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Abstract

An important objective in the choice of a triangulation of a given point

set is that the smallest angle becomes as large as possible. When trian-

gulation edges are straight line segments, it is known that the Delaunay

triangulation is the optimal solution. We propose and study the concept

of a circular arc triangulation, a simple and effective alternative that of-

fers flexibility for additionally enlarging small angles. We show that angle

optimization and related questions lead to linear programming problems

that can be formulated as simple graph-theoretic problems, and we define

flipping operations in arc triangles. Moreover, special classes of arc trian-

gulations are considered, for applications in finite element methods and

graph drawing.
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1 Introduction

Geometric graphs and especially triangular meshes (often called triangulations)
are an ubiquitous tool in geometric data processing. They serve as partition-
ing and connectivity structures, and play a central role in geometric object
representation and manipulation [3, 18, 29]. The quality of a given triangu-
lar mesh naturally depends on the size and shape of its composing triangles.
In particular, the angles arising in the mesh are among the critical issues in
main application areas like modeling, contouring, interpolation, and finite ele-
ment methods [29]. For example, triangles with small angles tend to lead to
unsatisfactory conditioning for finite element methods.

For practical purposes, quite often the Delaunay triangulation (see, e.g., [18])
is the mesh of choice, because it maximizes the smallest angle over all possible
triangulations of a given finite set of points in the plane. Still, the occurrence of
‘poor’ triangles cannot be avoided sometimes, especially near the boundary of
the input domain, or due to the presence of mesh vertices of high edge degree.
Such vertices cannot be resolved by edge flips or other local operations, because
the combinatorics of the Delaunay triangulation is already optimal for angles.

The situation becomes different (and interesting again) if the requirement
that triangulation edges be straight is dropped. Indeed, certain applications are
not confined to straight line triangular meshes, or even are not really suited for
it. In finite element methods, for example, the respective bivariate functions
may be defined, in a natural way and with certain advantages, over ‘triangles’
with nonlinear boundaries. Also, in applications from graph drawing, staying
with straight edges of a graph might mean a hindrance to the readability of
its drawing. In these and other applications, the calculational and aesthetical
benefits of a graph that potentially grants nice angles can be exploited fully
only if curved edges are permitted.

In this paper, we want to encourage the use of so-called arc triangulations,
which simply are triangulations whose edges are circular arcs. Modeling trian-
gulations this way bears several advantages if angles are to be optimized. A
typical reason for the occurrence of small angles in a straight line triangulation
is that the geometry of the vertex set forces slim triangles in the vicinity of
the domain boundary. Such angles can now be enlarged, by optimizing the arc
curvatures for the given triangulation. The second problem are vertices of high
degree that result when the smallest angle is optimized for straight line trian-
gulations (the Delaunay case). This situation can be faced now by applying
angle-improving flips in arc triangles that reduce the vertex degree.

Maximizing the smallest angle in a combinatorially fixed arc triangulation of
a point set can be formulated as a linear program (Section 2), which for most set-
tings can even be transformed to a simple graph-theoretic problem (Section 3).
This guarantees a fast solution of this (and of related) optimization problems
for arc triangulations in practice and in theory. Moreover, the linear program
will tell us whether a given domain admits an arc triangulation of a pre-specified
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combinatorial type, by checking whether its feasible region is void. In partic-
ular, flips for arcs can be defined (Section 4), by optimizing the triangulation
that is obtained when applying the flip combinatorially. Thereby, the existence
check above gives us a tool to characterize flippable arcs. Preliminary inspec-
tion shows that small angles tend to enlarge significantly under such heuristics.
Note that if we want to optimize equiangularity in an arc triangulation (i.e.,
maximize the sorted angle vector lexicographically) then we can do so as well.
After having maximized the first k smallest angles, we keep them fixed in the
linear program for maximizing the (k + 1)st angle, for k ≥ 0.

We believe that arc triangulations constitute a useful tool especially in two
important application areas—finite element methods and graph drawing (Sec-
tions 6 and 7, respectively). In the isoparametric approach to finite element
methods [20], for example, so-called π-triangulations (Section 5) can be used
with advantage. Based on the fact that arc triangles whose angles sum to π
are images of straight triangles under a Möbius transformation, we obtain an
approximation by conformal (angle-preserving) Bézier patches when the sum of
angles is optimized towards π. Moreover, if the angle sum is even equal to π,
simple inverse geometry mappings can be constructed.

In view of graph drawing applications [10, 16, 26], it is desirable to extend
our approach to optimizing angles in general plane graphs. However, our op-
timization method works only for full triangulations because, remarkably, an
overlap of circular arcs is ruled out automatically by the structure of the tri-
angles. To maximize small angles in a curvilinear (re)drawing of an arbitrary
plane graph, we first complete the graph to a suitable triangulation (for ex-
ample, its constrained Delaunay triangulation [22, 8]), and treat the sums of
triangulation angles between two consecutive arcs of the graph around a vertex
as single entities to be maximized. A simple and efficient method for optimally
redrawing a straight line graph with circular arcs is obtained.

