'(x) = ln x

1�x
, that is, '�1(s) = 1=(1+ e�s), and the reparametrization

t = �(i) = ln
i+ 1

i � 1:

Then indeed

ft(x) = '�1(t+ '(x)) =
1

1+ e�t�ln(x=(1�x))
=

1

1+ e�t � 1�x
x

=
x

x+ e�t(1� x) (21)

and

f[i](x) = f�(i)(x) =
x

x+
i�1

i+1
(1� x) =

(i+ 1)x

(i+ 1)x+ (i� 1)(1� x) =
(i+ 1)x

2x+ i � 1;

as it should be. Also

F(x1; y1; x2) = '�1('(y1)� '(x1) + '(x2)) =
1

1+ exp
�� ln y1

1�y1
+ ln x1

1�x1
� ln x2

1�x2

�

= 1
. �

1+
1� y1
y1

x1

1� x1
1� x2
x2

�
=

x2y1(1� x1)
x2y1(1� x1) + (1� y1)x1(1� x2)

=
x2y1(1� x1)

x1(1� x2) + y1(x2 � x1) ;

again as required. Let us �nally check that ft(x) is indeed of the form (18). We de�ne the

function g by

g(z) = ln
1

2
+ z

1

2
� z = 2 artanh2z, for �1=2 < z < 1=2.

This function is odd: g(�z) = ln((1=2� z)=(1=2+ z)) = �g(z), and its inverse is g�1(s) =
1

2
(es� 1)=(es+ 1) =

1

2
tanh s

2
. We have 1

2
+ g�1(s) =

1

2
(1+ tanh s

2
) = 1=(e�s+ 1), and thus

1

2
+ g�1(t+ g(x� 1

2
)) = 1=(exp(�t� g(x� 1

2
)) + 1) = 1

� �
exp

�
�t� ln

x

1� x
�
+ 1

�

=
1

e�t � 1�x
x

+ 1
=

x

(1� x)e�t + x = ft(x):

As we see, here also ft(0) = 0 and ft(1) = 1 are contained in the same formula.

Although the function given by g(z) = 2 artanh2z is simple, there is nothing special

about it which would imply that the functions ft are in some sense natural or best solutions,

as was conjectured by Ng [12]. However if we substitute '(x) = ln x

1�x
into (7) and take

exponentials on both sides of the equation we get the following condition for equivalent

changes in probabilities:

y1

1� y1
:
y2

1� y2
=

x1

1� x1
:
x2

1� x2
;

and this could be explained by saying that the \odds" x=(1�x) have to change proportion-
ally.
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6 A last property: convexity; further characterization theo-

rems and examples

For the case that properties 1{11 might not characterize equivalent changes uniquely, the

author suggests in [12] that \we may wish to adopt further reasonable properties so as to

narrow down the permissible functions de�ning equivalent changes, preferably to a unique

function F or a unique family f[i]." He proposes the property 12 that \for any f[i] whose

graph lies below/above the y = x line, dy=dx = (f[i])0 be (strictly) increasing/decreasing

throughout" (again slightly rephrased). It is clear that, for di�erentiable functions, this is

the (strict) convexity/concavity of f[i], and that is what we will call it. Without supposing

di�erentiability (we will prove, though, that the fi are continuously di�erentiable) we will

show that this requirement does not narrow down the permissible functions to a unique

family of functions either, and we will determine all functions satisfying the requirements 1{

12. We state two variants of property 12:

Property 120 (Convexity). Each ft is convex on ]0; 1[ for t < 0.

Property 1200 (Strict Convexity). Each ft is strictly convex on ]0; 1[ for t < 0.

By property 10, ft will then be (strictly) concave for t > 0. Of course, f0 is the linear

function y = x.

