# Threshold Arrangements and the Knapsack Problem 

Günter Rote* André Schulz*

February 3, 2005


#### Abstract

We show that a combinatorial question which has been studied in connection with lower bounds for the knapsack problem by Brimkov and Dantchev (2002) is related to threshold graphs, threshold arrangements, and other well-studied combinatorial objects, and we correct an error in the analysis given in that paper.


Keywords: Knapsack problem, Threshold graphs, Real number model

## 1 Introduction

The complexity of the knapsack problem has been deeply investigated under various computational models [5, 7]. In particular, this problem plays an important role in algebraic complexity theory. Here, the considered model is a real number computation model, which was established by Blum et al. [2]. In this model, an arithmetic operation with infinite precision costs only constant time. One of the key theorems in algebraic complexity theory is the Ben-Or lower bound theorem [1], which states that solving a decision problem costs $\Omega(\log (\#$ c.c. $))$ operations. Here \#c.c. stands for the number of connected no-instances in the space of all input vectors of the decision problem. The knapsack problem is one of the problems where the Ben-Or theorem can be applied to get an $\Omega\left(n^{2}\right)$ complexity bound.

In [3] the authors aimed to prove an alternative statement for the $\Omega\left(n^{2}\right)$ bound of the knapsack problem. We will show that their main lemma, which claims an exact formula for certain combinatorial structure, is wrong. This will be done by presenting a counterexample in section 2 .

In this note, we will also show that the combinatorial objects studied by [3] have been already studied in the literature, in various incarnations, and we mention a few of the most important results about them.

Moreover, we indicate in Section 4 that, for a completely independent reason, the main result of the paper [3] is also in error.

## 2 The Knapsack Problem

The knapsack problem is a decision problem. It asks if, for a given $a \in \mathbb{R}^{n}$, there exists some $x \in\{0,1\}^{n}$ such that $a^{T} x=1$. In other words, we are looking for a subset of the $a_{i}$ 's whose sum equals 1 . This subset is denoted by the characteristic vector $x$.

[^0]For the application of the Ben-Or Theorem, we need to count the number of connected components of the set

$$
C_{n o}:=\left\{a \in \mathbb{R}^{n} \mid \forall x \in\{0,1\}^{n} a^{T} x \neq 1\right\}
$$

This means that the unit hypercube $[0,1]^{n}$ of all possible input vectors $\left(a_{1}, \ldots, a_{n}\right)$ is dissected into cells by the $2^{n}-1$ knapsack hyperplanes $h_{I}$ which are given by the equations $\sum_{i \in I} a_{i}=1$, for all nonempty subsets $I \subseteq\{1,2, \ldots, n\}$. It is known that the knapsack arrangement has at least $4 \cdot 2\binom{n}{2}$ cells [4]. Hence the algebraic decision tree complexity is $\Omega\left(n^{2}\right)$ [1].

For technical reasons, the authors of [3] restrict their attention to arguments with $1 / 3<a_{i}<2 / 3$. Let $A_{n}$ denote the number of cells into which the hypercube $(1 / 2,2 / 3)^{n}$ is dissected by the knapsack hyperplanes. Clearly the number of cells in $(1 / 2,2 / 3)^{n}$ gives a lower bound for the number of cells in the unit hypercube.

The only hyperplanes $h_{I}$ which intersect $(1 / 3,2 / 3)^{n}$ are hyperlanes $h_{\{i, j\}}: a_{i}+$ $a_{j}=1$ where $I$ contains exactly two elements. Thus a cell is characterized by specifying, for each pair $\{i, j\}$, on which side of the hyperplane $h_{\{i, j\}}$ it lies. So, every cell corresponds to a set $S_{a}=\left\{\{i, j\} \mid i \neq j, a_{i}+a_{j}<1\right\}$. The reader should notice that not all combinations of pairs $\{i, j\}$ will lead to proper defined sets. For example, the set $S_{a}=\{\{1,2\},\{3,4\}\}$ will not define a proper cell. It induces the inequalities

$$
\begin{aligned}
& a_{1}+a_{2}<1 \\
& a_{1}+a_{3} \geq 1 \\
& a_{3}+a_{4}<1 \\
& a_{2}+a_{4} \geq 1
\end{aligned}
$$

From the first two inequalities follows that $a_{2}<a_{3}$. On the other hand the last two inequalities lead to $a_{2}>a_{3}$. Hence $S_{a}$ does not correspond to a properly defined cell.