In several applications, the boundary of the underlying domain will be given
as a polynomial spline curve. Such domains can be approximated in a conve-
nient way using circular biarc splines [1, 12], and thus are naturally suited to
triangulation by circular arcs.

2 Angle Optimization

Consider a straight line triangulation, T , in a given domain D of the plane. No
restrictions on D are required but, for the ease of presentation, let D be simply
connected and have piecewise circular (or linear) boundary. In general, T will
use vertices in the interior of D. We are interested in the following optimization
problem: Replace each non-boundary edge of T by some circular arc, in a way
such that the smallest angle in the resulting arc triangulation is maximized. (Of
course, straight arcs are allowed as well, if optimality demands.)

To see that this problem is well defined, we introduce the notion of a well-
oriented arc triangle. Let T ∗ denote the optimal solution. Consider an arbitrary
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Figure 2: These arc triangles are
not well-oriented

arc triangle t∗ in T ∗, and let t be its straight line equivalent in the input tri-
angulation T . Let p, q, and r be the vertices of the triangle t such that, when
scanning the edges of t in this cyclic order, then t always lies to the right-hand
side. We call the arc triangle t∗ (geometrically) well-oriented if t∗ behaves the

same, i.e., it always stays to the right-hand side when its arcs
⌢
pq,

⌢
qr, and

⌢
rp are

scanned in this order. Figures 1 and 2 give illustrations. We have the following
property:

Observation 1 All arc triangles in T ∗ are well-oriented.

Proof: We observe that T ∗ cannot contain negative angles: The smallest angle
between arcs has to be at least as large as the smallest angle that arises in T .
As a consequence, for each vertex in the underlying vertex set S, the order of
its incident arcs in T ∗ coincides with the order of its incident edges in T . This
outrules the two possible cases of non-well-orientedness, namely, self-intersection
or warping; see Figure 2 again. �

Interestingly, this property is a specialty of triangulations; the last conclusion
in the proof above remains no longer true if faces with more than three arcs are
present. An arc quadrangle, for instance, may have self-overlaps even if no
negative angles are present, whereas this is not possible for an arc triangle. We
postulate for the rest of this paper that arc triangles be well-oriented.

We now formulate the angle optimization problem as a linear program. For
each straight line edge e = pq in the triangulation T , we introduce two variables
φpq and φqp. The variable φpq describes the (signed) angle at which the tangent

at p to the circular arc
⌢
pq deviates to the left from the straight connection,

and φqp describes this deviation angle, when considered at q. Figure 3 offers an
illustration. We have

φpq = −φqp (1)

for all edges pq. For each edge e′ of T on the input boundary ∂D, we fix the two
deviation variables to the values de′ and −de′ given by the (possibly piecewise
circular) shape of ∂D. Thus, for a boundary edge e′ = pq, we have

φpq = −φqp = de′ . (2)
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Figure 3: Angles of deviation

(We have de′ = 0 if e′ is a straight line segment, and de′ 6= 0 if e′ is a circular
arc. Alternatively, and preferably in certain applications, we could keep φpq =
−φqp variable and bound it by some user-defined threshold that does not relate
to ∂D.)

The inequalities for the linear program now stem from the angles αqpr arising
in T . More precisely, αqpr is the angle between two edges pq and pr which are
adjacent around p in T , such that pr is the next edge counterclockwise from pq.
We are interested in the angle between the corresponding two circular arcs,
which is βqpr = −φpq + αqpr + φpr (see Figure 3 again), and we put

δ ≤ βqpr (3)

such that δ bounds the smallest arising angle from below. The linear objective
function L, which is to be maximized, is just L = δ.

Clearly, maximizing δ will maximize the smallest angle βmin in the arc trian-
gulation. Note that we may have βmin >

π
3 in T ∗ because, due to its piecewise

circular shape, the sum of inner angles for ∂D may be larger than π(h− 2), for
h being the number of vertices on ∂D. There are O(n) (in)equalities and O(n)
variables, if n is the total number of vertices.

