Journal of Computational Geometry jocg.org

SHORTEST PATH TO A SEGMENT AND QUICKEST VISIBILITY QUERIES

Esther M. Arkin,* Alon Efrat," Christian Knauer,t Joseph S. B. Mitchell,*
Valentin Polishchuk,S Ginter Rote,YLena Schlipf,Yand Topi Talvitiel

ABSTRACT.We show how to preprocess a polygonal domain with a fixed starting point s
in order to answer efficiently the following queries: Given a point ¢, how should one move
from s in order to see g as soon as possible? This query resembles the well-known shortest-
path-to-a-point query, except that the latter asks for the fastest way to reach ¢, instead of
seeing it. Our solution methods include a data structure for a different generalization of
shortest-path-to-a-point queries, which may be of independent interest: to report efficiently
a shortest path from s to a query segment in the domain.

1 Introduction

Finding shortest paths is a classical problem in computational geometry, and efficient algo-
rithms are known for computing the paths both in simple polygons and polygonal domains
with holes; see [36,37] for surveys. In the query version of the problem one is given a fixed
source point s in the domain, and the goal is to preprocess the domain so that the length of
a shortest path from s to a query point ¢ can be reported efficiently. The problem is solved
by building the shortest path map (SPM) from s — the decomposition of the free space into
cells such that for all points ¢ within a cell the shortest s-¢ path is combinatorially the same,
i.e., traverses the same sequence of vertices of the domain. Figure 1 shows an example of
SPM.

The query in the shortest path problem can be stated as

Shortest path query: Given a query point ¢ lying in the free space, how should
one move, starting from s, in order to reach g as soon as possible?

Queries like this arise in surveillance and security, search and rescue, aid and delivery, and
various other applications of the shortest path problem. In this paper we introduce and
study a related problem that has a very similar query:

*Department of Applied Mathematics and Statistics, Stony Brook University, USA,
estie, jsbm@ams.sunysb.edu

t Computer Science, the University of Arizona, USA, alon@cs.arizona.edu

Institute of Computer Science, Universitit Bayreuth, Germany, christian.knauer@uni-bayreuth.de

§ Communications and Transport Systems, ITN, Linkoping University, Sweden,
valentin.polishchuk@liu.se

Ynstitute of Computer Science, Freie Universitit Berlin, Germany, rote,schlipfg@mi.fu-berlin.de

I Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of
Helsinki, Finland, totalvit@cs.helsinki.fi

JoCG 7(2), 77-100, 2016 77

http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 1: Boundaries between SPM cells are dashed. Shortest path from s to any point in
a cell of the map goes through the same vertices of the domain.

Quickest visibility query (QVQ): Given a query point q lying in the free
space, how should one move, starting from s, in order to see q as soon as
possible?

Such a query may be natural in applications in which it is important to see (or become
seen by) the query point — for inspection purposes, for coming within a shooting range,
for establishing communication, etc. In contrast with shortest path queries, such quickest
visibility queries have not been studied before, with the single exception of [30] where the
problem was considered in simple polygons (in Section 5 we give improved results for this
important special case).

The other variant of the shortest path query problem, which we consider in this
paper, deals with segments instead of points as query objects:

Shortest path to a segment query (SPSQ): Given a query segment ab
lying in the free space, how should one move, starting from s, in order to reach
ab as soon as possible?

To our knowledge such queries have not been studied before. We show that in nearly-
quadratic time a nearly-quadratic-size data structure can be built to answer SPSQ in poly-
logarithmic time (logarithmic-time query can be achieved with nearly-cubic preprocessing
time and space). We apply SPSQ as a subroutine in an algorithm for QVQ: given the query
point ¢ in an instance of QVQ, build the visibility polygon of ¢ and use SPSQ for each
“window” (edge running through the free space) of the polygon to choose the best window
through which ¢ can be seen.

1.1 Notation

Let D denote the given polygonal domain; let n, h be the number of vertices and holes of
D, respectively. Assume that no two vertices of D have the same z- or y-coordinate. Two
points p,q € D see each other if the segment pg fully belongs to the domain (we consider
D as a closed set, so that pg may go through a vertex of D or otherwise overlap with the

JoCG 7(2), 77-100, 2016 78

http://jocg.org/

Journal of Computational Geometry jocg.org

boundary of the domain). Let E be the size of the wvisibility graph of D — the graph on
vertices of D with edges between pairs of mutually visible vertices (i.e., pairs of vertices
that can be connected with a single link). We also introduce an additional definition related
to “3-link visibility” between vertices of D: let II be the number of pairs of vertices that
can be connected by a right-turning 3-link path that makes 90° turns at both of its bends
(refer to Fig. 4).

Let P, S, Q denote the preprocessing time, size of the built data structure and query
time, respectively, for an algorithm for answering quickest visibility queries (QVQ) in D.
The query point will be generally denoted by ¢. Let V(q) denote the wisibility polygon of
q (the set of points seen by ¢); let K denote the complexity (the number of sides) of V'(gq).
We use P, Sy, Q to denote the preprocessing time, size of the structure and query time
for an algorithm for the problem of building V' (¢). Finally, we denote by Ps, Ss, Qs the
corresponding parameters of an algorithm for SPSQ — the problem of reporting length of
the shortest path to a query segment lying in D.

Slightly abusing the terminology, we will not differentiate between the two variants
of path queries: reporting the length of the optimal path and outputting the path itself;
similarly to other path query problems, the latter can usually be done straightforwardly (by
following back pointers) in additional time proportional to the combinatorial complexity of
the path.

1.2 Related work

A shortest path between two points in a simple polygon (h = 0) can be found in linear
time [8,32]. The query version (i.e., building the SPM) can be solved within the same
time [20]; using the SPM, the length of the (unique) shortest path to a query point can be
reported in time O(logn).

For polygons with holes the continuous Dijkstra paradigm [35] leads to an O(nlogn)
time algorithm [27] for building the SPM, by propagating a wave (which we call the p-wave)
from s through the free space at unit speed, so that the points reached by the wavefront
at any time 7 are exactly the points at geodesic distance 7 from s (see, e.g., Fig. 6 where
gray shows the area covered by the p-wave, and Fig. 12 (left), where the p-wave is blue).
At any time during the propagation, the wavefront consists of a sequence of wavelets —
circular arcs centered on vertices of D, called generators of the wavelets; the radius of each
arc grows at unit speed. Boundaries between adjacent wavelets trace edges of the SPM
(the edges are called bisectors, and are further classified in [14] as “walls” and “windows”"
depending on whether there exist two homotopically distinct shortest paths to points on
the bisector); this way the algorithm also builds the SPM which allows one to answer the
shortest path queries in O(logn) time per query. Vertices of the SPM are vertices of D and
triple points, at which three edges of the map meet (w.l.o.g. four edges of SPM never meet
at the same point); the overall complexity of the SPM is linear [27]. Using the continuous
Dijkstra method, the quickest way to see a point and the shortest path to a segment (i.e.,

!We admit that the term “window” is overused, since it also denotes edges of the visibility polygon V (q).
Still, our two different usages of the term are well separated in the text, and are always apparent from the
context.

JoCG 7(2), 77-100, 2016 79

http://jocg.org/

Journal of Computational Geometry jocg.org

solutions to single-shot, non-query versions of QVQ and SPSQ) can be found in O(nlogn)
time by simply declaring V' (¢q) and the segment as obstacles and waiting until the p-wave
hits them.

