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MARTIN GAVALEC, G�UNTER ROTE

Abstract. The computational complexity of the matrix period reachability (MPR)

problem in a fuzzy algebra B is studied. Given an n � n matrix A with elements

in B, the problem is to decide whether there is an n-vector x such that the se-

quence of matrix powers A;A2; A3; : : : has the same period length as the sequence

Ax;A2x;A3x; : : : of iterates of x. In general, the MPR problem is NP -complete.

Two conditions are described, which both together imply that MPR can be solved

in O(n2) time. If only one of the conditions is satis�ed, the problem remains

NP -complete.

1. Introduction

Power sequences of matrices in fuzzy algebra were studied by R. A. Cuninghame-
Green [2]. The convergence and periodicity of special classes of matrices were studied
by M. G. Thomason [9], and subsequently by many other authors. Li Jian-Xin [7, 8]
considered the periodicity of fuzzy matrices in the general case and gave an upper

estimate for the period of a matrix. The convergence of the power sequence of a
square matrix in fuzzy algebra was studied using digraphs by K. Cechl�arov�a [1], and
a necessary and suÆcient condition was given for a matrix A to be stationary.
The computational complexity of several problems connected with �nding the exact

value of the matrix and orbit period in a fuzzy algebra B was considered in [3]. It was
shown that the period of a matrix A is the least common multiple of the periods of at
most n non-trivial strongly connected components in threshold digraphs G(A; h) for
some threshold levels h and an algorithm was suggested which enables to compute
the matrix period in O(n3) time.

On the other hand, the matrix period per(A) is the least common multiple of the
orbit periods per(A; x) for all vectors x 2 B(n). In [4], the question of reaching the
matrix period by some orbit period is discussed. The reaching matrix period (MPR)
problem is shown to be NP -complete in [5].

The aim of this paper is to discuss some conditions under which the MPR problem
can be solved in polynomial time. To illustrate the situations that can occur in this
problem, we start with three examples. We refer the reader to Section 2 for the
precise de�nition of all terms.

Example 1. Let B = f0; 1g and let A 2 B(n; n) be the adjacency matrix of the
digraph G in Figure 1. The digraph consists of n = 13 vertices 0; 1; : : : ; 12 in 3

disjoint cycles, C0; C1; C2, of lengths 3, 4 and 6.

The digraph G is the threshold digraph of matrix A for threshold level h = 1,
and the cycles C0; C1; C2 are its only (non-trivial) strongly connected components.
The components periods are 3; 4; 6. Therefore, the matrix period per(A) is equal to
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Figure 1

lcm(3; 4; 6) = 12. The components are non-comparable, in the sense of the ordering

of components of the digraph G, i.e., they are not connected by any walk in G. As
a consequence of the non-comparability, the vector x 2 B(n) de�ned on the vertex
set by putting x(i) = 1 for i = 0; 3 and x(i) = 0 otherwise, has its orbit period
per(A; x) = lcm(3; 4) = 12. That means that this instance of the MPR problem has

the positive answer.
Let us remark that the same result we can obtain by putting, e.g., x0(i) = 1 for

i = 4; 7 and x0(i) = 0 otherwise. In this case, the orbit period is per(A; x0) =
lcm(4; 6) = 12. In general, we can choose two vertices, i0 2 C0 (or i0 2 C2) and
i1 2 C1 and put x(i) = 1 for i = i0; i1 and x(i) = 0 otherwise.
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Figure 2

Example 2. A is the adjacency matrix of the digraph G on Figure 2. The digraph
consists of n = 7 vertices 0; 1; : : : ; 6 in 2 disjoint cycles C0; C1, of lengths 3 and 4.
The cycles are connected with an arc leading from the vertex 2 to 3, i.e., C0 < C1,

in the ordering of components.

The cycles C0; C1 are the only non-trivial strongly connected components. The
component periods are 3 and 4 and the matrix period is per(A) = lcm(3; 4) = 12.
However, in this case there is no vector x 2 B(n) with the property per(A; x) =
per(A). The reason is that the periods of both cycles have the greatest common

divisor equal to 1, which implies that every large enough integer can be expressed
as a linear combination with positive coeÆcients, of component periods 3; 4. As a
consequence, for any vertex i 2 C0 and j 2 C1, there are walks beginning in i and
ending in j, of any given length greater than some value. If x(j) = 1 for some j,

then the i-th coordinate in the orbit of vector x has eventually constant value 1, see
Lemma 2.1 below. That means that the number 3 will not occur as a coordinate-orbit
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period of x. Thus, the orbit period per(A; x) will not be a multiple of 3. On the
other hand, if x(j) = 0 for every vertex j 2 C1, then 4 cannot occur as the coordinate
period and the orbit period per(A; x) will not be a multiple of 4.