Before we investigate how to modify theorem 1 to accommodate this additional property

we will show that it implies that ft, ', and '�1 are continuously di�erentiable. Recall that

we have already obtained from the other properties the representation

ft(x) = '�1('(x) + t); (5)

where ' was a strictly increasing continuous function, with the extension (8). In this section

we will more often deal with the inverse function '�1, and thus it will be convenient to

write (5) as

ft(x) = �(��1
(x) + t); (50)

where � = '�1 is a strictly increasing and continuous bijection �:R[ f�1;1g ! [0; 1].

Now we have in addition that ft is concave on ]0; 1[ if t > 0. Therefore the right

derivative (ft)0
+
of ft exists and is �nite for all x 2 ]0; 1[:

(ft)0
+
(x) = lim

h!0+

ft(x+ h)� ft(x)
h

<1
For arbitrary x and h with 0 < x < x+ h < 1 there exist s and � > 0 such that x = �(s),

x+ h = �(s+ �). So we can write

(ft)0
+
(x) = lim

�!0+

�(s+ t + �)��(s+ t)

�(s+ �)��(s)
= lim

�!0+

(�(s+ t + �)��(s+ t))=�

(�(s+ �)��(s))=�
: (22)

Furthermore, since � is monotonic, it is di�erentiable at some point s0 (even almost every-

where). So for s = s0 the limit of the denominator

lim
�!0+

�(s0 + �)��(s0)

�

exists. By (22), also the limit of the numerator

lim
�!0+

�(s0 + t+ �)��(s0 + t)

�
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exists. Since t was arbitrary, � is thus di�erentiable from the right everywhere. So the

limits of both the numerator and the denominator in (22) exist for all s and t. Moreover,

the limit of the denominator could be 0 at s = s0 only if the limit of the numerator would

be 0 too, that is, if �0

+
(s0 + t) = 0 for all t. So � would have to be constant, but it is

strictly increasing; therefore, �0

+
(z) 6= 0 for all z 2 R.

We di�erentiate ft from the right with respect to t, using the representation (50), and

since �0

+
exists everywhere, so does

�0

+
(��1

(x)) =
@ft(x)

@t

����
t=0+

= lim
t!0+

ft(x)� f0(x)
t

= lim
t!0+

ft(x)� x
t

:

We denote this function of x by �. As the limit of the concave functions (ft(x) � x)=t,
the function � is clearly concave, and thus continuous (cf. [10, 14]). Therefore the function

�(�(s)) = �0

+
(s) is continuous on R. It follows that � is di�erentiable, �0

+
= �0 > 0, and

�0 is continuous on R.

Since �0 is continuous and nowhere 0, also ��1 is continuously di�erentiable. Therefore

we have proved the following theorem.

Theorem 3 If a family of functions satis�es the requirements 10, 2{4, 50, 6, 7, 80, 10, 11,

and 120 or 1200, then the functions ' and � = '�1 in (5) are continuously di�erentiable,

and thus the functions ft are themselves continuously di�erentiable.

Given these di�erentiability properties, it is not di�cult to characterize the functions '

which give rise to convex and concave functions ft. From (22),

(ft)0(x) =
�0(s+ t)

�0(s)
;

where x = �(s). The derivatives of (strictly) concave functions are (strictly) decreasing.

So, by property 120 or 1200, dy=dx = (ft)0(x) has to be (strictly) decreasing in x for �xed

t > 0 and, since ' in s = '(x) is strictly increasing,

�0(s+ t)

�0(s)

will be (strictly) decreasing in s for all �xed t > 0. We take logarithms, remembering that

�0 is positive, and introduce the continuous function k :R! R de�ned by

k(s) = ln(�0

(s)): (23)

Thus,

ln(�0

(s+ t))� ln(�0

(s)) = k(s+ t)� k(s)
is (strictly) decreasing in s, for t > 0. But (cf. [10] and �gure 4), k(s+ t)� k(s) decreases
(strictly) in s for all �xed positive t exactly if k is (strictly) concave. Indeed for (strictly)

concave functions, the slope of the chord from one point of the graph to a variable second

point (strictly) decreases. So, for t > 0 and s0 > s

k(s+ t)� k(s)
t

� k(s0 + t)� k(s)
s0 + t� s � k(s0 + t)� k(s0)

t
;
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Figure 4. Concavity of k.

