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Abstract

We prove two new upper bounds on the number of facets that a d-dimensional
0/1-polytope can have. The first one is 2(d − 1)! + 2(d − 1) (which is the best
one currently known for small dimensions), while the second one of O((d− 2)!)
is the best known bound for large dimensions.

1 Introduction

Polytopes whose vertices have only coordinates 0 and 1 (0/1-polytopes) have been
investigated in combinatorial optimization: to any set system over which one wants
to optimize, one can naturally associate the 0/1-polytope which is the convex hull
of the incidence vectors of all feasible sets. In trying to attack combinatorial op-
timization problems by linear programming, one needs a description of the facets
of the corresponding polytopes. For several 0/1-polytopes coming from combina-
torial optimization problems, most notably the traveling salesman polytope, the
cut polytope, or the linear ordering polytope, many large classes of facet-defining
inequalities have been identified.

So it seems interesting to ask how many facets a d-dimensional 0/1-polytope
can have at all [14, Problem 0.15]. A complete census of all 0/1-polytopes with up
to 5 dimensions with regard to various properties was done by Aichholzer [2]. The
d-dimensional cross-polytope can be realized (combinatorially) as the 0/1-polytope
conv{ ei,1− ei : 1 ≤ i ≤ d }, where ei is the i-th canonical unit-vector and 1 is the
all-ones vector, showing that d-dimensional 0/1-polytopes can have as many as 2d

facets. Starting with a special randomly generated 0/1-polytope of dimension 13
with more than 17 million facets (found by Christof [7]), and using some inductive
construction due to Kortenkamp, Richter-Gebert, Sarangarajan, and Ziegler [11],
one can show that the maximal numbers of facets of d-dimensional 0/1-polytopes
grow at least as fast as 3.6d.

On the other hand, Imre Bárány gave a nice argument that a d-dimensional 0/1-
polytope cannot have more than d! + 2d facets, which we will briefly review below
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(Lemma 2) since we will need it in one of our proofs. Let f(d) be the maximal
number of facets that a d-dimensional 0/1-polytope can have. Thus, we know that
asymptotically

2const·d ≤ f(d) ≤ 2const·d log d

holds. The most interesting question (in this context) is whether there is an ex-
ponential upper bound on f(d) or whether f(d) grows faster than exponentially.
In fact, the growth of f(d) in low dimensions indicates that an exponential upper
bound is unlikely to exist ([7, 10], see also Table 1).

This paper contains two improved upper bounds. The first one in Section 2 is
obtained very easily by a simple observation on projections of 0/1-polytopes and
gives an upper bound of 2(d−1)!+2(d−1). The second one in Section 3 is obtained
by a refinement of the first one and yields a bound of O((d− 2)!), which is a better
bound for higher dimensions. Actually, the arguments that we use there also apply
(slightly modified) to integer convex polytopes (i.e., polytopes with integral vertex
coordinates) with vertex coordinates in {0, . . . , k} for a constant k ∈ N. Therefore,
we prove a more general theorem that bounds the number of facets (and even the
numbers of i-dimensional faces for all 0 ≤ i ≤ d − 1) of integer convex polytopes
with (vertex) coordinates bounded by a constant. In particular, this generalization
will enable us also to give some non-trivial upper bounds on the number of i-faces of
0/1-polytopes for intermediate values of i via some kind of “detour” through more
general integer polytopes. In Section 4 we calculate explicit bounds for the number
of facets of 0/1-polytopes in low dimensions. Finally, in Section 5 we compare our
bounds to some results from the literature, where the number of facets of an integer
polytope is bounded in terms of its surface area or of its volume.

Some definitions and facts. By a polytope we will always mean a convex poly-
tope, i.e., the convex hull of a finite set of points. An i-face is the short name of an
i-dimensional face of a polytope. The 0-faces are the vertices and the (d−1)-faces of
a d-dimensional polytope are the facets. For background information on polytopes
we refer to Ziegler’s book [14].