Example 3. In this example the digraph G on Figure 3 consists of n = 10 vertices
0; 1; : : : ; 9 in 2 disjoint cycles C0; C1, of lengths 4 and 6. The cycles are connected

with an arc leading from the vertex 2 to 4, i.e., C0 < C1. The situation di�ers from
the previous example by the fact that the lengths of the cycles have a non-trivial
common divisor 2.
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Figure 3

Again, the cycles C0; C1 are the only non-trivial strongly connected components.
The component periods are 4 and 6 and the matrix period is per(A) = lcm(4; 6) = 12.

In this case, we can �nd a vector x 2 B(n) with the property per(A; x) = per(A).
We choose two vertices, i 2 C0 and j 2 C1 and put x(i) = x(j) = 1 and x(k) = 0
otherwise. If there is a walk of odd length from i to j, then all walks from i to j have
odd lengths and, by Lemma 2.1(ii), the i-th coordinate in the orbit sequence of x on
odd positions eventually has constant value 1, while on even positions it oscillates

between values 0 and 1. Thus, the i-th coordinate-orbit period is per(A; x; i) = 4.
On the other hand, per(A; x; j) = 6 and, by Theorem 2.2(ii), the orbit period is
per(A; x) = 12.
We may notice that, if we choose the vertices i 2 C0 and j 2 C1 in such a way

that the walks from i to j have even lengths, then by a similar argument as above,
the i-th coordinate in the orbit of vector x eventually has constant value 1 on even
positions and 0 on odd positions, therefore per(A; x; i) = 2. Thus, the number 4 does
not occur as a coordinate-orbit period of x and the orbit period is per(A; x) = 6.

Our three examples indicate that in searching for a vector solution of the equation
per(A; x) = per(A), we have to �nd a system of strongly connected components with

suitable periods and to choose a suitable system of vertices, one in each of these
components. The exact formulation of this idea can be found in Theorem 3.5.
It can be easily seen that if the components can be found in such a way that they are

pairwise non-comparable, then any choice of vertices (one vertex in each component)

induces a solution of the MPR problem. If there exist comparable components in the
theshold graph G(A; h), then the solvability of the problem depends on the greatest
common divisors of the periods for comparable pairs of components.
In the paper, two conditions are described which together imply that MPR problem

is polynomially solvable (Theorem 4.1). We show that if only one of the conditions
is ful�lled, then MPR is NP -complete (Theorems 4.2 and 4.3).
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2. Matrix and orbit periods

In this section we de�ne the notions mentioned informally in the introduction. For
simpler notation of index sets we shall use the convention by which any natural num-

ber n is considered as the set of all smaller natural numbers, i.e., n = f0; 1; : : : ; n�1g.
By N we denote the set of all non-negative integers. The greatest common divisor
and the least common multiple of a set S � N are denoted by the abbreviations gcdS
and lcmS, respectively.

If G = (V;E) is a digraph (directed graph), then by a strongly connected com-
ponent of G we mean a subdigraph K = (K;E \ K2) generated by a non-empty
subset K � V such that every vertex x 2 K is reachable from every other vertex
y 2 K, and K is a maximal subset with this property. The vertex sets K of the

strongly connected components form a partition of V . For i 2 V , we denote by K[i]
the unique strongly connected component to which i belongs. A strongly connected
component K is called non-trivial if there is a cycle of positive length in K; otherwise,
is is called trivial. By SCC�(G) we denote the set of all non-trivial strongly connected
components of G. For any K 2 SCC�(G), the period per(K) is de�ned as gcd of the

lengths of all cycles in K. If K is trivial, then per(K) = 0.

De�nition 2.1. The fuzzy algebra B is a triple (B;�;
), where B is a linearly
ordered set and �;
 are the binary operations of maximum and minimum, respec-

tively, on B. For any natural n > 0, B(n) denotes the set of all n-dimensional column
vectors over B, and B(n; n) denotes the set of all square matrices of order n over B.
For x 2 B(n); A = (aij) 2 B(n; n), we denote by �x and �A the input sets f xi; i 2 n g
and f aij; i; j 2 n g, respectively. The matrix operations over B are de�ned for-
mally in the same manner (with respect to �;
) as the matrix operations over a

ring. For any A 2 B(n; n); x 2 B(n), the orbit of x generated by A is the sequence

x(0); x(1); x(2); : : : , where x(r) := Arx.

De�nition 2.2. Let A 2 B(n; n); h 2 B. Then the threshold digraph G(A; h) is the
digraph G = (n;E), with the vertex set n = f0; 1; : : : ; n � 1g and with the arc set

E = f (i; j) : i; j 2 n; aij � h g. For any natural r and for any two vertices i; j of a

graph G, we write i
r
�!
G

j if there is a walk of length r in G, beginning in vertex i

and ending in j. If the graph G is understood from the context, we will simply write

i r�! j.