with strict inequalities in case of property 1200. On the other hand, by setting s0 = s+ t in

k(s+ t)� k(s) � k(s0+ t)� k(s0) we get the Jensen inequality 2k(s+ t) � k(s) + k(s+ 2t),
which, for continuous functions k, implies that k is concave (strictly concave in case of strict

inequality). Now, from (23), �0(s) = ek(s) and by (8), �(�1) = '�1(�1) = 0. So we get

'�1(s) = �(s) =

Z s
�1

ek(z) dz (24)

and

'�1(1) = �(1) =

Z
1

�1

ek(z) dz = 1; (25)

provided that the improper integrals exist. (This is only a question about the limit as the

bounds go to 1, since, like all concave functions, k is continuous (see [10]), and therefore

ek(z) is integrable.) Existence of the improper integrals is ensured as long as k(z) is not

(weakly) monotonic throughout, that is, in addition to being concave it is �rst strictly

increasing, then possibly constant for some interval, and �nally strictly decreasing (it is

unimodal; the constant part may be missing.) Then, by concavity, k(z) is majorized by

some \roof" function of the form �jzj + � with  > 0 (see �gure 5) that is,

0 < ek(z) � e�jzj+�

and Zs
�1

ek(z) dz �
Z
1

�1

ek(z) dz �
Z
1

�1

e�jzj+� dz = 2e�= <1:
On the other hand, if k(z) is, say, monotonically increasing, then there are constants k0
and z0 such that k(z) � k0 for all z � z0, and the integral

Z
1

�1

ek(z) dz �
Z
1

z0

ek0 dz

is clearly in�nite.
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Condition (25) is just a normalizing condition. Thus
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Figure 5. A concave function
majorized by a \roof" function
�� jzj.

we may start with an arbitrary concave or strictly concave

function h(z) for which the improper integral

C :=

Z
1

�1

eh(z) dz

exists. Then the function k(z) := h(z)�lnC is also (strictly)

concave. We get

'�1(s) = �(s) =

Z
s

�1

eh(z)�lnC dz =
1

C
�
Z
s

�1

eh(z) dz;

and (25) will be ful�lled. Since the function �:R! ]0; 1[

de�ned in this way is continuous, di�erentiable and strictly increasing, and since it ful�lls

lim
s!�1

�(s) = 0 and lim
s!1

�(s) = 1

by the de�nition of improper integrals, it is a bijection onto ]0; 1[. It follows that its inverse

function ' = ��1 is also a continuous and strictly increasing bijection and ful�lls (8), thus

satisfying all conditions of theorem 1. Furthermore, �0(s+ t)=�0(s) decreases (strictly) for

every �xed t > 0. (For this, the condition that k, or h = k+ lnC, be (strictly) concave was

necessary and su�cient.) So, for t > 0, every ft as given by (5) will be (strictly) concave,

and property 120 or 1200 will be also ful�lled. Thus we have proved the following theorem.

Theorem 4 The general family of functions for which the requirements 10, 2{4, 50, 6, 7,

80, 10, 11, and 120 (or 1200) are satis�ed is given by the representation (5), with

'�1(s) =
1

C

Zs
�1

eh(z) dz, for s 2 R,

'�1(�1) = 0; '�1(+1) = 1:

(26)

Here, C =
R
1

�1
eh(z) dz > 0, and h :R! R is an arbitrary concave (or strictly concave,

respectively) function which is strictly increasing at a point and strictly decreasing at another

point. (This ensures the existence of both improper integrals.)