We denote the d-dimensional unit hypercube by Cd. The d-dimensional cross-
polytope with diameter 2r (or equivalently the l1-ball of radius r) is

Bd(r) := conv{ rei,−rei : 1 ≤ i ≤ d } .

The ith coordinate hyperplane, which is orthogonal to ei, is denoted by Hi. The
orthogonal projection to Hi is

pri : (x1, . . . , xd) 7→ (x1, . . . , xi−1, 0, xi+1, . . . , xd) .

By Cd
i := pri(Cd) we denote the (d − 1)-dimensional unit hypercube in the coordi-

nate hyperplane Hi.

The Euclidean length of a vector n = (n1, n2, . . . , nd) is ‖n‖2 :=
√∑d

i=1 n2
i ,

while its l1-norm is ‖n‖1 :=
∑d

i=1 |ni|.
The Minkowski sum of sets A,B ⊂ R

d is A + B := {xa + xb : xa ∈ A,xb ∈ B };
for k ∈ R the k-blow up of A is k ·A := { k · x : x ∈ A} and finally Vold(A) denotes
the d-dimensional volume of A. The d-dimensional volume of a parallelotope P
spanned by vectors x1,x2, . . . ,xd is

Vold(P ) = |det(x1,x2, . . . ,xd)| .
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The volumes of the hypercubes and the cross-polytope are

Vold(Cd) = Vold−1(Cd
i ) = 1

(for 1 ≤ i ≤ d) and

Vold(Bd(r)) =
2drd

d!
.

Moreover for x ∈ R
d we have Vold(k · A + x) = kd Vold(A).

Observation 1. The volume Vold(P ) of any d-dimensional integer polytope P is
an integer multiple of 1

d! . In particular, Vold(P ) is at least 1
d! .

Proof. A d-dimensional integer polytope can be subdivided into d-dimensional in-
teger simplices, and every d-dimensional integer simplex is the image of the d-
dimensional standard simplex (having volume 1

d!) under an affine transformation
with integer coefficients.

Finally, we need a simple estimate for d
√

d!, which we obtain with the help of
the inequality between the geometric and harmonic mean.

d
√

d! =
(

d

√√
1
√

2 . . .
√

d

)2

≥
(

d∑d
i=1

1√
i

)2

≥
(

d∫ d
0

1√
t
dt

)2

=
(

d

2
√

d

)2

=
d

4
(1)

(Stirling’s formula yields the more precise estimate d
√

d! = d
e + O(log d).)

2 A Simple Upper Bound by Projection

Let P be a d-dimensional 0/1-polytope. First note that we can assume that P lies
in R

d, since every d-dimensional 0/1-polytope P ′ ⊂ R
d′ (with d′ > d) is affinely

isomorphic to a d-dimensional 0/1-polytope P ⊂ R
d by simply “projecting out”

all coordinates that belong to a basis of a non-redundant and complete equation
system describing the affine hull of P ′. The analogous statement holds for integer
polytopes with vertex coordinates in {0, . . . , k}.

The following lemma is due to Imre Bárány (see also [14, Problem 0.15], [11]).

Lemma 2. A d-dimensional 0/1-polytope P ⊂ R
d has at most d!(1−Vold(P ))+2d

facets.

Proof. If v ∈ {0, 1}d \ P is a vertex of the hypercube that is not a vertex of P ,
then conv(P ∪ {v}) is a 0/1-polytope that can be subdivided into P and pyramids
with apex v, whose bases are those facets of P which are deleted by the addition
of v (i.e., in the terminology of Ziegler [14], the bases are those facets of P beyond
which v lies). Iterating this process until all vertices of the hypercube are in the
convex hull destroys all facets of P except the “trivial” ones (i.e., the ones that lie
in facets of the hypercube). Thus the total number of facets of P cannot be larger
than d!(1 − Vold(P )) + 2d.