The following lemma, which is due to Cechl�arov�a [1], gives a connection between
the existence of walks in threshold graphs and values of matrix powers Ar and orbit
vectors x(r).

Lemma 2.1. Let A 2 B(n; n); x 2 B(n); h 2 B; r 2 N ; r � 1; i; j 2 n. Then

(i) (Ar)ij � h, i
r
�!
G(A;h)

j

(ii) (Arx)i � h, (9j 2 n)
h
xj � h ^ i

r
�!
G(A;h)

j
i

Proof. By induction on r.

De�nition 2.3. Let A 2 B(n; n); x 2 B(n). The period of an in�nite sequence
a1; a2; : : : is the smallest positive number p for which there is an R such that for

all r > R we have ar = ar+p, if such a number exists. The matrix period, the orbit
period and the i-th coordinate-orbit period of x with respect to A, in notation: per(A),
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per(A; x) and per(A; x; i), are de�ned as the periods of the sequences Ar, x(r), or x
(r)
i

(r = 1; 2; : : : ), respectively.
The period of a set R � N is the period of its characteristic sequence

ar :=

8<
:1 if r 2 R

0 otherwise.

Remark 2.1. By linearity of B, any element of any power of the matrix A is equal
to some element of A. Therefore, the sequence of powers of A contains only �nitely

many di�erent matrices. As a consequence, the periods per(A); per(A; x); per(A; x; i)
are always well-de�ned.

The connection between matrix periods, orbit periods and coordinate-orbit periods

is described by the following theorem.

Theorem 2.2. Let A 2 B(n; n); x 2 B(n). Then

(i) per(A) = lcm
x2B(n)

per(A; x)

(ii) per(A; x) = lcm
i2n

per(A; x; i)

Proof. It is easy to see that per(A) is a multiple of per(A; x) for any x 2 B(n) and
therefore, per(A) is a multiple of lcm

x2B(n)
per(A; x).

For the converse relation, let us assume that p is a common multiple of per(A; x) for

all x 2 B(n), i.e., for any x 2 B(n) there is a number Rx such that (8r > Rx) x
(r) =

x(r+p): In general, there are in�nitely many vectors x 2 B(n), but we can restrict our

consideration to only �nitely many of Rx, because the orbit period of a given vector
x 2 B(n) depends only on the way in which the elements of �x are comparable with all
elements of �A and there are only �nitely many possibilities for placing the elements
of �x between the elements of �A. Therefore, there are only �nitely many equivalence
classes in B(n) with respect to the comparability with elements of �A (in the sense

that x; x0 2 B(n) are equivalent if and only if (8i; j; k 2 n)[ aij � xk , aij � x0k ] ).
Thus, we may conclude that

(9R 2 N)(8r > R)(8x 2 B(n)) x(r) = x(r+p):

By the simple fact that A = B , (8x 2 B(n))Ax = Bx, we get

(9R 2 N)(8r 2 R)A(r) = A(r+p)

i.e., p is a multiple of per(A).
The assertion (ii) is proved analogously.

De�nition 2.4. Let A 2 B(n; n); h 2 B, let G(A; h) be a threshold digraph of A.
Recall that SCC� G(A; h) denotes the set of all non-trivial strongly connected com-
ponents of G(A; h).

(i) SCC�(A) :=
S
f SCC� G(A; h) : h 2 �A g

(ii) SCCmin(A) := fK 2 SCC�(A) : K is minimal in (SCC�(A);�) g

The period of a matrix in max-min (fuzzy) algebra is characterized by the periods of
the non-trivial strongly connected components in the threshold graphs of the matrix:

Theorem 2.3. [3] Let A 2 B(n; n). Then

(i) per(A) = lcmf per(K); K 2 SCC�(A) g

(ii) per(A) = lcmf per(K); K 2 SCCmin(A) g
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3. Reachability of the matrix period

In view of Theorem 2.2(i), a natural question arises: under which conditions is the
value of the matrix period achieved by some orbit period [5]?

De�nition 3.1. Matrix Period Reachability Problem (MPR)

Given a matrix A 2 B(n; n), is there x 2 B(n) such that per(A) = per(A; x)?

In this section we show that if an instance of MPR problem has a solution, then
the solution can be represented in a standard form, which will be described in The-
orem 3.5. This result is in accordance with our observations made by the examples
described in the introduction.

The following de�nition and lemma are crucial for investigating the periodicity of
the orbit sequence ( x(r); r = 1; 2; : : : ), since they establish a connection with the
periods of paths and components in a digraph.