Sometimes the objective is to optimize not only the smallest angle, but
rather to maximize lexicographically the sorted list of all arising angles, as is
guaranteed by the Delaunay triangulation in the straight line case. This can be
achieved by repeatedly solving the linear program above, keeping angles that
have been optimized already as constants. Care has to be taken however, be-
cause, depending on the solver, minimum angles do typically occur at several
places, and the optimal ones among them have to be singled out. This type
of problems has been called lexicographic bottleneck optimization in [5], in the
context of combinatorial optimization problems. In [25] a general solution proce-
dure in the context of linear optimization is given, which amounts to repeatedly
solving some slightly modified linear programs.
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Angles larger than π may arise in the optimal triangulation. If this is unde-
sirable in a particular application, constraints like

−φpq + αqpr + φpr ≤ γ

for γ < π may be added. In particular, choosing γ = π − δ will simultaneously
decrease large angles, and thus will lead to arc triangles ‘as equilateral as pos-
sible’. However, the demand of maximizing the smallest angle over the space
of all possible arc triangulations (with the same combinatorics as T ) is then
lost. Various other linear restrictions on angles may be meaningful in applica-
tions, like fixing the angle sum in each arc triangle to π, or keeping each arc
triangle inside the circumcircle of its three vertices. The relevance of these and
other conditions will be substantiated in Sections 5, 6, and 7. We consider the
flexibility of our simple approach as an important feature in practice.

3 Graph-theoretic Approach

The special setting of our linear program allows us to apply a purely graph-
theoretic approach for its resolution.

Theorem 2 The linear programming problem of maximizing δ under restric-
tions (1–3) can be solved by a combinatorial (graph-theoretic) algorithm in O(n2)
time.

The remainder of this section gives a proof of Theorem 2. We have two
variables φpq and φqp for each edge pq in the given straight line triangulation,
and the variable δ. Since a triangulation is a planar graph, there are O(n)
variables, O(n) inequalities of type (3) induced by the angles between adjacent
edges, and O(n) equations of types (1) and (2).

First we consider a fixed value of δ and ask whether the system (1–3) is
feasible. By using a method in [30] (see also [14, 28]), we can transform the
system into an equivalent system, in which every constraint has one of the
following forms

X ≤ Y + c, (4)

X ≤ 0 + c, (5)

0 ≤ Y + c, (6)

where X and Y are two variables and c is a constant.
By substituting βqpr we can easily rewrite (3) in this form, namely

φpq ≤ φpr + (αqpr − δ). (7)

If we have bounds on the variables,

a ≤ X ≤ b,
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we can also bring them into the desired form, and hence each equation (2) can
be also handled, by first converting it into two inequalities.

We still have to deal with the equations (1) between ‘opposite’ variables.
To this end, let us consider a system of inequalities of the form (4–6) in 2m
variables V = {x1, . . . , xm, x

′
1, . . . , x

′
m} that come in ‘opposite pairs’

xi = −x′i, for i = 1, . . . ,m. (8)

For a variable X , we will denote by X̄ its opposite partner

x̄i = x′i, x̄
′
i = xi,

¯̄X = X.

The system we have at hands is of this form, with φ̄pq = φqp. Now, for each
inequality of the form (4–6), we can form an equivalent opposite inequality, in
which each variable is replaced by the opposite variable on the other side. For
example,

X ≤ Y + c (4)

is turned into
Ȳ ≤ X̄ + c.

In view of (8), the opposite inequality is equivalent to the original one. Thus,
when we add all opposite inequalities, we will create some redundancy but we
will not change the solution.

Lemma 1 Consider a system (I), of the equations (8) together with inequalities
of the form (4–6), that also contains with each inequality its opposite inequality.
Then this system has a solution if and only if the system (II) without the
equations (8) has a solution.

Proof: It is clear that system (I) can only have a solution if the less restrictive
system (II) has one. For a variable x ∈ V and its opposite x̄ we now consider a
solution pair (x∗, x̄∗) in system (II). Then it can be checked easily that (x†, x̄†),
with

x† :=
x∗ − x̄∗

2
and x̄† :=

x̄∗ − x∗

2
,

is a solution for x and x̄ in system (I). �

For our setting, this means that we can ignore the equations (1), at the
expense of doubling the number of inequalities. All inequalities have the form
(4–6). By introducing a new variable Z0 representing zero, the inequalities (5–6)
that contain only one variable can also be brought into the standard form (4).
This new system is equivalent to the original one: Since all inequalities now
have the form (4), one can add an arbitrary constant to all variables without
invalidating the inequalities, and thus one can assume, without loss of generality,
that Z0 = 0.

It is well known that a system of inequalities of the form (4) can be tested
by checking whether an associated graph G has a negative cycle [6, 30], and a
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solution can be found by a shortest path calculation. The graph G has a node
for each variable, and for each inequality

X ≤ Y + c (4)

it contains an arc of weight c from X to Y . Moreover, consider an augmented
graph G+, that has an additional start node S and an edge of weight 0 from S
to every node of G.

Lemma 2 A system of inequalities of the form (4) has a solution if and only if
the associated graph G (or equivalently, G+) has no negative cycle. If a solution
exists, it can be found by computing shortest distances from S to all nodes in
G+.