Computing visibility from a point was first studied in simple polygons, for which
an O(n)-time solution was given already in 1987 [29]. For polygons with holes an optimal
O(n + hlogh)-time algorithm was presented by Heffernan and Mitchell [24]. The query
version of the problem has been well studied too: For simple polygons Guibas, Motwani and
Raghavan [21] and Bose, Lubiw and Munro [4] gave algorithms with P, = O(n?logn),S, =
O(n?) and Q, = O(logn + K); Aronov, Guibas, Teichman and Zhang [3] achieve P, =
O(n%logn),S, = O(n?) and Q, = O(log? n+ K). For polygons with holes Zarei and Ghodsi
[46] achieve P, = O(n®logn), S, = O(n?®),Q, = O(K +min(h, K)logn); Inkulu and Kapoor
[28] combine and extend the approaches from [46] and [3] presenting algorithms with several
tradeoffs between Py, S, and Qy, in particular, with P, = O(n?logn),S, = O(n?),Q, =
O(K log?®n) (see also [10], as well as [33] giving P, = O(n%logn),S, = O(n?),Q, = O(K +
log® n+hlog(n/h))). A recent paper by Bungiu et al. [5] reports on practical implementation
of visibility computation in an upcoming CGAL [7] package.

More generally, both visibility and shortest paths computations are textbook sub-
jects in computational geometry — see, e.g., the respective chapters in the handbook [18]
and the books [16,40]. Visibility meets path planning in a variety of geometric computing
tasks. Historically, the first approach to finding shortest paths was based on searching the
visibility graph of the domain. Visibility is vital also in computing minimum-link paths, i.e.,
paths with fewest edges [34,39,43]. Last but not least, “visibility-driven” route planning
is the subject in watchman route problems [6,12, 13,38, 41] where the goal is to find the
shortest path (or a closed loop) from which every point of the domain is seen. Apart from
the above-mentioned theoretical considerations, visibility and motion planning are closely
coupled in practice: computer vision and robot navigation go hand-in-hand in many courses
and real-world applications.

Reporting optimal paths to non-point query objects has not received much attention;
we are aware of work only for simple polygons. For efficient (logarithmic-time) queries
between two convex polygons within a simple polygon, preprocessing can be done in linear
time for Euclidean distances [11] and cubic time (and space) for link distance [2,11].

On the specific problem of quickest visibility queries addressed in this paper, Khos-
ravi and Ghodsi [30] considered QVQs in simple polygons. They gave an algorithm for quick-
est visibility with logarithmic-time queries after quadratic-time preprocessing for building a
quadratic-size structure: P = O(n?),S = O(n?),Q = O(logn). We improve the preprocess-
ing and storage to linear, achieving P = O(n),S = O(n),Q = O(logn) for simple polygons
(Section 5).

1.3 Overview of the results
e We start by giving a conditional lower bound connecting P and Q: Section 2 shows

that 3SUM on n numbers can be solved in time O(P+nQ). For instance subquadratic
preprocessing time (P = o(n?)) and sublinear query time (Q = o(n)) would lead to

JoCG 7(2), 77-100, 2016 80

http://jocg.org/

Journal of Computational Geometry jocg.org

a subquadratic-time algorithm for 3SUM (see [19] for a recent major breakthrough
on the 3SUM problem). The lower bound provides us with some justification for
not obtaining sub-quadratic preprocessing time P for the QVQ. (Also more broadly,
solutions to visibility and/or closely related link-distance query problems often use
cubic-time preprocessing [2,11,46].)

e Section 3 employs the following natural approach to quickest visibility query.

(1) Build the visibility polygon V' (g) of the query point ¢; V(q) is a star-shaped
polygon any side of which is either a piece of a boundary edge of D, or is a window —
extension of the segment gqv for some vertex v of D.

(2) For each window find the shortest path from s to the window, and choose the
best window to go to.

The approach leads to an algorithm for QVQ with P = P, + Ps,S = S, + S5,Q =
Qv + KQs (refer to Section 1.1 for the notation). Problem (1)—building V' (¢)—has
been well studied (refer to Section 1.2 for the known bounds on Py, S, and Q).
On the contrary, problem (2)—building a shortest path map for segments—has not
been studied before. In Section 3.2 we give the first results for shortest path to a
segment query (which we abbreviated SPSQ above) achieving Ps = O(n3logn),Ss =
O(n3logn), Qs = O(logn). Our solution is based on first designing a data structure for
horizontal segments (Section 3.1) with P = O(nlogn),Ss = O(nlogn), Qs = O(logn)
— a result which may be interesting in its own right. The data structure for SPSQ for
arbitrary segments is then built straightforwardly since there are O(n?) combinatori-
ally different orientations: the data structure for arbitrarily oriented segments is thus
just an O(n?)-fold replication of the structure for horizontal ones (we also give bounds
in terms of sizes, £ and II, of visibility structures in D). Alternatively, in Section 3.3
we give an algorithm with Ps = O(n?2%("™ logn), Sy = O(n?2% logn), Qs = O(log? n)
where «(n) is the inverse Ackermann function, based on storing “snapshots” of the
p-wave propagation in the continuous Dijkstra. (In the conference version of this pa-
per [1], we erroneously claimed Ps = O(n?logn),Ss = O(n?logn) for this algorithm.)

e In Section 4 we introduce the full Quickest Visibility Map (QVM) — the decomposition
of D into cells such that within each cell the quickest visibility query has combinato-
rially the same answer: the shortest path to see any point ¢ within a cell traverses the
same sequence of vertices of D and goes to the same window of V(g). Our algorithm
for building the map has P = O(n®logn),S = O(n"),Q = O(logn). We also observe
that the QVM has Q(n*) complexity.

e In Section 5 we consider the case when D is a simple polygon. We give linear-size data
structures that can be constructed in linear time, for answering QVQs and SPSQs in
logarithmic time: P = O(n), S = O(n), Q = O(logn), Ps = O(n), Ss = O(n),
Qs = O(logn).?

We invite the reader to play with our applet [45] demonstrating QVM.

2Some results from this section were reported in EuroCG [31].

JoCG 7(2), 77-100, 2016 81

http://jocg.org/

Journal of Computational Geometry jocg.org

R S q

L, L, L

b - [
s Iy la I3

Figure 2: D is long: a > b. The ray gps (dotted) can reach all the way to the left, provided
there exists a gap (p1) on [y collinear with ¢ and ps.

2 A lower bound

In the 3SUM problem the input is a set of numbers and the goal is to determine whether
there are three numbers whose sum is 0. We connect P and Q (see Section 1.1 for the
notation) with the 3SUM problem.

Theorem 1. A 3SUM instance of size n can be solved in O(P +nQ) time.

Proof. We use a construction similar to the one in the proof of 3SUM-hardness of finding
minimum-link paths [39]. Start from an instance of the GeomBase problem: Given a set
S = Ly U Ly U Ls of n points lying on 3 vertical lines 1, lo, [3 respectively, do there exist
collinear points p; € Ly, pa € Lo, p3 € L3? It was shown in [15] that solving GeomBase is
as hard as solving 3SUM with n numbers. Construct the domain D for quickest visibility
queries as follows (Fig. 2): The lines [, ls,[3 are obstacles; turn each point from L; U Loy
into a gap punched in the obstacle. Squish vertically the whole construction, i.e., make the
distances between the lines much larger than the vertical extent of S; this way all the rays
pop1 With ps € Lo, p1 € L1 are confined to a narrow beam. Put the whole construction in
a long box so that the beam shines onto its left side. Put s in the lower left corner of the
box.

Now do quickest visibility queries to points in Ls. If some point g € L3 is collinear
with some points p; € Ly, po € Lo, then g can be seen by traveling at most b from s;
otherwise, one needs to travel at least a to L;. Thus by making at most n queries we can
solve the GeomBase. O

The above proof can be extended in several ways. E.g., since a can be arbitrarily
large in comparison with b, even approximate answers to queries would solve the 3SUM
problem.