De�nition 3.2. For vertices i and j in a digraph G, we denote by W (i; j) the set of

all elementary paths from i to j (i.e., walks with distinct vertices) in a digraph. For
any walk w we de�ne

per(w) = gcdf per(K) : K 2 SCC�(G) ^ K \ w 6= ; g

and we denote

R(i; j; w) := f r 2 N : there is a walk w0 from i to j with r arcs and w � w0 g:

Remark 3.1. If the walk w meets no non-trivial component K 2 SCC�(G), then by
De�nition 3.2, per(w) = 0 holds true and R(i; j; w) contains the only element jwj:

The notation of per(w) as the period of the walk w is justi�ed by part (ii) of the

following lemma.

Lemma 3.1. For any digraph G, there are numbers R1 and R2 for which the follow-
ing holds.

(i) If a vertex i is contained in a component K, then

(8r > R1)
h
r � 0 mod per(K), i r�! i

i
(3.1)

(ii) For any two vertices i and j and for any w 2 W (i; j), we have

(8r > R2)
h
r � jwj mod per(w), r 2 R(i; j; w)

i
(iii) For any two vertices i and j and for any walk w from i to j, we have

(8r > R2)
h
r � jwj mod per(w)) i r�! j

i
Proof. In part (i), the existence of R1 for any speci�c vertex i follows from the

de�nition of per(K). As the number of vertices is �nite, we can take R1 large enough
such that (3.1) holds for all vertices i in G.
For part (ii), we �rst note that if w does not meet any K 2 SCC�(G), then, by

remark 3.1, per(w) = 0 and the statement of the lemma is trivially ful�lled. Now, we
show that whenever K 2 SCC�(G) is a non-trivial component with K \ w 6= ;, then

r 2 R(i; j; w) ^ c 2 N ^ c � per(K) � R1 ) r + c � per(K) 2 R(i; j; w):

If k 2 K \ w for some K 2 SCC�(G), then, by part (i) of the lemma, there is a cycle

C through k with c �per(K) arcs whenever c �per(K) � R1. This cycle may be added
to w to obtain a walk of length r+ c �per(K) from i to j. Since per(w) is the greatest
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common divisor of per(K) for all non-trivial components K 2 SCC�(G) which meet
w, then, by a well-known theorem of number theory, any big enough multiple of
per(w) can be expressed as a linear combination, with positive coeÆcients, of the

corresponding compoment periods per(K). Therefore, if the set R(i; j; w) contains
an element r in some congruence class modulo per(w), then all larger elements in
that congruence class are also contained in R(i; j; w). Thus, R(i; j; w) contains either
all elements of any give congruence class except a �nite number, or none at all.
Since there are only �nitely many congruence classes, �nitely many vertices i and j,

and �nitely many elementary paths w, R2 can be selected large enough so that the
statement of the lemma is ful�lled.
For part (iii), note �rst that we may assume w.l.o.g. that w is an elementary path.

If w contains a vertex k twice, the cycle C that w forms between the �rst and last

visit to k has a length which is a multiple of per(K[k]). Thus, if we clip C out of
w, the length r mod per(w) remains unchanged. Furthermore, C does not touch any
additional components, by the de�nition of strongly connected components. Thus,
the set of components K in the de�nition of per(w) is also unchanged. By repeatedly

deleting cycles out of w, we eventually arrive at an elementary path with less that
n arcs that has the same period per(w) and the same length modulo per(w) as
the original walk. The statement of the lemma is now a simple consequence of
part (ii).

The following sequence of lemmas will allow us to convert a given vector x into
another vector that has the same orbit period per(A; x) and satis�es additional con-

traints. For a given vector x 2 B(n) and for given h 2 B, we denote

S(x; h) := f i 2 n : x(i) � h g:

For i 2 n, we denote by K[i; h] the uniquely determined strongly connected compo-
nent in G(A; h) containing the vertex i.

Lemma 3.2. Let A 2 B(n; n); x 2 B(n). Then there is vector x0 2 B(n) with
per(A; x0) = per(A; x), such that any vertex i 2 S(x0; h) is contained in a non-trivial

component of the threshold digraph G(A; h), for any h 2 B.

Proof. Let H = f hk; k 2 s g = �A [ �x be the union of the input sets of A and x, in
descending order. We shall proceed by recursion through H. We take h = hk 2 H

and we assume that for any hl > h, the assertion of lemma holds true. Then we
modify x to x0 by the following two rules (all walks mentioned in the proof are in
digraph G(A; h)).
1. For any j 2 S(x; h) with K[j; h] trivial, we de�ne x0(j) = hk+1 (i.e., j is left out

of S(x; h), but it remains in S(x; hl) for any hl 2 H; hl < h).

