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Two players play the following game. The dealer cuts pieces of length
1=2i from a rope of length s > 1 and gives them to the placer, who puts
them on one of the intervals between k=2i and (k+ 1)=2i. We present a
strategy for the placer for covering the whole unit interval [0; 1] whenever
s � 2. On the other hand, no such strategy exists whenever s < 4=3.
This is shown by a strategy for the dealer which prevents the placer from
winning.
The upper bound. Our winning strategy for the placer, the so-called
method of the third segment, is a special case of a more general algorithm
for covering the unit interval by q-adic subintervals, as opposed to binary
subintervals which we consider here. It is described in our paper: \On-
line q-adic covering by the method of the n-th segment and its application
to on-line covering by cubes", to appear in Beitr�age zur Algebra und

Geometrie 37 (1), 1996. The proof given below is di�erent from the
proof in that paper.

The algorithm tries to cover the interval from left to right, but in a
slightly modi�ed way. Assume that the contiguous subinterval starting
at the left end which is completely covered extends from 0 to b. (Initially
b = 0.) We call b the current boundary. Then the �rst segment of length
1=2i is the interval [k=2i; (k+1)=2i] with k = bb2ic. This is the leftmost
position into which a piece of this length can meaningfully be placed. The
second and third segment are the adjacent intervals [(k+1)=2i; (k+2)=2i]
and [(k+2)=2i; (k+3)=2i]. By the method of the third segment the placer
always tries to put a new piece on the third segment, unless this interval
is already completely covered (or lies outside the unit interval). In this
case, the placer tries the second segment, and if this also makes no sense
because it is totally covered, the piece is put on the �rst segment.

Lemma 1. The third segment of length 1=2i may contain at most one

piece of length 1=2i, but no smaller pieces.

Proof. The distance from the left endpoint of the third segment to the
current b is larger than 1=2i. Hence the third segment of any smaller
length can never have reached far enough to the right to overlap this
segment.

Lemma 2. Consider the second segment of length 1=2i, denoted by Q.
The total length of pieces lying in Q is less than 2=2i. (We might say,

the segment Q is covered with average density less than 2.) Moreover,

if Q is not completely covered, then the total length of pieces lying in Q
is less than 1=2i. (Q is covered with average density less than 1.)

Proof. We prove this by induction on the length of the segment Q,
starting with the smallest piece which has been cut by the dealer, for
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which the lemma is obvious. The two halves of Q may either be the
second and third segments of length 1=2i+1, or the the third and fourth
segments of length 1=2i+1. The latter case can be subsumed under the
former case, because the fourth segment never contains any pieces at all.
Henceforth we will assume that the �rst case holds.

In the case when Q is not completely covered, either the left half or
the right half is not completely covered either. We apply the induction
hypotheses of the present lemma and Lemma 1 to obtain the bound
1=2i+1 + 1=2i+1 or 2=2i+1 + 0, respectively, which is at most 1=2i.

Consider now the case when Q is completely covered. When Q is
covered by a piece P of length 1=2i, we know that, before P was placed, Q
was not completely covered, and we may add the length of P to the above
bound, obtaining 1=2i+1=2i � 2=2i. When Q is not covered by a piece of
length 1=2i, we may bound the two halves individually by induction and
Lemma 1, respectively, and we obtain the bound 2=2i+1+1=2i+1 � 2=2i.

Note that the current boundary b advances only when a piece is
placed on the �rst segment. The following lemma is crucial for bounding
the total length of pieces used.

Lemma 3. Consider the situation when a piece P is placed on the �rst

segment and the boundary advances from b to b0 < 1. Then the total

length of all pieces overlapping the interval [b; b0 ] is at most 2(b0 � b).

Proof. Assume that P has length 1=2i, and let 1=2j � 1=2i be the length
of the largest piece overlapping the interval [b; b0 ]. Thus all pieces that we
have to measure have length at most 1=2j. By Q we denote the rightmost
piece of length 1=2j. At the time when Q was placed, it must have been
placed on the third segment, and in particular, Q 6= P . (Otherwise, the
third segment for Q would already be covered by a segment of length at
least 1=2j, contradicting the choice of Q.) From Lemma 1 we conclude
that Q overlaps no smaller pieces, and therefore, the interval occupied
by Q is covered with density 1.

Let the �rst, second, and third segments of length 1=2j, at the time
before P is placed, be [a0; a1], [a1; a2], and [a2; a3]. We have a0 � b < a1,
and Q lies either on [a1; a2] or [a2; a3].