Every facet of P is defined by an inequality which is uniquely determined up to
multiplication by positive scalars. With respect to some coordinate i ∈ {1, . . . , d},
a facet of P that is defined by an inequality aT x ≤ a0 is called a vertical facet of P
if ai = 0, an upper facet if ai < 0, and a lower facet if ai > 0. The following facts
are well-known.
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Lemma 3. Let P ⊂ R
d be a d-dimensional polytope with facets F 1, . . . , F t, and let

i ∈ {1, . . . , d}. Then the projections of the lower (respectively upper) facets of P
with respect to i form a subdivision of pri(P ), i.e., their union is pri(P ) and they
have no common interior points. In particular, we have

t∑
j=1

Vold−1(pri(F
j)) = 2 · Vold−1(pri(P )) . (2)

We derive from Lemma 3 a simple new upper bound on the number of facets of
a 0/1-polytope.

Theorem 4. A d-dimensional 0/1-polytope has at most

Ad := 2(d − 1)! + 2(d − 1)

facets, i.e., f(d) ≤ 2(d − 1)! + 2(d − 1) holds for every d.

Proof. Let P ⊂ Rd be a d-dimensional 0/1-polytope in R
d. For every lower or

upper facet F of P the projection prd(F ) is a (d − 1)-dimensional 0/1-polytope,
which (by Observation 1) has volume at least 1

(d−1)! . Thus, from Lemma 3 it follows

that P cannot have more than 2(d − 1)!Vold−1(P ′) lower and upper facets, where
P ′ := prd(P ).

Vertical facets of P are projected to facets of P ′. Since distinct vertical facets
of P are projected to distinct facets of P ′, the number of vertical facets of P is
bounded from above by the number of facets of P ′. But by Bárány’s argument
(Lemma 2), P ′ has at most

(d − 1)!
(
1 − Vold−1(P ′)

)
+ 2(d − 1)

facets. Summing up, this yields an upper bound of

f(d) ≤ 2(d − 1)!Vold−1(P ′) + (d − 1)!(1 − Vold−1(P ′)) + 2(d − 1)

= (d − 1)!Vold−1(P ′) + (d − 1)! + 2(d − 1)
≤ 2(d − 1)! + 2(d − 1)

on the number of facets of P .

3 An Improved Upper Bound

In this section we refine the upper bound Ad of Theorem 4 using two ideas. In-
stead of projecting only along the d-th coordinate we project along all coordinate
directions, and we try to exploit the fact that the projection of a non-vertical facet
typically has larger (d−1)-volume than 1/(d−1)!. We need the following fact from
linear algebra.

Lemma 5. If H is a hyperplane with normal vector n = (n1, n2, . . . , nd), then

|ni| = ‖n‖2 · Vold−1(prH(Cd
i )),

where prH denotes the orthogonal projection to H.
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Proof. Choose λj ∈ R such that prH(ej) = ej + λjn. Consider the parallelotope Pi

spanned by Cd
i and n. Clearly

|ni| = Vold(Pi) = |det(n, e1, e2, . . . , ei−1, ei+1, . . . , ed)|
= |det(n, e1 + λ1n, . . . , ei−1 + λi−1n, ei+1 + λi+1n, . . . , ed + λdn)|
= |det(n,prH(e1), . . . ,prH(ei−1),prH(ei+1), . . . ,prH(ed))|
= ‖n‖2 · Vold−1(prH(Cd

i ))

Corollary 6. If A lies in a hyperplane H and Vold−1(A) is finite and non-zero,
then H has a normal vector n of the form

n =
(±Vold−1(pr1(A)),±Vold−1(pr2(A)), . . . ,±Vold−1(prd(A))

)
.

Proof. Lemma 5 implies that there is a normal vector of H of the form

n′ =
(±Vold−1(prH(Cd

1 )),±Vold−1(prH(Cd
2 )), . . . ,±Vold−1(prH(Cd

d ))
)

.