3 Querying shortest paths to windows

The quickest way to see the query point ¢ from s is the quickest way to reach (the boundary
of) V(q), or equivalently, to reach a window of V(gq). Assuming the visibility polygon
of ¢ had been built by existing methods (see Section 1.2), answering QVQ boils down
to determining the window closest to s. We do not have a better way of accomplishing
this than to do shortest path queries to each window in succession, which leads to the

JoCG 7(2), 77-100, 2016 82

http://jocg.org/

Journal of Computational Geometry jocg.org

problem of building a data structure to answer efficiently shortest-path-to-a-segment query
(abbreviated SPSQ above) — the subject of this section.’

3.1 Horizontal segments

In this subsection we present a data structure for SPSQ for fixed-orientation (w.l.o.g. hor-
izontal) segments; in the next subsection we extend the structure to handle arbitrary seg-
ments (and in Section 3.3 we present a structure for arbitrary segments, based on different
techniques). The shortest path to a segment ab touches it at a, at b, or in the interior; we
will focus on shortest paths to the interior, since shortest paths to a or b are answered with
the SPM. Such a path follows the shortest path to some vertex v of D (recall that s is also
treated as a vertex) and then uses the perpendicular from v onto ab; i.e., the last link of
the path is vertical. We describe our data structure only for the case of paths arriving at
ab from above, for which this last link is going down; an analogous structure is built for the
paths arriving to the query from below.

The data structure is the horizontal trapezoidation of D augmented with some extra
information for each trapezoid T'; specifically — the set of vertices that see the trapezoid from
above (i.e., vertices from which downward rays intersect T'). Of course, the information is
not stored explicitly with each trapezoid (for this may require ©(n) information in each of
Q(n) trapezoids); instead, the information is stored in persistent balanced binary trees. The
vertices in the trees are sorted by x-coordinate. To enable O(logn)-time range minimum
queries, each internal node stores the minimum of d(v) 4+ v, values over all vertices v in the
subtree of the node, where d(v) is the geodesic distance from s to v (which can be read
from the SPM) and v, is the y-coordinate of v. Knowing the minimum of these values over
the range of a segment is our ultimate goal, because the length of the shortest path that
arrives to the segment at ordinate y with last link dropped from v is d(v) 4+ vy — .

We build the trees as follows. Let < be the “aboveness” relation on the trapezoids
(i.e., T < T" if and only if 7" is incident to T" from above). We traverse the trapezoids using
a topological order of the DAG for < (e.g., in the order of the y-coordinates of trapezoid top
sides) and compute the trees, from top to bottom, for the trapezoids as follows (Fig. 3): If a
trapezoid T' does not have a successor in <, then 7' is a triangle (due to the non-degeneracy
assumption on D), and the tree 7(T") for T simply stores the top vertex of T if the downward
ray from the vertex goes inside T; if the ray does not enter T (i.e., T has an obtuse angle at
the base), then 7(7T') is empty. If T has successors, then for each trapezoid T” that succeeds
T in <, we take a persistent copy of the tree 7(7”) and remove from it all vertices that do
not see the boundary T'N T’ between the trapezoids (the removal is a split operation on
the copy). After the removal has been done for all successors of T', we merge the copies of
the trees into the tree 7(7"). Additionally, if 7" has a vertex of D on its top edge, then the
vertex is added to 7(T).

To answer SPSQ, find the trapezoid 7" containing the query segment ab (recall our

3We do not know how to take advantage of the fact that windows are quite special — maximal free-space
segments anchored at vertices of D. On one hand this makes our solution more general, as it applies to
arbitrary segments; on the other hand, it leaves open the possibility of designing a more efficient algorithm
tailored to the special case of windows.

JoCG 7(2), 77-100, 2016 83

http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 3: Trees for the trapezoids. Red vertices are removed from persistent copies of 7(7")
and 7(7T"); the other vertices (blue) remain in the copies. Then the copies are merged to
form 7(7). Finally, v is added to 7(T).

assumption that ab lies in the free space, and hence — in a single trapezoid) and choose
the right history snapshot. Then perform the range minimum query [a,b] to obtain the
vertex v € 7(T') of D with the smallest d(v) 4+ vy (since v € 7(T'), the vertex sees ab when
looking down and a < v, < b,vy, > y); this will be the vertex from which the interior
of the segment is reached in the quickest way. The shortest path via v is compared with
the shortest paths to a and b, altogether in O(logn) query time. Thus our data structure
provides Ps = O(nlogn),Ss = O(nlogn), Qs = O(logn) for horizontal segments.

Theorem 2. A data structure of size O(nlogn) can be built in O(nlogn) time, such that
the shortest path length from a given source s to a horizontal query segment can be reported
in O(logn) time.

3.2 Arbitrary segments

To support all directions of query segments, we build our structure from previous subsection
for all rotations of D at which the data structure changes. The data structure changes at
three types of events: (1) when two visible vertices get the same z-coordinates, (2) when
two visible vertices get the same y-coordinates, and (3) when some query segment can be
reached equally fast from two vertices, i.e., when the two vertices get the same d(v) + v,
values (Fig. 4). The number of the first two events is bounded by the size E of the visibility
graph of D, and the number of the third-type events is bounded by the number II of pairs
of vertices that can be connected by a right-turning 3-link path that turns by 90 degrees at
its both bends. Thus we need to replicate our data structure only O(FE + II) times (which
may be much smaller than the naive upper bound of O(n?); note, however, that IT can be
Q(n?) even when E = O(n) — see, e.g., Fig. 5).

To find the rotation angles for the first two types of events, we precompute the
visibility graph of D (takes O(E +mnlogn) time [17]). We can discover the third-type events
“on-the-fly”, while actually rotating the domain. For that we make our trees “kinetic” by

JoCG 7(2), 77-100, 2016 84

http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 4: v and v can be connected by a
3-link path making only right turns. ab is Figure 5: E = O(n) but Il = O(n?).
seen by u and v, and d(u)+u, = d(v)+v,.

assigning to each internal node u of the trees the “expiration time” (rotation angle) when
the vertex with lowest value of d(v) + v, in the subtree of u changes; the time for u can
be computed when u is constructed, using the lowest d(v) 4+ v, values in the subtrees of
children of u. Computing the expiration time is done once per node instance of the trees.

Overall we obtain Ps = O((E + II)nlogn),Ss = O((E + II)nlogn), Qs = O(logn).

Theorem 3. A data structure of size O((E + II)nlogn) can be built in O((E + I)nlogn)
time, such that the shortest path length from a given source s to a query segment can be
reported in O(logn) time.

Remark. We could reuse the information between the rotations and get a persistent data
structure with Ps = O(n?log®n),Ss = O(n?log®n), Qs = O(log®n), but this is inferior to
the performance of our data structure in the next section. Potentially one could also get
a persistent data structure with P¢ = S = O((E + I)polylog n), Qs = O(polylog n); we,
however, were not able to do this.

3.3 Continuous Dijkstra-based algorithm

We now give another data structure for SPSQ, based on storing “snapshots” of p-wave
propagation (recall that p-wave is the wave propagated during the continuous Dijkstra
algorithm for building the SPM) at times when a wavelet appears or disappears from the
wavefront (this includes events when a wavelet is split into two after hitting an obstacle).
Say that time ¢; is critical if the wavefront changes combinatorially at ;. As shown in [27],
there are O(n) critical times. For each critical time ¢; we store the geodesic disk D; of
radius t;, i.e., the set of points in D whose geodesic distance to s is at most ¢;; the disk is
an O(n)-complexity region bounded by circular arcs (wavelets) and straight-line segments
(obstacle edges). We construct data structures for two types of queries: “Given a segment
ab, lying in the free space, does it intersect D;?” and “Given a segment ab lying outside
D;, where will the segment hit the disk if dragged perpendicularly to itself?”.

