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Abstract

We show that a combinatorial question which has been studied in connection
with lower bounds for the knapsack problem by Brimkov and Dantchev (2002)
is related to threshold graphs, threshold arrangements, and other well-studied
combinatorial objects, and we correct an error in the analysis given in that paper.
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1 Introduction

The complexity of the knapsack problem has been deeply investigated under various
computational models [5, 7]. In particular, this problem plays an important role in
algebraic complexity theory. Here, the considered model is a real number computation
model, which was established by Blum et al. [2]. In this model, an arithmetic
operation with infinite precision costs only constant time. One of the key theorems
in algebraic complexity theory is the Ben-Or lower bound theorem [1], which states
that solving a decision problem costs Ω(log(#c.c.)) operations. Here #c.c. stands for
the number of connected no-instances in the space of all input vectors of the decision
problem. The knapsack problem is one of the problems where the Ben-Or theorem
can be applied to get an Ω(n2) complexity bound.

In [3] the authors aimed to prove an alternative statement for the Ω(n2) bound of
the knapsack problem. We will show that their main lemma, which claims an exact
formula for certain combinatorial structure, is wrong. This will be done by presenting
a counterexample in section 2.

In this note, we will also show that the combinatorial objects studied by [3] have
been already studied in the literature, in various incarnations, and we mention a few
of the most important results about them.

Moreover, we indicate in Section 4 that, for a completely independent reason, the
main result of the paper [3] is also in error.

2 The Knapsack Problem

The knapsack problem is a decision problem. It asks if, for a given a ∈ Rn, there
exists some x ∈ {0, 1}n such that aT x = 1. In other words, we are looking for a
subset of the ai’s whose sum equals 1. This subset is denoted by the characteristic
vector x.

∗Institut für Informatik, Freie Universität Berlin,Takustraße 9, D-14195 Berlin, Germany,
email:{rote,schulza}@inf.fu-berlin.de
Supported by the Deutsche Forschungsgesellschaft (DFG) under grant RO 2338/2-1

1



For the application of the Ben-Or Theorem, we need to count the number of
connected components of the set

Cno := {a ∈ Rn | ∀x ∈ {0, 1}n aT x 6= 1}.

This means that the unit hypercube [0, 1]n of all possible input vectors (a1, . . . , an)
is dissected into cells by the 2n − 1 knapsack hyperplanes hI which are given by the
equations

∑
i∈I ai = 1, for all nonempty subsets I ⊆ {1, 2, . . . , n}. It is known that

the knapsack arrangement has at least 4 · 2(n
2) cells [4]. Hence the algebraic decision

tree complexity is Ω(n2) [1].
For technical reasons, the authors of [3] restrict their attention to arguments

with 1/3 < ai < 2/3. Let An denote the number of cells into which the hypercube
(1/2, 2/3)n is dissected by the knapsack hyperplanes. Clearly the number of cells in
(1/2, 2/3)n gives a lower bound for the number of cells in the unit hypercube.

The only hyperplanes hI which intersect (1/3, 2/3)n are hyperlanes h{i,j} : ai +
aj = 1 where I contains exactly two elements. Thus a cell is characterized by speci-
fying, for each pair {i, j}, on which side of the hyperplane h{i,j} it lies. So, every cell
corresponds to a set Sa = { {i, j} | i 6= j, ai + aj < 1 }. The reader should notice that
not all combinations of pairs {i, j} will lead to proper defined sets. For example, the
set Sa = {{1, 2}, {3, 4}} will not define a proper cell. It induces the inequalities

a1 + a2 < 1
a1 + a3 ≥ 1
a3 + a4 < 1
a2 + a4 ≥ 1

From the first two inequalities follows that a2 < a3. On the other hand the last two
inequalities lead to a2 > a3. Hence Sa does not correspond to a properly defined cell.

3 Threshold Arrangements and Threshold Graphs

The translation of the arrangement of the hyperplanes h{i,j} by the vector (−1/2, . . . ,
−1/2) will lead to a more natural arrangement. This new arrangement which consists
of the hyperplanes h′{i,j} : ai + aj = 0 is known as the threshold arrangement [8,
exercise 5.4]. Clearly the number of cells is invariant under translation of the whole
arrangement.