On the other hand,

Vold−1(prH(Cd
i ))

Vold−1(Cd
i )

=
Vold−1(pri(A))

Vold−1(A)
,

since there is an isometry exchanging the role of H and Hi. The result follows.

We prove our main result in a slightly more general setting by extending our sub-
ject from 0/1-polytopes to polytopes whose vertices have coordinates in {0, . . . , k}
for some constant k ∈ N. This will enable us to derive some other interesting
consequences for 0/1-polytopes later.

Theorem 7. There is a constant c ∈ R such that if P ⊂ R
d is a convex polytope

with vertex coordinates in {0, 1, . . . , k} for some k ≥ 1, then

(a) P has at most
c · (d − 2)! · kd(d−1)/(d+1)

facets, for d ≥ 2, and

(b) for every i with 0 ≤ i < d − 1, P has at most

c · (d − 2)! · (2(i + 1)k)d(d−1)/(d+1)

i-dimensional faces.

Proof. (a) According to the remark at the beginning of Section 2 we can assume that
P is d-dimensional, since the claimed bound is increasing in d. Let F 1, F 2, . . . , F t

be the facets of P , and define F j
i := pri(F j). Corollary 6 implies that each facet

F j has an outer normal vector nj of the form

nj = (d − 1)! · (±Vold−1(F j
1 ),±Vold−1(F j

2 ), . . . ,±Vold−1(F j
d )
)

,

which is integral, by Observation 1. Thus,

t∑
j=1

‖nj‖1 = (d − 1)! ·
t∑

j=1

d∑
i=1

Vold−1(F j
i ) . (3)
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Applying Lemma 3 we get

t∑
j=1

Vold−1(F j
i ) ≤ 2 · Vold−1(k · Cd

i ) = 2 · kd−1 .

Summation over all coordinate directions i gives an upper bound for (3):

t∑
j=1

‖nj‖1 ≤ 2d! · kd−1 (4)

From this relation we will derive our result, using only the fact that n1, . . . ,nt are
distinct nonzero integer vectors. For a given small dimension, the largest possible
number t of such vectors can be worked out directly. This is done in Section 4 for
k = 1 (i.e. for 0/1-polytopes). To get the general bound that we want to prove, we
shall show that

t ≥ (d − 2)! · kd(d−1)/(d+1) (5)

implies that the average l1-norm of n1, . . . ,nt is Ω(d2 ·k(d−1)/(d+1)), see (7) and (9).
Let us define

Id(r) := Bd(r) ∩ Z
d

Sd(r) := Id(r) \ Id(r − 1)

Σd(r) :=
∑

x∈Id(r)

‖x‖1 =
r∑

i=0

i · |Sd(i)|

Observe that |Id(r)| = Vold(Id(r)+Cd) and Id(r)+Cd ⊂ Bd(r+ d
2)+ 1

2 ·1, yielding

|Id(r)| ≤ (2r + d)d

d!
. (6)

Observe moreover that for r1 < r2 we have |Sd(r1)| ≤ |Sd(r2)|, implying

Σd(r) =
1
2

r∑
i=0

[
i · |Sd(i)| + (r − i) · |Sd(r − i)|

]

≥ 1
2

r∑
i=0

r

2
(|Sd(i)| + |Sd(r − i)|) =

r

2

r∑
i=0

|Sd(i)| =
r

2
|Id(r)|

So we have

Σd(r) ≥ r

2
|Id(r)| (7)

for r ∈ N. (A more careful estimation shows that the constant 1
2 can be replaced

by d
d+1 .) Choose R ∈ N such that

|Id(R)| ≤ t < |Id(R + 1)| (8)

Using (5), (6), and (8), we get

(d − 2)! · kd(d−1)/(d+1) <
(2R + d + 2)d

d!
.