3.3.1 Determining ¢

Assume that D; has been preprocessed for point location, to test in O(logn) time whether
a or b is inside D; (in which case, obviously ab intersects D;). To answer the intersection
query when neither a nor b lies inside D;, we look at the complement, C;, of D; in D;
obviously, a segment intersects the nonobstacle boundary of D; if and only if it intersects

JoCG 7(2), 77-100, 2016 85

http://jocg.org/

Journal of Computational Geometry jocg.org

we

Figure 6: s is green, D; is gray, and C;
(the part of free space not reached by the
wave) is white; it has four connected com-
ponents, one of which has two holes in-
side it. Red curves are the walls (bisec-
tors with more than one homotopy type
of the shortest path) of the SPM.

Figure 7: D; is bounded by circular-arc
wavelets (solid curves) and edges of ob-
stacles (gray); the rays orthogonal to ab
are dashed. The shortest path to ab ends
with the perpendicular from v onto ab
(dotted).

the (nonobstacle) boundary of C;. The set C; may have several connected components
(Fig. 6), at most one of which surrounds D; (by surrounds we mean that any path from D; to
infinity must intersect the component). Each connected component C' of C; is preprocessed
separately as follows: Let H be the set of holes lying inside C. Let ¢ = C' U Unen 2
be C together with the holes H; the set C either has no holes (i.e., is simply connected)
or has one hole (D;, if C' is the component that surrounds D;). In any case C can be
preprocessed in O(|C|logn) time to answer ray shooting queries in O(logn) time [9], where
|C| is the complexity of C' (the geodesic triangulations framework of [9] extends to regions
with circular arcs on the boundary). To answer the intersection query we first determine
the connected component C, of C; that contains a (assume that all connected components
have been preprocessed for point location) and use the ray shooting data structure on Ca
to determine where the ray r from a through b exits Cy; ab intersects D; if and only if r
exits into D; and does so before b. Note that here we crucially use the assumption that the
query segment lies in the free space: we do not care if r intersects holes on the way to D;.

With the above data structures built for all disks D;, we can do binary search on
the critical times to determine the index ¢ such that the query segment ab intersects D; 1
but does not intersect D;, which means that ab is reached by the wavefront at some time
between ¢; and t;1+1. We spend O(logn) time for ray shooting per choice of i, yielding
O(log?®n) time overall to determine i. Now the goal is to determine which wavelet of D; hit
ab first.

3.3.2 Determining the wavelet

Using the point location data structure on C; we find the component C' of C; that contains ab
(the segment must fully lie inside a single connected component, for otherwise it intersects

JoCG 7(2), 77-100, 2016 86

http://jocg.org/

Journal of Computational Geometry jocg.org

D;). Next, using the ray shooting data structure on C', we shoot rays within C, with sources
at a and at b, firing orthogonal to ab, in both directions. This yields one region on each side
of ab, and we consider the two regions separately; let R be the region on one of the sides
(Fig. 7).

The boundary of R consists of ab, a ray shot from a to the boundary of C, a portion
of the (outer) boundary of C' (which may include circular-arc wavelets alternating with
sequences of straight-line segments on the boundary of obstacles), then a ray shot from b.
Within R, we translate ab parallel to itself to discover the first wavelet on the boundary
of R that is hit — the generator v of the wavelet is the last vertex on the shortest path to
ab, with the last link of the path being the perpendicular dropped from v onto ab. This
can be done by computing and storing convex hulls of pairs of consecutive wavelets on the
boundary of C| pairs of pairs, pairs of pairs of pairs, etc., up to the convex hull of the whole
component C. The next paragraph gives the details on building the convex hulls, and the
subsequent paragraphs describe how to account for the possibility that the dragged segment
hits an obstacle before hitting a wavelet.

In this paragraph we imagine that the dragged query segment ab can freely move over
obstacles (and we want to discover which wavelet on the boundary of R will be encountered
first as ab is moved perpendicularly to itself, possibly going over obstacles). Assume that the
wavelets on the boundary of C' are numbered in the order as they appear on the boundary.
Compute convex hulls of wavelets 1 and 2, of wavelets 3 and 4, wavelets 5 and 6, etc.;
then compute convex hulls of wavelets 1 through 4, wavelets 5 through 8, etc.; ...; finally,
compute convex hull of all the wavelets (Fig. 8). We thus obtain a hierarchy of convex hulls.
Each convex hull of this hierarchy can be built by drawing bitangents to wavelets on the
corresponding convex hulls of the preceding level, in O(logn) time per bitangent; since the
complexity of each level is O(|C|) and there are O(logn) levels, the whole hierarchy, for all
connected components of Cj, can be stored in O(nlogn) space and computed in O(nlog? n)
time. We preprocess each convex hull to answer extreme-wavelet queries—“Which wavelet
is first hit by a query line moving in from infinity parallel to itself towards the convex
hull?”— in O(logn) time (such preprocessing involves simply storing the bitangents to the
consecutive wavelets along the convex hull in a search tree, sorted by the slope). Now, the
rays shot from a and b (the ones that define the region R) hit the boundary of D; at two
wavelets, whose numbers are, say, w; and we. The interval [wy, we] is covered by O(logn)
canonical intervals, for which we precomputed and stored the convex hulls; by doing the
extreme-wavelet query in each of the intervals we determine the first wavelet between w;
and wy hit by the sliding ab in overall O(log? n) time.

Of course it may happen that letting the dragged segment ab pass over obstacles
leads to a wrong answer to the query: the first hit wavelet may actually be “hidden” behind
an obstacle (Fig. 9). To fix this, we start from turning the wavelets into “constant-aperture”
arcs as follows. Let ¢ be an endpoint of a wavelet w centered on a vertex v; we trim or
expand w depending on whether ¢ belongs to an obstacle or a bisector in the SPM (Fig. 10):

e If ¢ is on an obstacle edge, then the aperture of w can only shrink as the wavefront
expands. Let ¢ be the position of ¢ at the next critical time. We pretend that

JoCG 7(2), 77-100, 2016 87

http://jocg.org/

Journal of Computational Geometry jocg.org

(//__ \\\\\

Figure 8: Wavelets on a wavefront and the hierarchy of their convex hulls (red). Also shown
is a query segment ab and the rays shot from its endpoints towards the wavefront (of course,
the hierarchy is created during the preprocessing, i.e., prior to knowing ab). Lightblue is
the area that has not been reached by the p-wave.

Figure 9: Obstacles are black, D; is gray. Since ab can move over obstacles, it will hit the
leftmost wavelet before the rightmost wavelet — the latter giving the correct answer to the

SPSQ.