The running time of this test, with the Bellman–Ford algorithm, is given by
the number of nodes or variables (2m = O(n) in our case), times the number of
arcs or inequalities (O(n) as well). Thus, finding a solution of the angle drawing
problem for a given value of δ takes O(n2) time.

Now we will consider δ as a variable and come back to the problem of max-
imizing δ. This amounts to checking for a negative cycle in a graph whose
weights are of the form c− δ, for constants c and a parameter δ. This problem
is known as the minimum cycle mean problem: For a cycle with k edges the
weight has the form w− kδ, where w is the sum of all positive edge constants c
along the cycle. The weight is negative for δ > w/k. So w/k, the mean weight
of the cycle, is the largest value for δ which does not result in a negative cycle.
For the entire graph, this means that the largest possible value of δ for which
the graph is free of negative cycles is determined by the minimum cycle mean.
The minimum cycle mean problem has been solved in Karp [21], and the al-
gorithm takes the same running time as the Bellman–Ford algorithm, that is,
O(n2) time, but it takes O(n2) space.

4 Flipping in Arc Triangles

The fact that every simple polygon can be triangulated with straight line seg-
ments is well known [9]. Again, a domain D with piecewise circular boundary
need not admit any triangulation, even if circular arcs may be used. It is known
that a linear number of Steiner points is required in the worst case to ensure an
arc triangulation [1].

One of the arising questions is: Given the domain D and a (combinatorial)
triangulation Tc in D, possibly with (fixed) interior points, can Tc be realized
by circular arcs? Clearly, if only straight line edges are to be used, then this
is merely a segment intersection problem.1 For deciding the general case, we

1Note that the following related problem is NP-complete [23]: Given a point
set S and some set E of straight line edges on S, decide whether E contains a
triangulation of S.
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a

Figure 4: Flippable or not flippable?

can now utilize the linear program formulated in Section 2. A realizing arc
triangulation exists if and only if the feasible region of the linear program is
nonempty. As a particularly nice feature, this enables us to define flip operations
in arc triangulations, as is described below.

Consider some arc triangulation A in the domain D. Each interior arc
⌢
pq

of A lies on the boundary of two arc triangles. Let r and s be the two vertices
of these arc triangles different from p and q. Flipping

⌢
pq by definition means

removing
⌢
pq from A, establishing an arc between r and s combinatorially, and

optimizing over the resulting triangulation. Note that ‘well-oriented’ in this
case has to refer to the combinatorial order of the edges around a vertex of a
triangulation.

For the linear program that describes this optimization problem, we have to
know the angles α of the corresponding straight line embedding; see Section 2.
Note that, e.g., after a flip as depicted in Figure 4, the straight line realiza-
tion of the graph is not a valid geometric triangulation. In such a case, the
combinatorial order around a vertex is different from the geometric one. As a
consequence, some angles α have to take negative values to obtain a valid set-
ting for the linear program that optimizes δ. See Figure 6 for an example with
the combinatorial order being 1 to 5, while the geometrical order is 1, 4, 2, 3, 5.
Unlike for the original setting in Section 2, here a positive solution for δ is not
guaranteed. In fact, the sign of the optimized value δ indicates whether or not
the combinatorial triangulation (after a flip) is realizable as an arc triangula-
tion. If δ > 0 after the optimization, then the new arc triangulation exists and
contains a circular arc between r and s that satisfies the criterion of being ge-
ometrically well-oriented. In case of nonexistence (if δ ≤ 0), the combinatorial

triangulation is not realizable as an arc triangulation, and we declare the arc
⌢
pq

as non-flippable. Such arcs are not touched by the flipping process. On the
other hand, flipping a flippable arc may lead to a double-arc between vertices;
see Figure 5.

Observe that an arc flip may change various circular arcs geometrically (by
optimizing over their curvature), whereas only a single arc is exchanged combi-
natorially. An arc flip thus is a geometrically global operation which is combi-
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Figure 5: Flipping the
dashed arc creates a
double-arc between the
bottom vertices

p

1

2

3

4

5

α1p2

α2p3

−α4p3

α4p5

Figure 6: Combinatorial
order around the vertex p
from 1 to 5

natorially local.

Sometimes we may not want to perform an arc flip even if it exists. For
example, flipping an arc a can lead to an inner vertex of degree 2, a property
of arc triangulations which is possibly unwanted in the application; consult
Figure 4 again. Arc a can easily be declared as not flippable, by putting the
restriction that angles in triangles be less than π. Note that this does not
necessarily prevent the occurrence of double-arcs between two vertices of an arc
triangulation. For example, see Figure 5, where all angles are smaller than π.
However, a check if an edge already exists can be done before the optimization
step, and thus does not have to be incorporated into the linear program.