2. For any j 2 S(x; h) with K[j; h] trivial and for any w : i s�! j such that
i is the only vertex in w with non-trivial component K[i; h], we choose a vertex
jw 2 K = K[i; h] such that i s�! jw. As K is non-trivial, such a vertex jw can always
be found in K. Then we set x0(jw) = max(h; x(jw)), (i.e., jw is added to S(x; h) but

not to S(x; hl) for hl 2 H; hl > h), if it has not already been there).
All remaining values x(j) are unchanged at this stage of recursion. We may notice

that the rules 1, 2 apply only to vertices j with x(j) = h. Namely, if x(j) < h, then
j 62 S(x; h) and if x(j) > h, then, by recursion assumption, K[j; h] is non-trivial. In
view of Lemma 2.1(ii) and Theorem 2.2, it is suÆcient to verify that for any i 2 n
and for any big enough r, the equality (Arx)i = (Arx0)i holds true, i.e., the following
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two formulas are equivalent:

(9j 2 n)
h
x(j) � h ^ i r�! j

i
; (9j 0 2 n)

h
x0(j 0) � h ^ i r�! j 0

i
:

Let the �rst formula be ful�lled, in other words, let there be j 2 n such that

x(j) � h and w : i r�! j. If r is big enough, then the walk w cannot be an elementary
path, i.e., w must meet some non-trivial component in G(A; h). If the component
K[j; h] is non-trivial, then we have x0(j) = x(j) and the second formula holds true.
If the component K[j; h] is trivial, then we denote by i1 the last vertex in w with

non-trivial K[i1; h] = K and we denote w1 := w(i1; j) (the subwalk of w from i1 to
j). By the rule 2 of the de�nition of x0, there is a vertex j 0 = jw1

2 K and a walk
w0
1 : i1

s�! j 0 such that s = jw1j and x0(j 0) � h. If we denote w0 := w(i; i1), then the
walks w = w0w1 and w0 = w0w

0
1 are of the same length r and, therefore, the second

formula holds true.
Conversely, let the second formula be ful�lled, i.e. let j 0 2 n such that x0(j 0) � h

and w : i r�! j 0. By the de�nition of x0, the component K := K[j 0; h] is non-trivial.
If x(j 0) � h, then the �rst formula holds true. If x(j 0) < h, then there are vertices
i1 2 K; j 62 K and walks w1 : i1

s�! j; w0
1 :

s�! j 0 such that x(j) � h and i1 is the only

vertex in w1 with non-trivial component K[i; h] = K. We choose a walk u : j 0 t�! i1,
u � K. The concatenation c = uw0

1 is a cycle in K and, therefore, the length s+ t of
c is a multiple of per(K) and r � s � r + t mod per(K). As r is big enough, we can
assume that r � s > R2, and as per(K) is a multiple of per(w) = per(wu), we have

r � s � r + t mod per(wu). By Lemma 3.1(iii) applied to the concatenation wu of

length r + t we get a walk w0 : i
r�s��! i1. Then w0w1 : i

r�! j and the �rst formula
holds true.

The key notions in Theorem 3.5 are the notion of dominance of vertices in a digraph
G and the notion of deciding components in SCC�(G).

De�nition 3.3. Let i; j 2 n; h 2 B. We say that j dominates i at level h (in
notation: i �h j), if

(9R 2 N)(8r > R)(8k 2 n)

"
k

r
�!
G(A;h)

i ) k
r
�!
G(A;h)

j

#
:

Remark 3.2. For �xed h, the relation �h is reexive and transitive (i.e., �h is a
quasi-order on n). Note that the threshold R := Rijh in De�nition 3.3 may depend
on i; j and h. By taking the maximum R of the �nitely many numbers Rij, (for

i; j 2 n; h 2 �A) we have a global constant R with the property:

i �h j ) (8r > R)(8k 2 n)

"
k

r
�!
G(A;h)

i ) k
r
�!
G(A;h)

j

#
: (3.2)

Remark 3.3. If the component K = K[i; h] is non-trivial, then, in view of Lemma 3.1,
i �h j holds true if and only if

(8r > R)

"
i

r
�!
G(A;h)

i ) i
r
�!
G(A;h)

j

#

which can be equivalently expressed as

(8r > R)

"
r � 0 mod per(K) ) i

r
�!
G(A;h)

j

#
or,
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(9r > R)

"
r � 0 mod per(K) ^ i

r
�!
G(A;h)

j

#
(3.3)

Lemma 3.3. Let A 2 B(n; n); x 2 B(n). Then there is vector x0 2 B(n) such that
per(A; x0) = per(A; x) and any vertex i 2 n with x0(i) = h > min( �A) is not dominated
at level h by any vertex j 6= i with x0(j) � x0(i).

Proof. If there are vertices i 6= j such that min( �A) < h = x(i) � x(j) and i �h j,
then we denote by h0 the precedessor of h in �A [ �x and de�ne

x0(k) :=

8<
:h

0 if k = i

x(k) otherwise.