6



7’01

7’02

7’03

7’04

7’05

7’06

7’07

7’08

7’09

7’10

7’11

7’12

7’13

7’14

7’15

7’16

7’17

7’18

7’19

7’20

7’21

7’22

7’23

7’24

7’25

7’26

7’27

7’28

7’29

By (1), this implies

R >
1
2

d
√

d!(d − 2)! · k(d−1)/(d+1) − d

2
− 1

>
d

8

(
d − 2

4

) d−2
d

· k(d−1)/(d+1) − d

2
− 1 > c′d2 · k(d−1)/(d+1) ,

(9)

for a certain 1 > c′ > 0 and large enough d. (A more careful analysis reveals that

R

d2 · k(d−1)/(d+1)
≥ 1

2e2
− O

( log d

d

)
, (10)

as d → ∞.)
To finally estimate t, we bound the left hand side of inequality (4), using (8),

(9), and (7):

2d! · kd−1 ≥
t∑

j=1

‖nj‖1 ≥ Σd(R) + R · (t − |Id(R)|)

≥ R

2
|Id(R)| + R · (t − |Id(R)|) ≥ R

2
(|Id(R)| + t − |Id(R)|)

≥ c′d2 · k(d−1)/(d+1)

2
· t

So, there is a d0 ∈ N such that for d ≥ d0, (5) implies

t ≤ 4d!
c′d2

· kd(d−1)/(d+1) ≤ 4
c′

(d − 2)! · kd(d−1)/(d+1) .

Since c′ < 1, we get
t ≤ c(d − 2)! · kd(d−1)/(d+1)

for c := 4
c′ and d ≥ d0. By increasing the constant c if necessary, the inequality can

be made true for all d ≥ 2.

(b) First we prove the case i = 0, using a construction which is similar to a
trick of Andrews [3]. We construct from P another polytope

P ′ := conv
{

1
2(x + y) : x and y are different vertices of P

}
.

No vertex x of P belongs to P ′, and any facet of P ′ that separates x from P ′ does
not separate any other vertex z of P from P ′. Thus the polytope P ′ has at least
as many facets as P has vertices, and the case i = 0 follows from part (a) of the
theorem because 2 ·P ′ ⊂ 2k ·Cd is an integer polytope. (Andrews [3] used a blow-up
factor of 3 instead of 2.)

We reduce the case 1 ≤ i < d − 1 to the case i = 0 by selecting i + 1 affinely
independent vertices x1,x2, . . . ,xi+1 from each i-face F of P . The point xF :=

1
i+1 · ∑i+1

j=1 xj lies in the relative interior of F , and therefore all points xF are
distinct. The points xF are the vertices of the polytope

P ′′ := conv{xF : F is an i-face of P },

since every i-face F of P has a hyperplane H with H ∩ P = F ; it follows that
H ∩P ′′ = {xF }. Thus P ′′ has a vertex for every i-face of P , and since (i+1) ·P ′′ ⊂
(i + 1)k · Cd is an integer polytope, the result follows from the case i = 0.
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For d = 2, i. e., for polygons, the precise asymptotic bound of Theorem 7(a)
is not difficult to derive, see Thiele [13] or Acketa and Žunić [1]; see also [14,
Exercise 4.15, p. 122]. (For the case when the circumference of the polygon is
bounded instead of the bounding box, as in Theorem 9 (a),(b) in Section 5 below,
the precise asymptotic bound is given in Jarńık [8].)

If we set k = 1 in Theorem 7 then we get O((d− 2)!) bounds for 0/1-polytopes:

Corollary 8. There is a constant c ∈ R such that for d ≥ 2, every d-dimensional
0/1-polytope has at most

c · (d − 2)!

facets (i.e., f(d) ∈ O((d − 2)!)) and at most

c · (2(i + 1))d(d−1)/(d+1) · (d − 2)!

i-faces, for every i with 0 ≤ i < d − 1.

For small values of i (e.g., i = 0, 1) this is not very interesting, since the max-
imum number of vertices of a 0/1-polytope is of course 2d, and the number of
i-faces is trivially bounded by

( 2d

i+1

)
. But for larger intermediate values of i we get

non-trivial bounds.
For the constant c in the bounds of Theorem 7 and Corollary 8, a more thorough

analysis shows that, for large dimensions d, one can take

c = 4e2 + O( log d
d ) ≈ 29.55 .