Optimizing angles with arc flips is a powerful (though maybe costly) tool.
We demonstrate the positive effect of sequences of such flips with Figures 7
and 8. A significant improvement over the Delaunay triangulation becomes
possible, by reducing the degree of a particular vertex, v. (In fact, the smallest
angle is doubled in the shown example.) Note that this configuration is quite
‘robust’ in the sense that v retains its high degree in the Delaunay triangulation
even if the placement of the other vertices is changed moderately. Repeated
appearance of patterns as in Figure 7 may lead to an overall poor quality of a
given triangular straight line mesh.

In general, we observe that small angles in a straight line triangulation stem
from one of two reasons: (1) The geometry of the underlying domain D (plus
its vertex set) forces slim triangles in the vicinity of ∂D. These ‘boundary
effects’ can usually be mildened by mere geometric optimization of the corre-
sponding arc triangulation. (2) Vertices of degree k naturally impose an upper
bound of 2π

k
on the smallest arising angle. This situation can be remedied only
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v

Figure 7: Delaunay triangu-
lation

v

Figure 8: Flip-optimized
arc triangulation

with combinatorial changes (for example, flips), and in contrast to the straight
edge case, this is indeed possible for arc triangulations. For straight edges, the
combinatorics of the Delaunay triangulation is already optimal.

A challenging open question is the following:

Does repeated application of angle-improving arc flips always lead to the global
optimum, that is, to the combinatorial type of arc triangulation which admits
the largest possible minimum angle for the given domain?

As a more basic question, we mention:

Is the set of combinatorial triangulations that are realizable as arc triangulations
connected by flips?

We leave these problems as a subject for future research.

5 Special Arc Triangles

Before discussing the relevance of arc triangulations to the areas of graph draw-
ing and finite element methods, a look at various types of arc triangles is re-
quired. Recall from Section 2 the convention that arc triangles are geometrically
well-oriented.

An arc triangle ∇ is termed a π-triangle if the sum of its interior angles is π.
Clearly, straight line triangles are π-triangles. We state a well-known geometric
fact (cf. [27]).

Property 3 Let ∇ be some arc triangle. The following three properties are
equivalent.

(a) ∇ is a π-triangle.
(b) The three supporting circles of ∇ intersect in a common point exterior

to ∇.
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p

q

C

r

pq

Figure 9: This arc triangle is not a π-triangle because it does not stay within
its circumcircle

(c) ∇ is the image of a straight line triangle under a unique Möbius trans-
formation.

Interestingly, π-triangles also fulfill a useful regularity condition.

Property 4 Any π-triangle is contained in the circumcircle of its vertices.

Proof: See Figure 9. Let p, q, and r be the vertices of a π-triangle ∇, and
assume that there exists an arc of ∇, say

⌢
pq, which lies outside of the circle

spanned by p, q, and r. Then the circle Cpq supporting
⌢
pq does not enclose r.

Otherwise, a change in the order of the arcs of ∇ is implied, and ∇ would not be
well-oriented. But r lying outside of Cpq means that Cpq does not pass through

any intersection point of the two circles supporting
⌢
pr and

⌢
qr, respectively,

because at least one of these arcs has to be bent inwards to allow an angle sum
of π in ∇. This contradicts Property 3(b). �

In view of the mentioned properties, it is worthwhile to study arc triangula-
tions that are composed of π-triangles; we shall call them π-triangulations. Such
triangulations will not always exist, but they do, of course, if the domain D is
a simple polygon, because every straight line triangulation is a π-triangulation.
If ∂D is composed of circular arcs, a necessary (though not sufficient) existence
condition is that the sum of interior angles at the h boundary vertices of D is
π(h− 2).

For the remainder of this section, let D be a simple polygon, and T be some
straight line triangulation in D. The geometry of any arc triangulation A in D
that is combinatorially equivalent to T is determined by the vector Φ(A) of

deviation angles φpq, for the interior arcs
⌢
pq of A. (The opposite value, φqp, is

fixed by φpq ; see Section 2). Interpreting Φ(A) as a point in high dimensions, we
can talk of the space of arc triangulations for T . The next lemma is important
in view of optimizing a given π-triangulation. Let us assume that there exists
an arc triangulation for D where all interior deviation angles are positive.
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Lemma 3 Let T have n vertices, h of which lie on the boundary of D. The
dimension of the space of π-triangulations for T is n− h.

Proof: The space of all arc triangulations for T is full-dimensional, because
each angle φpq (and with it φqp) can be modified individually within certain
bounds so as to still guarantee the existence of an arc triangulation.2 In order
to keep the property that all arc triangles are π-triangles, we have to constrain
the values of φpq . For each arc triangle ∇ with boundary vertices p, q and r, its
three angles have to satisfy

φpq + φqr + φrp = 0 . (9)

Angles associated with boundary edges of T are zero. We obtain a system of
t linear equations for e unknowns, where t and e are the numbers of triangles
and inner edges of T , respectively.