We may of course consider the convexity property in conjunction with the symmetry

property 9 of the previous section. The additional condition that we have to satisfy is that

the function g(z) = '(
1

2
+ z) de�ned by (15) be odd. This is tantamount to requiring that

the inverse function,

g�1(s) = '�1(s)� 1

2
= �(s)� 1

2

(cf. (17)) be odd. Di�erentiating this by s, we get

�0

(s) = (g�1)0(s):

If g�1 is odd then (g�1)0 is even and so is �0. Thus, by (23), also k is even. The function

h di�ers from k only by a constant and is therefore also even.

All the above arguments are reversible. Indeed, it is easy to check that for an even

function h, (26) in theorem 4 will give rise to a function '�1 which makes g�1(s) = '�1(s)�
1=2 odd, because '�1(�s)� 1=2 = �('�1(s)� 1=2) is equivalent to

'�1(�s) + '�1(s) = 1;



Acz�el, Rote, Schwaiger: EQUIVALENT CHANGES IN PROBABILITIES 18

and this follows from

'�1(�s) +'�1(s) =
1

C

Z
�s

�1

eh(z) dz +
1

C

Z
s

�1

eh(z) dz = � 1
C

Z
s

1

eh(�ẑ) dẑ +
1

C

Z
s

�1

eh(z) dz

=
1

C

Z
1

s

eh(ẑ) dẑ +
1

C

Z
s

�1

eh(z) dz =
1

C

Z
1

�1

eh(z) dz = 1:

Therefore the family fftg will also ful�ll property 9 by theorem 2. So we have proved the

following theorem.

Theorem 5 The general family of functions for which the requirements 10, 2{4, 50, 6, 7,

80, 9{11, and 120 (or 1200) are satis�ed is given by the representation (5), with

'�1(s) =
1

C

Z
s

�1

eh(z) dz, for s 2 R,

'�1(�1) = 0; '�1(+1) = 1:

Here C =
R
1

�1
eh(z) dz > 0, and h :R! R is an arbitrary nonconstant even concave (or

strictly concave, respectively) function. (The existence of both improper integrals is guaran-

teed.)

Note that in the case of even concave functions, it is enough to exclude the constant

functions in order to ensure that the improper integrals exist.

Let us discuss the uniqueness of the functions h in theorems 4 and 5 for a given fam-

ily fftg. Recall from the remarks after theorem 1 that the function ' is unique up to a�ne

transformations '(x) 7�! a �'(x) + b. In terms of '�1(s) = �(s), this means that a�ne

transformations of the variable s in the domain of �, and only these, leave the family fftg
unchanged. We may thus go from �(s) to ~�(s) = �(as+ b), and by (23) and (26), from

h(s) to ~h(s) = h(as+ b), for a 6= 0. Addition of a constant to h also has no e�ect, since

the division by the normalizing factor C cancels it. The class of all functions h which yield

the same family fftg by theorems 4 and 5 is therefore

f ~h(s) = h(as+ b) + c j a 6= 0; b; c 2 Rg;

for some �xed function h. Note that for b 6= 0 these transformations do not preserve

evenness. Thus the function h in theorem 5 actually need not be even, as long as it is

symmetric about some point : h( + s) = h( � s). The more restrictive formulation in

theorem 5 comes from the simplifying assumption (14) in section 5 that '(1=2) = 0, i. e.,

�(0) = 1=2, cf. the discussion after theorem 2.

Again there are uncountably many strictly concave even functions h which di�er in more

than a linear transformation of the variable or an addition of a constant (see example 3

below), and so there are still uncountably many families of functions satisfying all our

requirements. We conclude with a few further examples of such families.