## 3 Threshold Arrangements and Threshold Graphs

The translation of the arrangement of the hyperplanes $h_{\{i, j\}}$ by the vector $(-1 / 2, \ldots$, $-1 / 2)$ will lead to a more natural arrangement. This new arrangement which consists of the hyperplanes $h_{\{i, j\}}^{\prime}: a_{i}+a_{j}=0$ is known as the threshold arrangement $[8$, exercise 5.4]. Clearly the number of cells is invariant under translation of the whole arrangement.

A threshold graph is a graph $(V, E)$, for which a weight assignment $w: V \rightarrow \mathbb{R}$ and some $t \in \mathbb{R}$ exist, such that for any distinct vertices $i, j$

$$
(i, j) \in E \Leftrightarrow w_{i}+w_{j}<t
$$

There exist many other characterization of threshold graphs, for a survey see [6]. If we view the unordered pairs in $S_{a}$ as the edges of a graph, the class of graphs that we obtain in this way is exactly the class of threshold graphs. This follows directly from the given characterization of threshold graphs. Thus $A_{n}$ denotes not only the number of cells in the dissected hypercube, but also the number of threshold graphs and distinct sets $S_{a}$.

In [3, Lemma 1] it is claimed that $A_{n}=n!$. This statement is wrong. The first few values in this sequence are $1,2,8,46, \ldots$. The first term which is not equal to $n!$ is $A_{3}=8$. Indeed, the examples of Table 1 prove that all $2^{3}$ subsets $S_{a}$ of
$\{\{1,2\},\{1,3\},\{2,3\}\}$ can occur as the edge set of some threshold graph. The reader can check that Lemma 1 in [1] actually proves a lower bound $A_{n} \geq n!$. We leave it to the interested reader to find the error in the proof.

| $a_{1}$ | $a_{2}$ | $a_{3}$ | $S_{a}$ |
| :--- | :--- | :--- | :--- |
| 0.6 | 0.5 | 0.55 | $\}$ |
| 0.4 | 0.5 | 0.65 | $\{\{1,2\}\}$ |
| 0.5 | 0.6 | 0.45 | $\{\{1,3\}\}$ |
| 0.6 | 0.5 | 0.45 | $\{\{2,3\}\}$ |
| 0.4 | 0.5 | 0.55 | $\{\{1,2\},\{1,3\}\}$ |
| 0.5 | 0.4 | 0.55 | $\{\{1,2\},\{2,3\}\}$ |
| 0.6 | 0.5 | 0.35 | $\{\{1,3\},\{2,3\}\}$ |
| 0.4 | 0.5 | 0.45 | $\{\{1,2\},\{1,3\},\{2,3\}\}$ |

Table 1: All graphs on three vertices are threshold graphs. We give one representative $a$ for every set.

One possible alternative characterization of threshold graphs can be done by giving a construction scheme. Every threshold graph can be generated in the following way: We start with a single vertex and add the other vertices one after another in some order. A new vertex $v$ can be either isolated (no edge between $v$ and a previous vertex) or dominating (all previous vertices share an edge with $v$ ).

We call the a sequence of consecutive dominating or isolated vertices a block. If we change the order inside a block, we will still construct the same graph. Hence it suffices to analyze the ordered partitions of all permutation of $[n]$ to retrieve the numbers of possible threshold graphs. Together with the observation that the first block must consist of at least two elements, we obtain an expression for $A_{n}$ in terms of Stirling numbers $s(n, k)$ of the second kind.

$$
A_{n}=2 \cdot\left(\sum_{k=0}^{n-1} k!s(n, k)-n(k-1)!s(n-1, k-1)\right)
$$

Thus we are able to calculate $A_{n}$ (and at the same time the whole sequence $\left.A_{1}, A_{2}, \ldots, A_{n}\right)$ in $O\left(n^{2}\right)$ arithmetic steps.