The structure of this linear system is determined by the dual graph, G,
of T . The nodes of G correspond to the equations (9), and the elementary
cycles in G correspond to the degrees of freedom of the system. This can be
seen by reducing G to a spanning tree, by adding constraints

φpq = 0 (10)

to the system for all interior arcs
⌢
pq but the ones dual to the tree. The system

now possesses only the trivial solution, that is, the origin of the solution space,
which corresponds to the straight line π-triangulation T . Each time an edge e
of G is put back (i.e., one constraint of the form (10) is removed), a unique
elementary cycle is closed, and a single degree of freedom is gained, stemming
from the corresponding linear equation: Namely, consider a traversal of this
cycle in some direction, say clockwise. Then one can bend all arcs slightly in
this direction, leaving the angle sum in each triangle unchanged. That is, indeed
one more degree of freedom is gained when adding such an edge e.

The number of elementary cycles is, therefore, just e− (t− 1), since a tree
with t nodes has t− 1 edges. By Euler’s formula, we have e = (3n− h− 3)− h
and t = 2n− h− 2. In conclusion, the system of equations (9) has n− h degrees
of freedom. �

Lemma 3 remains true if T is replaced by any π-triangulation of D. For
applications, the input is most likely a straight line triangulation, which is to be
optimized into a π-triangulation with maximum smallest angle. The boundary
of D might be given as a spline curve, approximated smoothly by circular arcs.
The inner angle sum for D is π · h in this case (rather than π(h− 2)), such that
a π-triangulation does not exist. Still, the approximating circular arcs will be
close to line segments for most practical data, such that an ‘almost straight’

2Here, like in all other parts of this paper, we assume general position of the
underlying vertex set.
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Figure 10: Straight line triangu-
lation and its angle-maximized
π-triangulation superimposed

u

Figure 11: The Delaunay trian-
gulation improves less but still
more than 40%

π-triangulation is likely to exist. Also, one could start with some combinatorial
triangulation suitable for D, to be able to treat a larger class of domains.

Figure 10 displays how a straight line triangulation is optimized into a
π-triangulation. The change does not appear dramatic, but observe that the
smallest angle (occurring at vertex v) almost doubles, from 9.7o to 19o. Fig-
ure 11 shows the same process for the Delaunay triangulation of a different set
of points. The gain here is about 41%, from 13.9o to 18.6o, being attained at
vertex u. In both cases, no arc flips have been applied.

Table 1 shows experimental data for a larger input (500 random points,
postprocessed to keep a certain interpoint distance as in realistic meshes). We
see that the gain reduces for larger Delaunay meshes but is still significant,
especially if the condition on the angle sum is relaxed from π to a small inter-
val around that value. For several applications, there is sometimes a certain
threshold (typically around 25o) beyond which a mesh is considered as poor-
quality [4].

angle sum Delaunay min min arc angle gain

180o 18.03o 22.52o 25%

179o - 181o 18.03o 22.92o 26%

175o - 185o 18.03o 24.88o 38%

170o - 190o 18.03o 27.53o 50%

160o - 200o 18.03o 31.77o 72%

Table 1: Angle improvement in arc triangulations

Note that, by Lemma 3, optimization is only possible in subdomains of D
where interior points are present. Thus, the diagonals of D defined by T (if
any) separate optimizable subdomains from each other. Again, such diagonals
are unlikely to appear in the dense meshes used in practical applications. In any
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p

x

Figure 12: Inserting a vertex into a π-triangle

case, extraneous points can be inserted into the π-triangulation while keeping
all angle sums in arc triangles to π. See Figure 12, where point p is inserted such
that, for each of the three arc triangles created, the condition (b) in Property 3
is fulfilled. Note that p may be placed anywhere in the (shaded) arc triangle,
because the dashed circles through x do always exist. In particular, we can
choose p on some boundary arc, in order to split obstructive diagonals of D.

6 Finite Element Methods

In the isoparametric approach to finite element methods (FEM) [20], the com-
putational domain is described by a collection of primitives Pi, each being the
image of, e.g., a domain triangle ∆i under a geometry mapping, Gi. More
specifically, a set of shape functions ψij is defined on ∆i such that

Gi =
∑

j

ψijcij .

The coefficients cij typically stem from the vertices and the edge midpoints of
the primitives. The test functions (finite elements) which span the discretization
space are obtained by composing the shape functions with the inverse geometry
mappings,

fij = ψij ◦G
−1
i .

By suitably collecting functions defined on neighbouring triangles one obtains
continuous test functions (conforming finite elements). Alternatively, one can
use non-continuous test functions (non-conforming finite elements), which are
better suited in some applications.