Case 1. Q lies on [a2; a3]. We have b0 = a3. By Lemma 2, the interval
[a1; a2] is covered with average density at most 2. The same is true for
the interval between b and a1 (before P is placed): The covered part in
this interval can be decomposed into a disjoint set of maximal dyadic
intervals. Each such interval of length 1=2n is either the second or the
third segment of length 1=2n (otherwise it could not have been covered)
and therefore Lemma 1 or 2 can be applied. Therefore the length of P
plus the total length of all pieces contained in the interval [b; b0 ] is at
most

1=2i+2(a1�b)+2(a2�a1)+(a3�a2) = 1=2i+2(b0�b)�1=2j � 2(b0�b):

Case 2. Q lies on [a1; a2]. By Lemma 1 and the assumption that Q is
the rightmost segment, we know that [a2; a3] is covered by no segment,
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and thus we have b0 = a2. Arguing similarly as above, and taking into
account that [a1; a2] is covered only by Q, we obtain the bound

1=2i + 2(a1 � b) + (a2 � a1) = 1=2i + 2(b0 � b) � 1=2j � 2(b0 � b):

With these lemmas we can now prove the following theorem.

Theorem. When the total length of all pieces cut by the dealer is at

least 2, the method of the third segment guarantees that the whole unit

interval is covered.

Proof. The total length of all pieces lying between 0 and the current
boundary b is at most 2b: No piece is ever placed to the left of the
current boundary, and whenever the current boundary b advances, the
new pieces to the left of b are accounted for by Lemma 3.

On the other hand, the total length of all pieces lying between the
current boundary b and 1 is at most 2(1 � b): The covered part to
the right of b can be partitioned into a disjoint set of maximal dyadic
intervals. Each such interval of length 1=2i is either the second or the
third segment of length 1=2i and therefore Lemma 1 or 2 can be applied.

The lower bound. The strategy for the dealer which proves the lower
bound 4/3 is given explicitly in Figure 1. Every entry in the table is
identi�ed by a number between 1 and 53. The lower part shows a possible
situation of a partially covered unit interval. The number xi on the right
side of the i-th entry means that the dealer has a winning strategy in
this situation if the remaining length of the rope is smaller than xi. This
strategy consists of cutting a piece whose length is given on the left
side. Each box above the picture of the unit interval indicates a possible
position where the placer can put the piece, together with the number
of the successor situations to which this placement leads. So the dealer
can simply refer to the respective entry to decide what to do next.

For example, in situation 3, the dealer cuts a piece of length 1=8,
which may lead to situations 12, 7, or 13 (or again 3, if the placer wants
to play stupid). One can check that the remaining rope, x3 � 1=8, is
not bigger than x12, x7, and x13. The white boxes (in this case, the last
four eighths) indicate the choices where equality holds: x3 � 1=8 = x13.
They are the \optimal" choices for the placer against this strategy for
the dealer.

When the two subintervals [0; 1=2] and [1=2; 1] in a situation are
exchanged, this is of course irrelevant for the game: Both the dealer and
the placer can adapt their strategies to such a change. The same is true
when the two halves of any dyadic subinterval are exchanged. Therefore
only one of many equivalent situations has an entry in the table. For
example, when the placer in situation 3 puts the piece in the rightmost
eighth, this leads to a situation which is not listed explicitly, but it can
be changed to situation 13 by interchanging the last two eighths, and
then the last two quarters. Note however that situations 4 and 5, for
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example, are not equivalent in this sense: the second and third quarters
cannot be exchanged because they are not parts of the same half.

When one half of the unit interval is completely covered, we may
ignore this half and concentrate on the remaining half. In this case we
scale the interesting part to unit size, for example, when we place a
piece on the second quarter in situation 32. This is indicated by a star
preceding the successor number, �6. The inequality which has to be
checked in this case is x32 � 1=4 � x6=2.

Certain situations are replaced by dominating situations in which
some additional parts are covered. In terms of the rules of the game,
this means that the dealer may choose to cut a piece from another,
di�erent rope and put it anywhere in the unit interval, at no cost to the
placer. For example, the placer's rightmost choice in situation 13 leads to
situation 20 only when the leftmost free sixteenth is covered in addition.
Of course this modi�cation of the rules can help only the placer, but
it reduces the necessary size of the table. Such cases are indicated by
successor numbers in a slanted font. When the dominating situation is
reached by another choice of the placer in the same situation, this is
indicated by an arrow pointing to that choice, such as in situation 4.

The �gure includes only situations which can be reached if the dealer
follows the given strategy (and applies the domination rules). For ex-
ample, the situation where only one sixteenth of the whole interval is
covered, will never occur.

Since the dealer always cuts at least a constant fraction from the
remaining rope (in fact, more than 3/64), the dealer will eventually cut
the whole rope.

We �nally remark without proof that the bound of 4/3 is the optimal
bound when the dealer is restricted to cut pieces of length at least 1/16
of the smallest remaining dyadic subinterval which is not completely
covered. (This means, 1/16 of the whole interval which is shown in the
pictures of Figure 1.) By allowing also pieces of half this length, a slightly
better bound of 41/30 instead of 4/3 can be shown with the help of a
computer.
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Figure 1 (�rst part). The strategy for proving the lower bound.
The rightmost column gives the \value" xi of each situation i.
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Figure 1 (continued).
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