In view of Lemma 2.1(ii), the vectors x; x0 have the same orbits and, therefore,

per(A; x) = per(A; x0). The procedure is repeated �nitely many times, until x0 has
the desired property.

Remark 3.4. As K[i; h] � K[i; h0] holds true for h � h0, the procedure in the above
proof preserves the property of vector x0, formulated in Lemma 3.2.

The following lemma provides a lower bound for the period of a sequence, if the
period of some subsequence is known.

Lemma 3.4. If a sequence a1; a2; : : : has period p, then the period of the subsequence
ad; a2d; a3d; : : : formed by taking every d-th element divides p= gcd(p; d).

Proof. Since p divides lcm(p; d) = pd= gcd(p; d), we have

aid = aid+pd= gcd(p;d) = a(i+p= gcd(p;d))d;

for large enough i, and hence p= gcd(p; d) is a multiple of the period of the subse-
quence.

De�nition 3.4. Let per(A) = p�00 p�11 : : : p
�k�1

k�1 be a decomposition of the matrix

period per(A) into powers of distinct primes. Then a subset D � SCC�(A) which
contains a component K with p�t

t j per(K), for all t = 0; : : : ; k�1, is called a deciding
set of components.

Theorem 3.5. For any A 2 B(n; n), the following statements are equivalent.

(i) There is x 2 B(n) such that per(A; x) = per(A):
(ii) There is a deciding setD of pairwise disjoint components at levels H = f hK; K 2

D ^ K 2 SCC�(G(A; hK)) g and a set I = f iK 2 K : K 2 D g of vertices, with

one vertex chosen from each component in D, such that, if hK � hL; K 6= L,
then the vertex iL does not dominate iK at level hK.

Proof. (ii) ) (i): We de�ne a vector x 2 B(n) in the following way: we put

x(i) :=

8<
:hK if i = iK for some K 2 D

min( �A) otherwise.

By Theorem 2.2(ii), it is suÆcient to prove that

(8t 2 k)(9i 2 n) p�t

t j per(A; x; i):

Let t 2 k be �xed and let K 2 D be a maximal component with the property
p�t

t j per(K) (maximal in the sense of the ordering induced by G(A; hK)). We denote
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by i := iK the vertex chosen by the system I. All the walks in this part of the proof
are understood in the theshold digraph G := G(A; hK). We will �rst show that

(9R 2 N)(8r > R)
h
( r � 0 mod per(K)=pt )) ( x(r)(i) = hK , r � 0 mod per(K) )

i
:

By Lemma 2.1 and by Lemma 3.1(i) we can conclude that per(K) j r implies x(r)(i) �

hK, for big enough r. By the non-dominance assupmtion and by (3.3) we get x(r)(i) =

hK. Now, if we had x(r)(i) = hK for some r with (per(K)=pt) j r and per(K) =j r,
this can only happen if i r�! j for some j 2 I which was selected from another
component K0. By the maximality of K we know that p�t

t =j per(K0), and hence,

applying Lemma 3.1(iii), we conclude that i r0�! j for all large enough r0 with r0 �
r mod per(w). Since p�t

t =j per(w), we have gcd(p�t

t ; per(w)) j p
�t�1
t j (per(K)=pt),

and the two equations r0 � r mod per(w), r0 � 0 mod per(K) have in�nitely many

solutions. So we have i r0�! j for some r0 � 0 mod per(K). This means that i �hK j,
contradicting the assumption of non-dominance of vertices in I.

We have seen that the subsequence (x(r)(i)) of all elements with r � 0 mod
per(K)=pt has period pt. Applying Lemma 3.4 with increment d = per(K)=pt, we
obtain that pt � gcd(per(K)=pt; per(A; x; i)) = gcd(per(K); pt � per(A; x; i)) divides
per(A; x; i), and hence gcd(p�t

t ; pt � per(A; x; i)) j per(A; x; i), from which it follows

that p�t

t j per(A; x; i).
(i) ) (ii): Let x 2 B(n); per(A) = per(A; x): By Lemma 3.3, we may assume

that x ful�lls the non-dominance requirement: any vertex i 2 n with x(i) = h >
min( �A) is not dominated at level h by any vertex j 6= i with x(j) � x(i). By
Lemma 3.2 and Remark 3.4, we may assume that any vertex i 2 S(x; h) is contained

in a non-trivial component of G(A; h).
We only have to ensure that, for every t 2 k, there is a level h 2 �A [ �x such that