Clearly, any arc triangle can be represented by a geometry mapping, which
is a rational quadratic Bézier triangle. The shape functions are the rational
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f(x, y) = (x2+y2−1) cos(y−1) Straight triangles Arc triangles

Figure 13: Approximation power of arc triangles versus straight triangles. The
error for L2 drops from 0.18 (straight) to 0.07 (arc), and for Lmax from 0.30 to
0.15.

Bernstein basis functions. We may assume that this triangle is in standard form
(i.e., the weights of the vertices are equal to one). Again, by collecting functions
defined on neighbouring triangles one obtains continuous test functions. Thus,
any arc triangulation can be used to define an isoparametric finite element
method. The number of test functions is the same as in the case of quadratic
elements defined on straight line triangles.

The use of arc triangles instead of straight line triangles offers two advan-
tages. First, many interesting domains for numerical simulation possess piece-
wise circular boundaries (e.g., planar domains with circular holes, such as the
famous ‘plate with circular hole’). Such domains can be represented exactly
by arc triangles, whereas triangles with straight edges can only approximate
them. Thus, the use of arc triangles eliminates one source of discretization er-
ror in many cases, namely the approximation of the physical domain, which is
required otherwise. Second, the additional degrees of freedom introduced by re-
placing straight lines with circular arcs provide a better distribution of the inner
angles, and hence elements with better shapes. This allows to obtain smaller
errors with the same number of triangles.

We demonstrate these two observations by a simple example. We consider a
function on the unit disk satisfying homogeneous Dirichlet boundary conditions,
and approximate it using finite elements derived from an arc triangulation and
a straight triangulation, respectively, both consisting of 7 triangles. Conforming
quadratic rational and quadratic polynomial finite element functions are used,
respectively. In both cases, the number of degrees of freedom is equal to 10.
The results are shown in Figure 13, where the function and its approximations
are represented by level sets. The use of arc triangles leads to a significant
reduction of the error, which is caused both by the better shape of the triangles
and by the improved representation of the domain.

The case of π-triangles (Section 5) is of particular interest. Normally, for
isoparametric FEM, the geometry mappings Gi are known explicitly only in
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one direction. Sometimes it is desirable to use their inverses, for instance, if
one wants to evaluate a test function, or even the solution, at a given point in
the physical domain (which is represented as the collection of primitives). How-
ever, since Gi is known only in one direction, evaluating G−1

i typically requires
solutions of nonlinear systems of equations. If the primitives are π-triangles,
the situation is much better. Recall from Property 4 that there exists a unique
Möbius transformation which maps a straight line triangle (with the same inte-
rior angles) into the arc triangle. In this situation, the geometry mapping Gi (a
rational quadratic Bézier triangle) is simply a composition of a projective map-
ping (a rational linear reparameterization, which is required for transforming
the rational Bézier into standard form) with a Möbius transformation.

Consequently, the inverse geometry mapping G−1
i is the composition of a

Möbius transformation with a rational linear transformation. In this sense,
π-triangles behave as good as straight triangles when used as geometric primi-
tives for finite elements. In both cases, the geometry mappings and the inverse
geometry mappings are given by simple closed form expressions. No numerical
approximations are needed.

Möbius transformations are also conformal mappings. Therefore, the use
of (possibly approximate) π-triangles paves the way for using geometry trans-
formations which are approximations of conformal mappings, especially in the
case of non-conforming finite elements, where no transformations of the rational
Bézier triangles to standard form is required. If all domain triangles are to be
chosen as equilateral ones, then one should optimize the arc triangles to get
angles closer to π

3 than it would be possible in a straight line triangulation. In
particular, arc flips (Section 4) can be applied at regions of the mesh where,
typically, a few slim triangles diminish the overall quality. Note that a Möbius
transformation maps circumcircles to circumcircles, and that π-triangles do not
leave these circles, by Property 4.

Due to the simplicity of our optimization method (basic linear programming
for which efficient large scale solvers exist), even bigger meshes can be angle-
maximized within reasonable computation time.

7 Graph Drawing

Literature on drawing graphs nicely in the plane is large; see e.g. [10, 26, 31].
Most algorithms take as input an abstract graph G and produce a layout of
the vertices of G such that the resulting straight line (or orthogonal) drawing
is aesthetically pleasing, and preferably is even optimal with respect to certain
application criteria. On the theoretical side, bounds on the achievable angular
resolution are known for various classes of graphs [17, 24], including planar
graphs. A characterization of all planar drawings of a triangular graph through
a system of equations and inequalities relating its angles is given in [11].