1. If h(z) = �z2=2, which is even and strictly concave, then

C =

Z
1

�1

e�z
2

=2 dz =
p
2�;
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- x

6

ft(x)

1

1

0(a) - x

6

ft(x)

1

1

0(b)

- x

6

ft(x)

1

1

0(c) - x

6

ft(x)

1

1

0(d)

Figure 6. Examples of families of functions ft de�ning equivalent changes of probabilities. Each

�gure shows the functions ft for t = 0;�0:25;�0:5;�0:75;�1;�1:5;�2;�2:5, and �3. The functions

ft for positive t are obtained by reecting f�t on the diagonal y = x. (a) The family corresponding

to the normal distribution; (b) a non-symmetric family resulting from (27); (c) and (d): the families

resulting from h(z) as given by (28), for � = 0:9 and � = �1, respectively.

and

'�1(s) =
1p
2�

Zs
�1

e�z
2

=2 dz;

as in the normal (Gaussian) probability distribution. The corresponding family of func-

tions is shown in �gure 6a.

2. The following function is concave, but not strictly concave, and not even. It will thus

give rise to a family of curves which is not symmetric about the line x+ y = 1:

h(z) =

�
2z; for z � 0,
�z; for z � 0. (27)

We obtain

C =

Z
1

�1

eh(z) dz =

Z0
�1

e2z dz +

Z
1

0

e�z dz = e0=2� 0� 0+ e0 = 3=2;
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'�1(s) = �(s) =

�
1

3
e2s for s � 0,
1� 2

3
e�s for s > 0.

The two segments join smoothly because

lim
s!0+

�(s) = lim
s!0�

�(s) =
1

3
= �(0)

lim
s!0+

�0

(s) = lim
s!0�

�0

(s) =
2

3
= �0

(0):

Here we give also ft(x) as calculated from (5):

ft(x) =

8><
>:
e2tx for 0 � x � 1

3
,

4

27
e2t=(1� x)2 for 1

3
� x � 1� 2

3
et,

1� e�t(1� x) for 1� 2

3
et � x � 1,

for t � 0;

and

ft(x) =

8>><
>>:
e2tx for 0 � x � 1

3
e�2t,

1� 2e�t=
p
27x for 1

3
e�2t � x � 1

3
,

1� e�t(1� x) for 1

3
� x � 1,

for t > 0:

It satis�es all requirements 10, 2{4, 50, 6, 7, 80, 10, 11, and 120, but it clearly violates

property 9. The corresponding family of functions is shown in �gure 6b. Note that the

functions are not strictly convex: In the squares 0 � x; y � 1=3 and 1=3 � x; y � 1 they
are straight lines.

3. Here is an uncountably in�nite set of families of functions satisfying the requirements

10, 2{4, 50, 6, 7, 80, 9{11, and 120. We give only h, C, and '�1 explicitly. The function

h(z) =

8>><
>>:

1� �� z for z � 1,
��z for 0 � z � 1,
�z for �1 � z � 0,
1� �+ z for z � �1,

(28)

is again even and concave (but not strictly concave) for all 0 � � � 1 (an uncountably

in�nite set). We have for � 6= 0

C = C� = 2
�
��1 + e��

�
1� ��1��

'�1(s) =

8>>>><
>>>>:

1

C
�

e1��+s for s � �1
1

C
�

((e�s � e��)=�+ e��)) for �1 � s � 0
1� 1

C
�

((e��s � e��)=�+ e��)) for 0 � s � 1
1� 1

C
�

e1���s for s � 1.
The functions ft may be calculated from this by (5). For � = 0:9 and � = �1, these
families of functions are shown in �gure 6c{d. Figure 6d illustrates a case where the

convexity property does not hold.



Acz�el, Rote, Schwaiger: EQUIVALENT CHANGES IN PROBABILITIES 21

4. For Y.-K. Ng's example (21) in [12], we get

h(z) = z � 2 ln(1+ ez):

This too is even:

h(�z) = �z � 2 ln(1+ e�z) = �z � 2 ln(ez + 1) + 2 ln ez = z� 2 ln(1+ ez) = h(z)

and strictly concave: h00(z) = �2ez=(1+ ez)2 < 0. Let us check the representation in

theorem 5:

C =

Z
1

�1

eh(z) dz =

Z
1

�1

ez�2 ln(1+e
z

) dz =

Z
1

�1

ez

(1+ ez)2
dz = � 1

ez + 1

����
z=1

z=�1

= 1;

'�1(s) =
1

C

Z
s

�1

eh(z) dz = � 1

ez + 1

����
z=s

z=�1

= � 1

es + 1
+ 1 =

es

1+ es
=

1

1+ e�s
;

as in section 5. This family has been shown in �gure 3.