A threshold graph is a graph (V,E), for which a weight assignment w : V → R
and some t ∈ R exist, such that for any distinct vertices i, j

(i, j) ∈ E ⇔ wi + wj < t

There exist many other characterization of threshold graphs, for a survey see [6]. If
we view the unordered pairs in Sa as the edges of a graph, the class of graphs that
we obtain in this way is exactly the class of threshold graphs. This follows directly
from the given characterization of threshold graphs. Thus An denotes not only the
number of cells in the dissected hypercube, but also the number of threshold graphs
and distinct sets Sa.

In [3, Lemma 1] it is claimed that An = n!. This statement is wrong. The
first few values in this sequence are 1, 2, 8, 46, . . .. The first term which is not equal
to n! is A3 = 8. Indeed, the examples of Table 1 prove that all 23 subsets Sa of
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{{1, 2}, {1, 3}, {2, 3}} can occur as the edge set of some threshold graph. The reader
can check that Lemma 1 in [1] actually proves a lower bound An ≥ n!. We leave it to
the interested reader to find the error in the proof.

a1 a2 a3 Sa

0.6 0.5 0.55 {}
0.4 0.5 0.65 {{1, 2}}
0.5 0.6 0.45 {{1, 3}}
0.6 0.5 0.45 {{2, 3}}
0.4 0.5 0.55 {{1, 2}, {1, 3}}
0.5 0.4 0.55 {{1, 2}, {2, 3}}
0.6 0.5 0.35 {{1, 3}, {2, 3}}
0.4 0.5 0.45 {{1, 2}, {1, 3}, {2, 3}}

Table 1: All graphs on three vertices are threshold graphs. We give one representative
a for every set.

One possible alternative characterization of threshold graphs can be done by giving
a construction scheme. Every threshold graph can be generated in the following way:
We start with a single vertex and add the other vertices one after another in some
order. A new vertex v can be either isolated (no edge between v and a previous
vertex) or dominating (all previous vertices share an edge with v).

We call the a sequence of consecutive dominating or isolated vertices a block. If
we change the order inside a block, we will still construct the same graph. Hence
it suffices to analyze the ordered partitions of all permutation of [n] to retrieve the
numbers of possible threshold graphs. Together with the observation that the first
block must consist of at least two elements, we obtain an expression for An in terms
of Stirling numbers s(n, k) of the second kind.

An = 2 ·

(
n−1∑
k=0

k!s(n, k)− n(k − 1)! s(n− 1, k − 1)

)

Thus we are able to calculate An (and at the same time the whole sequence
A1, A2, . . . , An) in O(n2) arithmetic steps.

An exponential generating function for the numbers of labeled threshold graphs
can be found in [6, chapter 17.2] and [8, page 106]:

G(x) =
∞∑

n=1

An
xn

n!
=

ex(1− x)
(2− ex)

The generating function leads to the asymptotic bound

An

n!
≈
(

1
log 2

− 1
)(

1
log 2

)n

4 Lower bounds for the knapsack problem

Brimkov and Dantchev [3] apply their Lemma 1 to prove a lower bound on the
knapsack problem. The wrong analysis of the number of threshold graphs does not
invalidate their application of the lemma to this problem, since they need only a
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lower bound on An. Moreover the important quantity in the proof is the asymptotic
behavior of the logarithm of An, which is the same as for n!, apart from a constant
factor: log An = Θ(n log n) = Θ(log n!).

However, the main result of their work is flawed for a different reason. Theorem
1 of the paper reads as follows:

No algorithm solving the knapsack problem can achieve a time complexity
o(n log n) · f(a1, . . . , an) where f is an arbitrary continuous function of n
variables.

The theorem tries to address algorithms whose running time is sensitive to the data
a1, a2, . . . , an and does not just depend on n. For example, the well-known dy-
namic programming algorithm for the knapsack problem takes O(n/δ) time, where
δ(a1, a2, . . . , an) is the smallest difference between two distinct elements of the set of
all sums that can be formed from subsets of the input numbers a1, a2, . . . , an. The
function δ, however, is discontinuous.

An obvious counterexample for the Theorem 1 of [3] is given by the function
f(a1, a2, . . . , an) = 2n + a1 + a2 + · · · + an, which is clearly a continuous function of
a1, a2, . . . , an. (Here, the additive term a1 + · · ·+an serves only to make the function
more interesting.) The trivial algorithm which simply checks all 2n subsets takes
O(n2n) = O(n · f(a1, a2, . . . , an)) time.

When one reads the proof of Theorem 1 in [3] one can get a glimpse of the authors’
intentions. However, we could not think of a meaningful variation or modification of
their statement which would be interesting. The trap into which the argument fell is
apparently a confusion about the proper quantification of the variable n.
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