JoCG 7(2), 77-100, 2016 88

http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 10: Left: w* (bold)—the trimmed w (solid)—does not sweep over X (lightgreen);
still, detecting when (if ever) the p-wave hits the query segment (blue) in X is easy: if the
wavefront does hit the segment in X, then an endpoint of the segment must lie in the SPM
cell of v. The thick dashed arc shows where w* will be at the next critical time. Right:
w*—the widened w—reaches onto the other side of the bisector (dotted darkgreen) between
SPM cells of v and v’, where it may erroneously hit the query segment (blue); still, w"*—the
widened w'—will hit the segment earlier. The thick dashed arcs show where w* and w’™*
will be at some future moment before the next critical time.

as the wavefront expands, ¢ slides along the ray vc (instead of sliding along the
obstacle edge). This erroneously kills the part of w in the wedge c've (and deprives
w of sweeping the wedge), but this is no problem because if it is this part of w that
actually hits ab, then either a or b (or both) belongs to the wedge (otherwise ab would
have intersected either the obstacle or w), and so v must be the root of the SPM cell
containing the endpoint of ab; hence we can discover that w hits ab simply by drawing
the shortest segment from v to ab (which may be either the perpendicular from v onto
ab or the segment from v to ab’s endpoint) — all this in O(logn) time. See Fig. 10,
left.

e If ¢ is on a bisector between wavelets w and w’, we pretend that as the wavefront
expands, ¢ slides along the ray ve (instead of sliding along the bisector). This er-
roneously keeps alive the part of w on the other side of the bisector, and we might
erroneously discover that w hits the query segment first, but this mistake will be
corrected when we discover that w’ hits ab even earlier. See Fig. 10, right.

We thus transform each wavelet w into a modified arc w*; as the wavefront expands (at
unit speed) between the consecutive critical times, the radius of the arc increases at the
unit speed (just as the radius of w did), but the aperture of w* stays constant (unlike the
aperture of w, which could change due to w’s endpoints sliding along bisector(s) and/or
obstacle(s)). Our goal now is to discover which modified arc will be the first that the dragged
segment will hit properly, i.e., so that the hit happens in the interior of the segment and
the interior of the arc (with the segment tangent to the arc).

Note that, thanks to switching from wavelets to modified arcs (and proper hits),
we no longer have to worry about ab hitting a wavelet hidden behind an obstacle — (even

JoCG 7(2), 77-100, 2016 89

http://jocg.org/

Journal of Computational Geometry jocg.org

/7_/

w

ve

Figure 11: Any point z on w* defines # and d; the modified arc is thus represented in the
(0, d)-space by the curve 7, = (6(z),d(x)) for z € w*.

though the dragged segment might hit an obstacle before hitting an arc properly, like, e.g.,
in Fig. 9) if the dragged ab properly hits an arc w* at a point p*, then the ray vp* reaches
the (original, non-dragged) ab without encountering an obstacle; indeed, otherwise, i.e., if
the ray were to intersect an obstacle at a point p before reaching ab, there would have been
another critical time when the p-wave engulfs p. (This property was, in fact, our reason for
introducing the constant-aperture arcs: with a changing-aperture wavelet w, the dragged
ab could have hit w at a point p such that the ray vp would hit an obstacle before reaching
the original location of ab; see, e.g., Fig. 9.) Also note that if we did not care about proper
hits only, we could have discovered the first hit modified arc with the help of the arcs’
convex hulls hierarchy, just as we did with the wavelets; however, the dragged segment
might hit a convex hull “improperly”, at a “corner” (endpoint) of an arc. Therefore we
need to work out a data structure capable of “turning off” the “incorrect” directions of the
dragged segment, i.e., capable of taking into account that an arc w* can be properly hit
only by those segments whose direction belongs to the aperture of w*. Below we describe
such a data structure, supporting efficient discovery of the first modified arc properly hit
by the dragged query segment.

We view each modified arc w* as a #-monotone curve in the (0, d)-plane where 60
is a direction and d is the “radial” distance. Specifically, we arbitrarily choose the origin
O € R?. Let v be the generator of w* (inherited from w) and let = be a point on w*; let
f be the foot of the perpendicular dropped from O onto the ray zv. Then 6 = 0(x) is the
angle between the horizontal direction and Of, and d = d(z) = |z f| (Fig. 11). As x moves
along w*, the point (0(x),d(z)) traces the curve 7, in the (6, d)-space, corresponding to w*
(note that we index the curve with the original wavelet w, not with w*).

Now, how does the curve ~,, change as the wavefront expands until the next critical
time? For any fixed #, the distance d increases at unit speed (assuming the wavefront
expands at unit speed), implying that 7, moves up, in the (0, d)-plane, at the unit speed.
Therefore, if the query segment ab has direction 6, then the first modified arc hit by the
translated ab is the arc w* whose curve -y, lies on the upper envelope, at the abscissa 8,
of the curves 7y, ,...,Yw, corresponding to the wavelets wy, ..., ws that bound the region
R (refer to Fig. 7). To find w* efficiently, we create a hierarchy of sets of modified arcs

JoCG 7(2), 77-100, 2016 90

http://jocg.org/

Journal of Computational Geometry jocg.org

similarly to the hierarchy of convex hulls (refer to Fig. 8); this time, for each set of the arcs
we compute the upper envelope of their representative curves in the (6, d)-space. Because
any two curves intersect at most twice, the complexity of the upper envelope of O(n) arcs
is O(A4(n)) and it can be built in O(A3(n)logn) time [25], where A4(n) is the maximum
length of an n-element order-s Davenport-Schinzel sequence [42]. In fact, we can build
the full hierarchy in overall O(A4(n)logn) time: we simply build the structure for each
node in the hierarchy by merging the structures for the child nodes. After the hierarchy
has been built, we can discover the first modified arc hit by the dragged query segment
in O(log?n) time, using the hierarchy similarly to that of the wavelets’ convex hulls: the
interval [wy,ws] is covered by O(logn) canonical intervals for which the upper envelopes
are built, and finding whose curve is on the upper envelope at 6 takes O(logn) time per
envelope.

Remark. Note that one could skip building the convex hulls hierarchy, and proceed directly
to computing the envelopes (the envelopes alone are sufficient to answer the closest-wavelet
queries). We nevertheless kept the description of the convex hulls since they are more
tangible than the envelopes and serve as a natural first step before explaining the more
complicated envelopes structure.

3.3.3 Putting everything together

Our data structure achieves Ps = O(n)4(n)logn),Ss = O(nAi(n)logn), Qs = O(log?n):
For each of the O(n) critical times, the ray shooting data structures require O(nlogn)
preprocessing time and storage (Section 3.3.1), and the upper envelopes hierarchy re-
quire O(M\4(n)logn) preprocessing time and O(\4(n)logn) = O(n2%™ logn) storage (Sec-
tion 3.3.2). A query involves finding the relevant D; (O(log?n) time, Section 3.3.1) and
then finding the first wavelet hit by the sliding ab (also O(log?n), Section 3.3.2).

Theorem 4. A data structure of size O(n?2*™ logn) can be built in O(n?2*™ logn) time,
such that the shortest path length from a given source s to a query segment can be reported
in O(log?n) time.

3.4 Quickest visibility queries

Applying a data structure for SPSQ to QVQ, we obtain a solution for the latter with
P=P,+Ps,S=S,+4+Ss,Q = Q, + KQs. For instance, using [28] (which provides P, =
O(n%logn),S, = O(n?),Q, = O(K logZn)) and the structure from Section 3.3, we obtain
P = O(n?2°™logn),S = O(n*2*™logn),Q = O(Klog®>n). See Section 1.2 for other
bounds on Py, Sy, Qy.

Theorem 5. A data structure of size O(n?2*™ logn) can be built in O(n?2* logn) time,
such that the shortest path length from a given source s to see a query point q can be reported
in O(K log®n) time, where K is the complexity of the visibility polygon V(q) of q.