7 Discussion: interpretation of the results

We saw that �:R! ]0; 1[ is continuous and strictly increasing, furthermore

lim
s!�1

�(s) = 0; lim
s!1

�(s) = 1:

So � is the probability distribution function of a random variable S:

�(s) = Prob[S � s];

and s = ��1(x) = '(x) is the x-quantile of S, i. e., s is the threshold value for probability x

in the sense that the probability that S does not exceed s is x. (We could also consider � as

a su�ciently smooth approximation of an empirical distribution function of some quantity

S, replacing the term \probability" by \percentage".) This gives a natural interpretation

of (6) and (7), which can now be written as

��1
(y2)���1

(y1) = ��1
(x2)���1

(x1): (29)

The right-hand side is the amount by which the threshold must be moved to change the

probability from x1 to x2. By theorem 1, and in particular (7) and (29), the change of

probability from y1 to y2 is \equivalent" to the change from x1 to x2 if it corresponds to the

same di�erence in threshold values.

The reader may wish to reexamine the \reasonable properties" in [12] and in the present

paper in view of this interpretation. They will indeed turn out to be quite natural. All that

is needed concerning the random variable S is that it should be continuous and its support

should be all of R in order that '(x) = ��1(x) can be de�ned for every x 2 ]0; 1[ and (29)

can be solved uniquely for y2 whatever x1, x2, and y1 are. It is not completely obvious,

however, why S should have a positive probability density for the whole set R. This is

in fact mainly a consequence of the innocuous-looking property 6. As mentioned there, it

implies that it is not possible to change the probability or proportion y from any value

y1 < 1 to y2 = 1 in a manner equivalent to a change between two values x1 and x2 strictly
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between 0 and 1. While this may be reasonable in certain circumstances it can de�nitely

not be taken for granted. One may imagine an alternative scenario where the change of

variable y from y1 < 1 to y2 = 1 is equivalent to a change from x1 2 ]0; 1[ to an x2 2 ]0; 1[.

No change of y would then match a further change of x beyond x2. (This is apparently the

conclusion of the argument in the Newsweek article quoted at the beginning of section 1,

which, in such a setting, does not look so absurd after all.) Thus we would have given up

property 1, which says that a matching probability y2 exists for all values of x1, x2, and y1.

If, on the other hand, we want to keep property 1 we might say that any change from x1

to a value x0
2
beyond x2 is eqivalent to the change from y1 to 1. But then there would not

exist a unique x0
2
matching the change from y1 to 1, contradicting uniqueness (property 2).

In the interpretation of� as the distribution of a random variable, property 9 describes a

symmetric distribution, since then the probability density function �0 is symmetric, cf. the

discussion after theorem 5. Furthermore the convexity property 120 means exactly that

the density function is log-concave. Indeed, as we have seen in the proof of theorem 4,

property 120 means that the function k de�ned by (23), that is, k(s) = ln�0(s), is concave.

As mentioned before, in example 1 of section 6,

�(s) =
1p
2�

Zs
�1

e�z
2

=2 dz

is the normal (Gaussian) probability distribution with mean 0 and variance 1. For many

problems this is clearly the most appropriate basis to �nd equivalent changes in probabilities

by use of formula (29).

The problem of comparing changes in probabilities relates to di�erence measurement,

which goes back at least to O. H�older in 1901 [8, section 2]. He derived (6) and (7) from

other assumptions [8, x 23], see also [9, theorem 4.2],
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