S(x; h) contains a vertex j in a component K 2 SCC�(G(A; h)) with p�t

t j per(K).
We prove this by contradiction. Suppose that there is a t such that, for all h 2 �A[ �x

and for all j 2 S(x; h), we have p�t

t =j perK[j; h]. By Lemma 2.1, for any h 2 �A [ �x
and i 2 n we have (the notation W (i; j; h); R(i; j; w; h) per(w; h) is used for objects
W (i; j); R(i; j; w) per(w) de�ned with respect to the threshold digraph G = G(A; h)):

x(r)(i) � h , (9j 2 S(x; h)) i r�! j

, (9j 2 S(x; h))(9w 2 W (i; j; h)) r 2 R(i; j; w; h)

, r 2 R(i; h) :=
[

j2S(x;h)

[
w2W (i;j;h)

R(i; j; w; h)

Under the above assumption, we have p�t

t =j per(w; h), for all possible paths w in this
statement, since per(w; h) is de�ned as the gcd of the periods of certain components
which include the component K[j; h], whose period is not a multiple of p�t

t . By
Lemma 3.1(ii), the set R(i; j; w; h) is periodic with period per(w; h). It follows that

the set R(i; h), being a �nite union of sets R(i; j; w; h), is also periodic, and its period
divides

lcmf per(w; h) : j 2 S(x; h); w 2 W (i; j; h) g;

which is not a multiple of p�t

t . It is easy to see that per(A; x; i) divides the lcm of
the periods of sets R(i; h) for h 2 �A[ �x and, therefore, it is not a multiple of p�t

t , for
arbitrary i. Then, by Theorem 2.2(ii), the orbit period per(A; x) = lcm

i2n
per(A; x; i)

is not a multiple of p�t

t . Hence, per(A; x) is di�erent from per(A), which contradicts
to our assumption (i).
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Now, in view of the facts that two components K;L 2 SCC�(A) are either disjoint
or comparable, and if K � L, then per(L) j per(K), we can easily choose a deciding
system D of pairwise disjoint components and the sets H, I satisfying the statement

(ii).

4. The computational complexity of the MPR problem

It was shown in [5] that, in general, the MPR problem is NP -complete. We describe
here two conditions under which the problem is polynomially solvable.
By Theorem 3.5, the solving of the problem MPR is equivalent to performing two

choices: we have to choose a suitable deciding set of components in such a way that
it is possible to choose a set of pairwise non-dominating vertices, by one from each
component. In spite of the fact that the problem of performing these two choices is
NP -complete, we may hope that under some restrictive conditions it can be solved

in polynomial time.
Similar situation occurs with the classical satis�ability problem (SAT) for dis-

junctive boolean formulas. If the number of variables in each disjunctive clause is
restricted to 2, the problem 2-SAT is polynomially solvable. However, it is a well-

known fact, that the restriction to 3-disjunctive formulas is not suÆcient: the problem
3-SAT remains NP -complete.

Theorem 4.1. MPR problem with two restrictive conditions

(i) the matrix A has a unique minimal deciding set of components,
(ii) there is a deciding set D of components such that for any components K;L 2 D

at levels h � h0 with K < L in G(A; h), gcd(per(K); per(L)) � 2 holds true,

is solvable in time O(n2) for a given matrix A 2 B(n; n).

Proof. It is easy to show using Theorem 2.3, that there is always at least one min-
imal deciding set D of components, which is necessarily disjoint. Thus, condition

(i) reduces the problem to the choice of pairwise non-dominating vertices in D.
Condition (ii) implies that, for any comparable components K;L 2 D, we have
gcd(per(K); per(L)) = 1, or gcd(per(K); per(L)) = 2.
If the �rst case occurs for some h � h0 and for K;L 2 D; K 2 SCC�(G(A; h));

L 2 SCC�(G(A; h0)); with K < L in G(A; h), then for any i 2 K; j 2 L, the vertex i
is dominated by j at level h and the instance of MPR has no solution.
If the second case takes place for all comparable pairs K;L 2 D, then the domi-

nancy i �h j for i 2 K 2 SCC�(G(A; h)); j 2 L 2 SCC�(G(A; h0)); h � h0 depends
only on the parity of the positions of the vertices i; j and on the existence or non-

existence of a walk w in digraph G(A; h), of even length and connecting points of the
same parity in components K;L, or of odd length and connecting points of di�erent
parities in K and L. Therefore, the choice of pairwise non-dominating vertices in D
is equivalent to the choice of pairwise compatible representatives from a system of

n two-element sets. It is shown in [6] that such a choice can be performed in time
O(n2).

The conditions (i), (ii) in Theorem 4.1 may seem rather restrictive. However, the
next two theorems show that each of the conditions alone is too weak to make the
MPR problem polynomially solvable.