An exponential generating function for the numbers of labeled threshold graphs can be found in [ 6 , chapter 17.2$]$ and $[8$, page 106]:

$$
G(x)=\sum_{n=1}^{\infty} A_{n} \frac{x^{n}}{n!}=\frac{e^{x}(1-x)}{\left(2-e^{x}\right)}
$$

The generating function leads to the asymptotic bound

$$
\frac{A_{n}}{n!} \approx\left(\frac{1}{\log 2}-1\right)\left(\frac{1}{\log 2}\right)^{n}
$$

## 4 Lower bounds for the knapsack problem

Brimkov and Dantchev [3] apply their Lemma 1 to prove a lower bound on the knapsack problem. The wrong analysis of the number of threshold graphs does not invalidate their application of the lemma to this problem, since they need only a
lower bound on $A_{n}$. Moreover the important quantity in the proof is the asymptotic behavior of the logarithm of $A_{n}$, which is the same as for $n!$, apart from a constant factor: $\log A_{n}=\Theta(n \log n)=\Theta(\log n!)$.

However, the main result of their work is flawed for a different reason. Theorem 1 of the paper reads as follows:

No algorithm solving the knapsack problem can achieve a time complexity $o(n \log n) \cdot f\left(a_{1}, \ldots, a_{n}\right)$ where $f$ is an arbitrary continuous function of $n$ variables.
The theorem tries to address algorithms whose running time is sensitive to the data $a_{1}, a_{2}, \ldots, a_{n}$ and does not just depend on $n$. For example, the well-known dynamic programming algorithm for the knapsack problem takes $O(n / \delta)$ time, where $\delta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the smallest difference between two distinct elements of the set of all sums that can be formed from subsets of the input numbers $a_{1}, a_{2}, \ldots, a_{n}$. The function $\delta$, however, is discontinuous.

An obvious counterexample for the Theorem 1 of [3] is given by the function $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=2^{n}+a_{1}+a_{2}+\cdots+a_{n}$, which is clearly a continuous function of $a_{1}, a_{2}, \ldots, a_{n}$. (Here, the additive term $a_{1}+\cdots+a_{n}$ serves only to make the function more interesting.) The trivial algorithm which simply checks all $2^{n}$ subsets takes $O\left(n 2^{n}\right)=O\left(n \cdot f\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)$ time.

When one reads the proof of Theorem 1 in [3] one can get a glimpse of the authors' intentions. However, we could not think of a meaningful variation or modification of their statement which would be interesting. The trap into which the argument fell is apparently a confusion about the proper quantification of the variable $n$.

## References

[1] Ben-Or, M. Lower bounds for algebraic computation trees. In Proceedings of the 15th ACM Symposium on Theory of Computing (1983), ACM Press, pp. 80-86.
[2] Blum, L., Cucker, F., Shub, M., and Smale, S. Complexity and real computation. Springer-Verlag New York, 1998.
[3] Brimkov, V., and Dantchev, S. An alternative to Ben-Or's lower bound for the knapsack problem complexity. Applied Mathematics Letters 15, 2 (February 2002), 187-191.
[4] Bürgisser, P., Clausen, M., and Amin Shokrollahi, M. Algebraic Complexity Theory, Grundlehren der mathematischen Wissenschaften, Vol. 315. Springer, 1997.
[5] Garey, M., and Johnson, D. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Fransico, 1979.
[6] Mahadev, N., and Peled, U. Threshold Graphs and Related Topics, Ann. of Discrete Mathematics, Vol. 56. North-Holland, 1995.
[7] Martello, S., and Toth, P. Knapsack Problems Algorithms and Computer Implementations. Series in Discrete Mathematics and Optimization. WileyInterscience, 1990.
[8] Stanley, R. P. Enumerative Combinatorics. Vol. 2. Cambridge University Press, Cambridge, 1999.


[^0]:    *Institut für Informatik, Freie Universität Berlin,Takustraße 9, D-14195 Berlin, Germany, email:\{rote,schulza\}@inf.fu-berlin.de
    Supported by the Deutsche Forschungsgesellschaft (DFG) under grant RO 2338/2-1