For the number of facets of 0/1-polytopes, the resulting bound in Corollary 8 should
therefore be better than the easy bound Ad of Theorem 4 as soon as d is larger than
c/2 ≈ 15.

4 Explicit Bounds in Low Dimensions

Table 1 gives numerical values of various lower and upper bounds on the number
f(d) of facets of a d-dimensional 0/1-polytope. The first column of numbers contains
the largest known examples, in terms of the number of facets, for all dimensions
up to d = 13, from [7]. For d ≤ 5, these are known to be the true maxima
(Aichholzer [2]). The second column gives the easy bound Ad = 2(d− 1)!+2(d− 1)
of Theorem 4. We see that it is precise for d ≤ 3, but departs more and more
from the lower bounds as d gets higher. The third column Ud is a precise version
of the bound in Corollary 8, which is obtained directly from (4). Instead of using
the estimates that lead to the proof of Theorem 7, we can enumerate the integer
vectors in the successive l1-spheres Sd(1), Sd(2), Sd(3), . . . as long as their total
l1-length does not exceed the bound 2d! from (4). The number of points in these
spheres is given by the formula

|Sd(r)| =
d∑

k=1

2k

(
d

k

)(
r − 1
k − 1

)
.

The k-th term of this sum is the number of vectors x ∈ Sd(r) with k nonzero
coefficients.
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9’01

9’02

9’03

9’04

9’05

9’06

9’07

9’08

9’09

9’10

9’11

9’12

9’13

9’14

9’15

9’16

9’17

9’18

9’19

9’20

d best lower bound f(d) ≤ Ad f(d) ≤ Ud R Ud/Ad

1 f(d) = 2 = 2d 2 2 1 1.000
2 = 4 = 2d 4 4 2 1.000
3 = 8 = 2d 8 9 2 1.125
4 = 16 = 2d 18 28 2 1.555
5 = 40 ≥ 2.091d 56 100 3 1.785
6 f(d) ≥ 121 ≥ 2.223d 250 469 4 1.876
7 ≥ 432 ≥ 2.379d 1,452 2,570 5 1.769
8 ≥ 1675 ≥ 2.529d 10,094 16,328 6 1.617
9 ≥ 6875 ≥ 2.669d 80,656 118,404 7 1.468

10 ≥ 41,591 ≥ 2.896d 725,778 983,516 8 1.355
11 ≥ 250,279 ≥ 3.095d 7,257,620 9,044,131 10 1.246
12 ≥ 1,975,935 ≥ 3.346d 79,833,622 92,580,349 11 1.159
13 ≥ 17,464,356 ≥ 3.606d 958,003,224 1,028,972,176 13 1.074
14 12,454,041,626 12,499,470,015 15 1.003
15 174,356,582,428 164,305,261,217 17 0.942
16 2,615,348,736,030 2,324,510,568,224 19 0.888
17 41,845,579,776,032 35,227,585,773,379 22 0.841
18 711,374,856,192,034 565,675,688,445,291 24 0.795

Table 1: Lower and Upper Bounds for f(d)

The bound can be slightly improved by taking into account that we only have
to consider primitive vectors as normal vectors of facets, i. e., vectors where the
greatest common divisor of its components is one. Each imprimitive vector is a
positive multiple of some shorter primitive vector and does therefore not correspond
to a new facet direction. The number of nonzero primitive vectors in the l1-ball
Bd(r) can be computed conveniently by the inclusion-exclusion formula

(|Id(r)| − 1
)−∑

pi≤r

(|Id(b r
pi
c)| − 1

)
+

∑
pi<pj≤r

(|Id(b r
pipj

c)| − 1
) − · · · ,

where p1, p2, . . . is an enumeration of the primes. The number of primitive vectors
in Sd(r) is computed easily from these formulas. If the imprimitive vectors were
not excluded, the bound on f(5) would be 103 instead of 100. For smaller d, this
has no effect, and for larger d it usually means an improvement in Ud somewhere
around the middle digit of each figure.