JoCG 7(2), 77-100, 2016 91

http://jocg.org/

Journal of Computational Geometry jocg.org

4 Quickest visibility map

Assuming the SPM has been built, the quickest way to see a query point ¢ becomes evident
as soon as the following information is specified: the window W of V(gq) through which to
see ¢ and the vertex g of D that is the last vertex on the shortest path to W. Let r be
the vertex of D that defines W (i.e., W is part of the ray from ¢ through r); we say that
r is the root and g is the generator for q. We define the quickest visibility map (QVM) as
the decomposition of D into cells such that all points within a cell have the same root and
generator. That is, within a cell of QVM the answer to QVQ is combinatorially the same:
draw the ray from ¢ through the root r and drop the shortest segment from the generator
g onto the window (this segment may be perpendicular to the window, or the segment to
a window endpoint). In this section we describe an algorithm to build QVM. After the
map is preprocessed for point location, QVQs can be answered in O(logn) time just by
identifying the cell containing the query.

Reusing the idea of continuous Dijkstra algorithm for constructing the SPM we
propagate “visibility wave” (v-wave) from s (Fig. 12, left). Similarly to the geodesic disk
(the set of points that can be reached from s, by a certain time, starting from s and moving
with unit speed), we define the visibility disk of radius t as the set of points that can be
seen before time ¢ by an observer starting from s and moving with unit speed. The ball is
bounded by extensions of tangents from vertices of D to circles centered at vertices of the
domain; intersections between tangents trace bisectors of QVM — a point ¢ on a bisector
can be seen equally fast by going to more than one side of V(q) (Fig. 12, right).

To bound the complexity of QVM, we first introduce some notation. Let r,g be
the root-generator pair for some cell of QVM. Let T be the line through r tangent to the
wavelet centered at g at some time during the p- and v-waves propagation; let [be the point
of contact of T' with the wavelet. The part of the ray lr after r running through the free
space (if such part exists) is called a sweeper — as the wavelet radius grows, T' rotates around
r and (parts of) the sweeper claim the cell(s) of QVM that have (r, g) as the root-generator
pair. We call the segment 7l the leg of the sweeper, and the segment gl (the radius of the
wavelet) its foot (refer to Fig. 12, right).

Our argument below benefits from the assumption that all angles of the obstacles
in D are larger than 90°; to satisfy the assumption we can (symbolically) file the domain
by replacing each acute vertex with a short edge (see the corner arc algorithm [22, Ch. 4]
for similar ideas). The reason to make the assumption is that the speed of rotation of a
sweeper depends on the (inverse of) the length of its leg; in particular, if the length is 0,
the sweeper rotates at infinite speed, leading to a discontinuity in v-wave propagation.*
The filing ensures that the v-wave propagation is continuous, which implies that QVM
features (vertices and edges) are due only to intersections of sweepers, or (dis)appearance
of sweepers, or possible sweeper extension/contraction as it passes over a vertex of D.

Consider now the subdivision S of D into maximal regions such that for any point
inside a region, the set of sweepers that pass over the point is the same (i.e., if X(p) denotes
the set of sweepers that ever pass over p, then S is the subdivision into the regions where N

4See http://www.cs.helsinki.fi/group/compgeom/qvm/infinitespeed.gif for an animation.

JoCG 7(2), 77-100, 2016 92

http://jocg.org/
http://www.cs.helsinki.fi/group/compgeom/qvm/infinitespeed.gif

Journal of Computational Geometry jocg.org

Figure 12: Left: The v-wave is gray, the p-wave is blue (s is in the center of the rectangle).
Red curves are bisectors in the QVM. Solid green shows the shortest path to see a query
point; the path ends with a perpendicular dropped from D’s vertex (the generator) onto
the ray (dashed green) from the query point through another vertex of D (the root). Right:
Gray is an obstacle. As p-wave propagates, the geodesic disk grows by expanding the
wavelets (blue arcs) at unit speed (wavelets are centered at generators gi, g2 and their radii
grow at unit speed). Wavelets growth rotates tangents (dashed green) to the wavelets
dropped from vertices 71,72 — roots of the QVM cells. The tangents define “shadows” —
the boundaries of the visibility disk; the tangents intersection traces the bisector (red) in
the QVM. The QVM cell to the left of the bisector has (71, g1) as the root-generator pair,
while the cell on the right has (r2, g2) as the pair; points on the bisector have both (71, g1)
and (r2,¢g2), and can be seen equally fast using paths via g1 and via go. gols is the foot of
the sweeper hinged at ro; loro is its leg.

stays the same); the QVM complexity equals to the number of vertices inside the regions of
S plus on the edges of S. The vertices of QVM in the interiors of the regions are the triple
points where three sweepers (and three bisectors) meet; since a sweeper is defined by two
vertices of D (the root and the generator), there are O(n®) triple points.

What remains is to bound the number of vertices of QVM that lie on the edges of
S: to do that we define a superset S of the edges. Specifically, disappearance of a sweeper
may be due to one of the three events (Fig. 13): sweeper becoming aligned with an edge
of D incident to the sweeper’s root, the leg’s rotation becoming blocked, or the foot’s
rotation becoming blocked; appearance of a sweeper is due to the reverse of the events.
To account for the first-type events we add the supporting lines of edges of D to S. The
second-type events happen on supporting lines of edges of the visibility graph of D; we add
the lines to S. Third-type events happen on lines through vertices of D perpendicular to
supporting lines of the visibility graph edges; we add these perpendicular lines to S. Finally,
extension/contraction of a sweeper happens along the extension of the visibility graph edge.
Overall S consists of O(nFE) lines, and all O(n?E?) of their intersections could potentially
be vertices of QVM. The only remaining vertices of QVM are intersections of bisectors with
the lines in S (all the other vertices are in the interior of the cells of S); since any bisector
is defined by 4 vertices of D (2 root-generator pairs for the sweepers defining the bisectors)
there are O(n*) bisectors. Thus, the total number of vertices of QVM on edges of S (and
hence on the edges of S) is O(n?E? + n*En).

JoCG 7(2), 77-100, 2016 93

http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 13: From left to right: Sweeper aligns with rv; leg gets blocked by wv; foot gets
blocked by v; sweeper extends at v.

The overall complexity of QVM (the number of vertices inside the regions of S plus
on the edges of) is thus O(n +n?E? +n°E) = O(n"). The above description leads to an
algorithm to compute the potential O(n”) QVM vertices by brute force; for each of them
we can check in O(nlogn) time whether it is indeed a vertex of QVM (see Section 1.2). We
then sweep the plane to restore the QVM edges: from each vertex, extend the bisector until
it hits another vertex. Putting point location data structure on top of QVM, we obtain

P =0(n%logn),S =0(n"),Q = O(logn).

Theorem 6. A data structure of size O(n”) can be built in O(n®logn) time, such that the
shortest path length from a given source s to see a query point q can be reported in O(logn)
time.

We note that any algorithm for QVM must have P = Q(n*),S = Q(n*) because
it may need to store explicitly the region weakly visible from a segment, which may have
O(n*) complexity [44].

5 Simple polygons

We now present an optimal (Ps = O(n),Ss = O(n), Qs = O(log n)) algorithm for SPSQs for
the case when D is a simple polygon (h = 0); together with the shortest path map of D
and a data structure for ray shooting queries (both can be built in O(n) time to support
O(log n)-time queries), it leads to an optimal algorithm (P = O(n),S = O(n),Q = O(logn))
for QVQs as well. We start by introducing additional notation for this section.

Assume that the vertices of D are stored in an array D sorted in clockwise order
along the boundary of D. For points x,y € D, let 7(z,y) denote the shortest path between
x and y; the shortest path from s to a point y is denoted simply by 7w (y). Let the predecessor
pred(y) of y be the last vertex of D on m(y) before y (or s if y sees s); the predecessor of
any point can be read off the shortest path map (SPM) of D in O(logn) time. Let SPT
be the shortest path tree from s in D; the tree is the union of paths 7(v) for all vertices
v of D. Assume that the SPT is preprocessed to support lowest common ancestor (LCA)
queries in constant time [23].