Results for curvilinear drawings of graphs are comparatively sparse. See, for
example, [7, 19] and references therein, who give lower bounds and algorithms
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Figure 14: IP backbone graph
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Figure 15: Backbone optimally re-
drawn

for drawing graphs on a grid with curved edges (including circular multiarcs),
and [16] where a method based on physical simulation is proposed. In [15],
crossing-free drawings of graphs with circular arcs as edges are considered from
an algorithmic viewpoint. The vertices are fixed and each edge has to be chosen
from a given number of arcs. Recently, circular arc graphs with equiangular
edges around each vertex have been studied in [13].

Here we actually consider a simpler setting, namely, for a given planar
straight line embedding of a graph G, the problem of redrawing G with curved
edges in an optimal way. In a redrawing, the positions of the vertices are kept
fixed. This may be a natural demand, for instance, in certain geographical
applications. Recently it has been shown [2] that redrawings of G with tangent-
continuous biarcs or quadratic Bézier curves (parabolic arcs) always exist such
that every vertex is pointed, i.e., has an incident angle of at least π. Potential
applications concern labeling the graph vertices with high readability. Redraw-
ing a plane graph G with circular arcs in a pointed way is not always possible,
though.

Let us describe how maximizing the smallest angle in a circular arc redrawing
of G can be achieved. It is tempting to apply the linear optimization method
from Section 2 to G directly. This, however, bears the risk of arc overlaps getting
out of control. (Recall that overlap-free optimization is guaranteed only for full
triangulations.3) One way out is to embed G in some triangulation T first, and
treat respective sums of angles as single entities to be optimized; see Figure 16.
That is, for each angle ̺ in G, given by the concatenation of angles α1, . . . , αk

in T , we use the constraint

δ ≤

k∑

i=1

βi

with each βi expressed by the corresponding straight line triangulation angle αi

3This is possibly the reason why this simple approach has not been used in
practice yet.
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α1
α2 α3

β1

β2 β3
̺T T ∗

p p

Figure 16: The angle ̺ in G as a concatenation of angles α1, α2, α3 in T

and its two assigned deviation variables

βi = −φ1 + αi + φ2

as in Section 2.

The quality of optimization depends on the chosen triangulation, which will
be subject of future research; cf. Section 4. Note that, however, even if we try
out all possible triangulations, this may not lead to the optimal solution, as
there are arc polygons that cannot be triangulated without additional vertices.
If the optimal drawing contains such a face, then no triangulation will yield this
drawing.

If we wish to optimize the entire angle vector ̺1, . . . , ̺m for G, this can
be achieved too, in an iterative way as before. Additional restrictions may be
posed, like ̺j < π or ̺j <

π
2 , in order to preserve obtuse or sharp angles in G.

The adjacency graph in Figures 14 and 15, and the layer graph in Figures 17
and 18 exemplify the effect of our circular arc redrawing method. The results
seem satisfactory, in spite of the fact that vertices are required not to move.
For geographic structures as in Figure 14, or certain graph structures arising
in physics, this is quite often a desired property. Our results compare well to
e.g. [16], who use for optimization the additional freedom of placing vertices,
though at a price of high computation cost. For our method, the number of
vertices of the input graph is no limitation, as far as applications from graph
drawing are concerned.

Figure 17: A 3-layer graph Figure 18: Redrawing with arcs
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8 Future Work

Circular arc triangulations are a flexible and computationally controllable struc-
ture with potential impact but, so far, with lack of interest from computational
geometry. They lead to simple and fast graph redrawing procedures, and bear
novel aspects for finite element methods (FEM). It is among the intentions of
this paper to inspire research on theoretical foundation for the better approxi-
mation properties in FEM of arc triangles.

For the case of non-triangulated regions (compare the quadrangle in Fig-
ure 1), the requirement that arcs do not intersect induces a nonlinear constraint
between the corresponding angles. It would be interesting to know if this con-
straint has some structure (for example, convexity) which would allow it to be
accommodated in the optimization process. In this context, we have the follow-
ing conjecture. Note that it suffices to consider quadrangles, as the situation
for regions with more than 4 arcs can be reduced to the quadrangle case.

For a convex quadrangle, let a and b be two sides that lie opposite to each
other. Let the angle α be the deviation angle between the side a and an arc
spanned by its two endpoints. In the same way, define the angle β for the side b.

Conjecture 1 In the parameter space of α and β, the set of parameter pairs
which correspond to non-intersecting arc pairs forms a convex region.

Further open questions raised here are the convergence of the angle-increasing
arc flipping process in Section 4, and an extension of the presented results to
three dimensions. In fact, arc triangles admit a simple generalization to three-
space, by considering tetrahedral volumes with spherical faces. We call these
volumes spheroidal tetrahedra. The edges of spheroidal tetrahedra are circu-
lar arcs, since any two spheres intersect in a circle. We will elaborate on the
properties of such 3D primitives and their meshes in a forthcoming paper.
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