The column titled ‘R’ specifies the l1-radius R of the Ud-th primitive vector.
One can check that this value is roughly in accordance with the estimate R ≈ d2

2e2

from (10). The last column is the quotient of the bounds Ud and Ad. The asymp-
totically stronger bound is never much worse than the easy bound of Theorem 4
and starts to beat it for d ≥ 15 as predicted at the end of the previous section.

5 Conclusion

Our results are related to a classical theorem of Andrews about vertex numbers of
integral polytopes with bounded volume or surface area.
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10’01

10’02

10’03

10’04

10’05

10’06

10’07

10’08

10’09

10’10

10’11

10’12

10’13

10’14

10’15

10’16

10’17

10’18

10’19

10’20

10’21

10’22

10’23

10’24

10’25

10’26

10’27

10’28

10’29

10’30

10’31

10’32

10’33

10’34

10’35

10’36

10’37

10’38

Theorem 9. (Andrews [3, 4]) Let P be a d-dimensional convex polytope with inte-
gral vertices.

(a) If P has surface area S and t facets, then

t ≤ cd · Sd/(d+1).

(b) If P has surface area S and n vertices, then

n ≤ c′d · Sd/(d+1).

(c) If P has volume V and n vertices, then

n ≤ c′′d · V (d−1)/(d+1).

Here, cd, c′d, and c′′d are constants that depend on the dimension d.

For fixed dimension d, the growth in terms of the “size” k in our Theorem 7 is
of the same order of magnitude as in Theorem 9: the volume and surface area of
k · Cd, and hence of P , is bounded by kd and by 2d · kd−1, respectively.

The proofs of Theorem 9 in the literature pay no attention to the dependence of
the bounds on d, although it is not hard to work out expressions for the constants cd,
c′d, and c′′d from these proofs. (By considering the standard simplex conv({0}∪{ ei :
1 ≤ i ≤ d }), one sees immediately that the constants cd and c′d have to be at least
(d− 1)!/2; thus, for varying dimensions d, the bounds on the number of facets that
one can derive from Theorem 9(a) are weaker than Theorem 7 and Corollary 8.)

The proof of Theorem 9 (a) [3] uses a straightforward argument about the area
of facets: if a facet F of P has a primitive normal vector n, then its area Vold−1(F )
is at least ‖n‖2/(d − 1)!. Our proofs of Theorems 4 and 7 use area arguments
in a similar way. However, in order to get a better dependence on d, it has been
advantageous to consider the norm ‖n‖1 of normal vectors instead of their Euclidean
norm (see Lemma 6).

Andrews [3] derives Theorem 9 (b) from Theorem 9 (a) by constructing from
a given polytope P another polytope P ′ which has at least as many facets as P
has vertices. Schmidt [12, pp. 66–68] and Bárány and Larman [6] considered also
bounds on the number of i-faces for i other than 0 and d − 1, by using extensions
of Andrews’ construction. Our proof of Theorem 7(b) uses a similar construction,
but we tried to keep the dependence on d low.

The proof of Theorem 9 (c) is based on Theorem 9 (b), but it is much harder.
Different proofs are due to Andrews [4], Konyagin and Sevast′yanov [9], Schmidt [12,
pp. 64–66], and Bárány and Larman [6]. Bárány and Larman [6] have also proved
that the bounds of Theorem 9 are asymptotically tight, by showing that the convex
hull of the integer points in a ball of radius k has Ω(kd(d−1)/(d+1)) vertices (and
facets), for fixed d and k → ∞. For Theorem 9 (c), there was already an easy lower-
bound example of Arnol′d [5]: the convex hull of integral points in the paraboloid
x2

1 + · · · + x2
d−1 ≤ xd ≤ k.
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