Let ab be the query segment. Let r be the last common vertex of the shortest paths
m(a), 7(b) from s to the endpoints of the segment; r can be determined from SPM and SPT
in O(logn) time: either pred(a) = pred(b) = r, or r = LC'A(a, b) (Fig. 14, left). The paths
m(r,a) and 7(r, b) together with the segment ab form the funnel F' of ab; the vertex r is the
apex of F.

Let a = vo,v1,...,7 = Umy...,Vk, Uk+1 = b be the vertices of the funnel from a
to b. Note that the paths 7(r,a) and 7(r,b) are outward convex; in particular, F' can be

JoCG 7(2), 77-100, 2016 94

http://jocg.org/

Journal of Computational Geometry jocg.org

r =13

U2

vy

@="% o T2 T3 Ty b=

Figure 14: Left: r = LC'A(a,b); 7(c) is the answer to the query. Right: c is the foot of the
perpendicular dropped from vy to ab.

decomposed into triangles by extending the edges of F' until they intersect ab (Fig. 14,
right). Let x; denote the intersection point of the extension of the edge v;v;+1 with ab (in
particular, 9 = a and zj = b). The shortest path from s to points on the segment x;x;1
passes through v; 11 as the last vertex of D: Vp € x;xz;41, pred(p) = vi41.

Let 6y, 61, ...,0; denote the angles between the extension edges and ab: 0y = Zbavy,
0; = Lbxv; for 0 < ¢ < k and 0y = m — Zabvg. The outward convexity of the paths
m(r,a),m(r,b) implies that the sequence 6y, 01, ...,0; is increasing. As a consequence the

point ¢ € ab closest to s can be characterized as follows [30]: ¢ is the foot of the perpendicular
from v;4+1 to ab for ¢ such that 6; < w/2 and 0,11 > 7/2. Thus ¢ can be found by a binary
search on the angles 6;: if §; > 7/2 then c lies left of z;, whereas if 6; < 7/2 then c lies
right of ;. We now describe how to implement the search in O(logn) time.

First, if 6y > 7/2 then ¢ = a, and if §; < w/2 then ¢ = b; in both cases we are done.
Next, look at the extensions of the edges emanating from the apex r = v,, of the funnel. If
Om—1 < /2 < O, c is the foot of the perpendicular from vy, to ab and we are done.

It remains to show what to do if 0,1 > 7/2 (the case 0,,—1 < 7/2 is symmetric).
In this case 6; > /2 for m < i < k since the angle sequence is increasing; in particular c is
the foot of the perpendicular from some vertex v; to ab, where v; is an interior vertex of the
left side 7(r, a) of the funnel F, i.e., 1 < i < m. To determine v; we would like to perform a
binary search on the sequence vy, ..., v,—1; however this sequence is not directly accessible
(we do not compute it during the query since it can have Q(n) size). We therefore use the
array D, and perform a binary search on the interval [v1, Um—1] in D.

For a vertex w in this interval we find the vertex LC A(u,v1), which is one of the
vertices v1, ..., v;,—1 on the left edge of the funnel, say v;. By computing the angle 0; we
can decide if the binary search has to continue to the left or to the right of u. After O(logn)
iterations the binary search is narrowed down to an interval between two successive vertices
in D. This implies that the point v; from which the perpendicular to ¢ has to be dropped
is also determined. (Note that for several successive vertices u; in [v1, vy,—1] we can get the
same vertex v; as a result of computing LC A(uy, v1); still, since the total number of vertices
in [v1,vm—1] is O(n), after O(logn) iterations the binary search is narrowed down to an

JoCG 7(2), 77-100, 2016 95

http://jocg.org/

Journal of Computational Geometry jocg.org

interval between two successive vertices in D.)

Theorem 7. For a simple polygon with n vertices, a data structure of size O(n) can be built
in O(n) time, such that the shortest path length from a given source s to a query segment
can be reported in O(logn) time.

5.1 Quickest visibility queries

In a simple polygon, s is separated from ¢ by a unique window of V(gq) (unless s and ¢ see
each other, which can be tested in O(logn) time by ray shooting). Since the last edge of the
shortest path 7(q) is a straight-line segment, one of the window endpoints is a = pred(q);
the endpoint can be read off the SPM of D in O(logn) time. To find the other endpoint
b of the window, shoot the ray ga until it intersects the boundary of D; this also takes
O(logn) time using the data structure for ray shooting [26]. Once we have the window
ab, our data structure described above finds the (unique) shortest path to the window in
additional O(logn) time.

Theorem 8. For a simple polygon with n vertices, a data structure of size O(n) can be
built in O(n) time, such that the shortest path length from a given source s to see a query
point q can be reported in O(logn) time.

6 Conclusion

We considered Quickest Visibility Queries (QVQ) and Shortest Path to a Segment Queries
(SPSQ) — sisters of the well studied shortest path queries. In QVQ the goal is to preprocess
a polygonal domain with a given starting point s so as to report efficiently the quickest
way to see a query point ¢ starting from s, or in other words, to report the fastest way to
reach (a side of) the visibility polygon V' (g) of ¢ from s; SPSQ arises naturally in the latter
interpretation of QVQ, as it gives the fastest way to reach a side of V(q).

We gave upper and lower bounds on the complexity of the problems. Many open
questions remain; the main one is prompted by the (polynomial but) high complexity of
the full Quickest Visibility Map (QVM): How much time and space are needed to get, say,
sublinear-time answer in a QVQ? For instance, can one avoid querying all sides of V' (¢)? Or
perhaps there is a more efficient way to query shortest path to segments when the segments
are the windows of V' (¢)? It is also possible that our continuous Dijkstra based solution
can be improved by a factor of roughly n using persistent data structures (we thank Pankaj
Agarwal for this observation).

Another interesting direction for future work is obtaining improved bounds for ap-
prozimate answers to the queries. For instance, instead of storing the (n) geodesic disks
for the critical times in the continuous-Dijkstra wavefront propagation, one could store only
the geodesic disks whose radii form a geometric progression with denominator 1+¢ and
compute the overlay of the (weak) visibility regions of the disks; then a (14¢)-approximate
answer to QVQ could be found by determining the cell of the overlay containing the query
point ¢g. Such an approach, however, requires a lower bound on the answer, which we do
not see how to obtain (the bound is needed to determine the first term of the progression).

JoCG 7(2), 77-100, 2016 96

http://jocg.org/

Journal of Computational Geometry jocg.org

A technical assumption used in our results for SPSQ is that the query segment must
lie in the free space; the assumption is used crucially in several places in Section 3. Lifting the
assumption, i.e., giving efficient solution for SPSQ for segments that may intersect obstacles
is open (the question is whether the problem can be solved more efficiently than by treating
each connected component of the segment individually and taking the minimum).

Last but not least, in applications QVQs are interesting also in other environments,
such as, e.g., polyhedral terrains.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. E. Arkin and J. Mitchell
acknowledge support from the US-Israel Binational Science Foundation (grant 2010074)
and the National Science Foundation (CCF-1018388, CCF-1526406). VP is supported by
grant 2014-03476 from the Sweden’s innovation agency VINNOVA. TT was supported by
the University of Helsinki Research Funds.

References

[1] E. M. Arkin, A. Efrat, C. Knauer, J. S. B. Mitchell, V. Polishchuk, G. Rote, L. Schlipf,
and T. Talvitie. Shortest path to a segment and quickest visibility queries. In L. Arge
and J. Pach, editors, 31st International Symposium on Computational Geometry, SoCG
2015, June 22-25, 2015, Eindhoven, The Netherlands, volume 34 of LIPIcs, pages 658
673. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[2] E. M. Arkin, J. S. B. Mitchell, and S. Suri. Optimal link path queries in a simple
polygon. In Proc. 3rd Ann. ACM-SIAM Symp. Discrete Algorithms (SODA’92), pages
269-279, 1992.