Theorem 4.2. The MPR problem with the restrictive condition (i) from Theorem 4.1
is NP-complete.
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Proof. As a special case of MPR, the problem belongs to NP. We show that the
well-known NP -complete problem of 3-colouring for graphs (3-COL) polynomially
transforms to MPR(i) problem (i.e., MPR with the restrictive condition (i)). We

describe a polynomial algorithm which assigns, to any instance of 3-COL, such an
instance of MPR(i) that both instances are equivalent, i.e., they have the same answer
yes or no.
Let G 0 = (V 0; E 0) be an instance of 3-COL, let us denote m0 = jV 0j; n0 = jE 0j. We

choose m0 + n0 distinct primes

(pv; v 2 V 0); (qe; e 2 E 0)

and we de�ne a digraph G = (V;E) consisting of m0 + n0 disjoint oriented cycles

(Cv; v 2 V 0); (De; e 2 E 0)

of lengths
jCvj = 3pv; jDej = 3qe for any v 2 V 0; e 2 E 0:

The vertices in each cycle are numbered beginning with 0, in the sense of the ori-
entation. The vertices will be referred to by the notation Cv(i), De(j). Besides the
arcs contained in the cycles, there are additional arcs between cycles in G, de�ned as

follows: we �x a linear ordering � of vertices in V 0 and for any edge e = (u; v) 2 E 0,
u � v we add the arcs (De(0); Cu(0)), (De(0); Cu(2)), (De(0); Cv(1)) to E.

e

e e

Cu

0

1 22

A
A
A
A
AAK

-
�
�
�
�
��� e

e e

Cv

0

1 2

A
A
A
A
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�
�
�
�
���

e

ee

De

0
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A
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�
���
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@

@
@@I
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C
C
C
C
C
C
C
C
C
CO
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�
�
�
�
�
�
�
��

Figure 4

The additional arcs are schematically drawn on Figure 4. For the sake of simplicity,
the cycles Cu; Cv; De, are depicted with 3 vertices only. This simpli�cation is based
on the fact that the greatest common divisor of the periods of the cycles is equal
to 3.

The matrix A is de�ned as the adjacency matrix of the digraph G. Denoting
B = f0; 1g and n = 3(m0 + n0), we have A 2 B(n; n). Clearly, A has exactly
one deciding set of components, namely the set of all cycles fCv : v 2 V 0 g and
fDe : e 2 E 0 g. Therefore, A is an instance of MPR(i). By the well-known properties

of prime numbers, the construction of A is polynomial with respect to the size of G0.
In the following we show that the instances A and G0 are equivalent.



REACHABILITY OF MATRIX PERIOD 13

Let A be a yes instance of MPR(i). By Theorem 3.5, there is a set

I = f iu 2 Cu : u 2 V 0 g [ f je 2 De : e 2 E 0 g

of pairwise non-dominating vertices in G (at level 1).
We shall show that the graph G0 is a yes-instance of 3-COL, i.e., there is a colouring

F : V 0 ! f0; 1; 2g with F (u) 6= F (v) for every e = (u; v) 2 E 0. The colouring F is
de�ned for any u 2 V 0, k 2 N by the formula

F (u) :=

8>><
>>:
0 if iu = Cu(3k)

1 if iu = Cu(3k + 1)

2 if iu = Cu(3k + 2)

Let us suppose that F (u) = F (v) for some e = (u; v) 2 E 0, u � v. If F (u) = F (v) =
0, then the vertex iu = Cu(3k) dominates all the vertices of the form De(3l + 1),
De(3l + 2) and the vertex iv = Cv(3k) dominates all the vertices De(3l). As a

consequence, the vertex je is dominated either by iu or by iv. The assumption
F (u) = F (v) = 1, or F (u) = F (v) = 2 leads to contradiction in a similar way.
Therefore, F (u) 6= F (v) holds true for any adjacent vertices of the graph G 0.
Conversely, let G 0 be a yes-instance of 3-COL with the colouring F : V 0 ! f0; 1; 2g.

Then we de�ne iu = Cu(F (u)) for any u 2 V 0 and je = De(F (u)) for any e = (u; v) 2
E 0, u � v. By the above reasoning, the vertex iu does not dominate je. The adjacency
property of F implies that the vertex iv does not dominate je, as well. Therefore by
Theorem 3.5, the matrix A is a yes-instance of MPR(i).

Remark 4.1. To underline the analogy with 2-SAT and 3-SAT, we may notice that
Theorem 4.2 holds true even if the modi�ed condition (ii), with 3 instead of 2, is
added.

Theorem 4.3. The MPR problem with the restrictive condition (ii) from Theo-
rem 4.1 is NP-complete.

Proof. It is shown in [5] that the NP -complete problem of satis�ability for 3-disjunctive
boolean formulas (3-SAT) polynomially transforms to MPR problem. It is easy
to verify that the construction described in [5] satis�es the condition (ii) of Theo-

rem 4.1.
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