[3] B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang. Visibility queries and mainte-
nance in simple polygons. Discrete & Computational Geometry, 27(4):461-483, 2002.

[4] P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility queries in simple polygons.
Comput. Geom. Theory Appl., 23(3):313-335, Nov. 2002.

[5] F. Bungiu, M. Hemmer, J. Hershberger, K. Huang, and A. Kroller. Efficient computa-
tion of visibility polygons. In 30th Europ. Workshop on Comput. Geom. (EuroCG’14),
2014.

[6] S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the shortest watchman route in a
simple polygon. Discrete & Computational Geometry, 22(3):377-402, 1999.

[7] CGAL. Computational Geometry Algorithms Library. http://www.cgal.org.

[8] B. Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd Annu.
Sympos. Found. Comput. Sci. (FOCS’82), pages 339-349. IEEE, 1982.

JoCG 7(2), 77-100, 2016 97

http://jocg.org/
http://www.cgal.org

Journal of Computational Geometry jocg.org

[9]

[10]

[11]

[21]

22]

[23]

[24]

B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica,
12(1):54-68, 1994.

D. Z. Chen and H. Wang. Visibility and ray shooting queries in polygonal domains.
Computational Geometry, 48(2):31 — 41, 2015.

Y.-J. Chiang and R. Tamassia. Optimal shortest path and minimum-link path queries
between two convex polygons inside a simple polygonal obstacle. Int. J. Comput.
Geometry Appl., 7(1/2):85-121, 1997.

M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. Touring a sequence of polygons.
In Proc. 85th Symposium on Theory of Computing (STOC’03), pages 473-482, 2003.

A. Dumitrescu and C. D. Téth. Watchman tours for polygons with holes. Comput.
Geom. Theory Appl., 45(7):326-333, 2012.

S. Eriksson-Bique, J. Hershberger, V. Polishchuk, B. Speckmann, S. Suri, T. Talvitie,
K. Verbeek, and H. Yldz. Geometric k shortest paths. In S. Khanna, editor, Proc. 26th
Ann. ACM-SIAM Symp. Discrete Algorithms, (SODA’15), pages 1616-1625. STAM,
2015.

A. Gajentaan and M. H. Overmars. On a class of O(n?) problems in computational
geometry. Computational Geometry: Theory and Applications, 5:165—-185, 1995.

S. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.

S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibility
graphs. SIAM J. Comput., 20(5):888-910, 1991.

J. Goodman and J. O’Rourke, editors. Handbook of Discrete and Computational Ge-
ometry. Taylor & Francis, 2nd edition, 2010.

A. Grgnlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proc. 55th
Ann. Sympos. Found. Comput. Sci. (FOCS’1/), pages 621-630. IEEE, 2014.

L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time al-
gorithms for visibility and shortest path problems inside triangulated simple polygons.
Algorithmica, 2:209-233, 1987.

L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem. SIAM
J. Comput., 26(4):1120-1138, Aug. 1997.

O. A. Hall-Holt. Kinetic Visibility. PhD thesis, Stanford University, 2002.

D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338-355, 1984.

P. J. Heffernan and J. S. B. Mitchell. An optimal algorithm for computing visibility in
the plane. SIAM J. Comput., 24(1):184-201, 1995.

JoCG 7(2), 77-100, 2016 98

http://jocg.org/

Journal of Computational Geometry jocg.org

[25]

[26]

[27]

[28]

[29]

[30]

[39]

[40]

J. Hershberger. Finding the upper envelope of n line segments in o(n log n) time. Inf.
Process. Lett., 33(4):169-174, 1989.

J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take
a walk. Journal of Algorithms, 18(3):403-431, 1995.

J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the
plane. SIAM J. Comput., 28(6):2215-2256, 1999.

R. Inkulu and S. Kapoor. Visibility queries in a polygonal region. Comput. Geom.
Theory Appl., 42(9):852-864, 20009.

B. Joe and R. B. Simpson. Correction to Lee’s visibility polygon algorithm. BIT,
27:458-473, 1987.

R. Khosravi and M. Ghodsi. The fastest way to view a query point in simple polygons.
In 21st European Workshop on Computational Geometry (EuroCG’05), pages 187-190.
Eindhoven, 2005.

C. Knauer, G. Rote, and L. Schlipf. Shortest inspection-path queries in simple polygons.
In 2/th European Workshop on Computational Geometry (EuroCG’08), pages 153-156,
2008.

D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear
barriers. Networks, 14:393-410, 1984.

L. Lu, C. Yang, and J. Wang. Point visibility computing in polygons with holes.
Journal of Information & Computational Science, 8(16):4165-4173, 2011.

J. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths among obstacles in the
plane. Algorithmica, 8(1):431-459, 1992.

J. S. B. Mitchell. Shortest paths among obstacles in the plane. Internat. J. Comput.
Geom. Appl., 6:309-332, 1996.

J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Geometry, pages 633-701. Elsevier,
2000.

J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 445—466. Elsevier,
2004.

J. S. B. Mitchell. Approximating watchman routes. In S. Khanna, editor, Proc. 2/th
Annual ACM-SIAM Symp. on Discrete Algorithms, SODA’13, pages 844-855. SIAM,
2013.

J. S. B. Mitchell, V. Polishchuk, and M. Sysikaski. Minimum-link paths revisited.
Comput. Geom. Theory Appl., 47(6):651-667, 2014.

J. O’'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

JoCG 7(2), 77-100, 2016 99

http://jocg.org/

Journal of Computational Geometry jocg.org

[41] E. Packer. Computing multiple watchman routes. In C. C. McGeoch, editor, Ez-
perimental Algorithms, 7th International Workshop, WEA, Provincetown, MA, USA,
volume 5038 of Lecture Notes in Computer Science, pages 114-128. Springer, 2008.

[42] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, New York, NY, USA, 1996.

[43] S. Suri. A linear time algorithm with minimum link paths inside a simple polygon.
Computer Vision, Graphics and Image Processing, 35(1):99-110, 1986.

[44] S. Suri and J. O’Rourke. Worst-case optimal algorithms for constructing visibility
polygons with holes. In Proc. 2nd Ann. Symp. Computational Geometry, pages 14—23.
ACM, 1986.

[45] T. Talvitie. Visualizing Quickest Visibility Maps. In L. Arge and J. Pach, editors,
31st International Symposium on Computational Geometry (SoCG 2015), volume 34
of Leibniz International Proceedings in Informatics (LIPIcs), pages 26-28, Dagstuhl,
Germany, 2015. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. http://www.cs.
helsinki.fi/group/compgeom/qvm/.

[46] A. Zarei and M. Ghodsi. Query point visibility computation in polygons with holes.
Comput. Geom. Theory Appl., 39(2):78-90, 2008.

JoCG 7(2), 77-100, 2016 100

http://jocg.org/
http://www.cs.helsinki.fi/group/compgeom/qvm/
http://www.cs.helsinki.fi/group/compgeom/qvm/

	Introduction
	Notation
	Related work
	Overview of the results

	A lower bound
	Querying shortest paths to windows
	Horizontal segments
	Arbitrary segments
	Continuous Dijkstra-based algorithm
	Determining i
	Determining the wavelet
	Putting everything together

	Quickest visibility queries

	Quickest visibility map
	Simple polygons
	Quickest visibility queries

	Conclusion

