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Abstract

The maximum number of non-crossing straight-line perfect matchings that a set of n points in the
plane can have is known to be O(10.0438n) and Ω∗(3n). The lower bound, due to Garćıa, Noy, and
Tejel (2000), is attained by the double chain, which has Θ(3n/nΘ(1)) such matchings. We reprove
this bound in a simplified way that uses the novel notion of down-free matchings. We then apply this
approach to several other constructions. As a result, we improve the lower bound. First we show that
the double zigzag chain with n points has Θ∗(λn) non-crossing perfect matchings with λ ≈ 3.0532.
Next we analyze further generalizations of double zigzag chains – double r-chains. The best choice
of parameters leads to a construction that has Θ∗(νn) matchings with ν ≈ 3.0930. The derivation
of this bound requires an analysis of a coupled dynamic-programming recursion between two infinite
vectors.
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1. Introduction

Background. A non-crossing straight-line matching of a finite planar point set is a graph whose
vertices are the given points, whose edges are realized by pairwise non-crossing straight segments,
and where every vertex has degree at most 1. In what follows, such matchings will be simply called
matchings. A matching is perfect if every point is matched – that is, has degree 1. Throughout the
paper, all point sets are assumed to be in general position in the sense that no three points lie on a
line.

In this paper we deal with bounds on the number of perfect matchings that a set of size n can
have. This question arises in a broader context. Non-crossing straight-line matchings, either perfect
or not necessarily perfect, are just two kinds of geometric plane graphs, others being triangulations,
spanning trees, connected graphs, etc. A web page of Adam Sheffer 2 maintains the best up-to-date
bounds on the maximum number of geometric plane graphs of several kinds.

First we recall that for the minimum number of perfect matchings that n points in general position
can have, the exact solution is known. Garćıa, Noy, and Tejel [6] proved the number of perfect
matching is minimized on point sets in convex position. It is well-known that the number of perfect
matchings is then Cn/2, where Ck = 1

k+1

(
2k
k

)
= Θ(4k/k3/2) is the k-th Catalan number. The minimum

number Cn/2 of perfect matchings is in fact attained only for point sets in convex position, with the
exception of one configuration of six points [2].

Regarding the maximum number of perfect matchings that a point set of size n can have, only
asymptotic bounds are known. The best upper bound to date, O(10.0438n), was proved by Sharir
and Welzl [10]. The best previous lower bound was given by Garćıa, Noy, and Tejel in the above-
mentioned paper [6]. They showed that for the so-called double chain with n points (denoted by
DCn, see Figure 1 below), the following holds:

Theorem 1 ([6, Theorem 4.1]). The number of perfect matchings of the double chain with n points
is Θ

(
3n/nO(1)

)
.

Actually, it follows from their proof that this number is Ω(3n/n4) and O(3n/n3). In Section 2.3
we shall sketch this proof, and also determine the polynomial factor more precisely.

The double chain was used in [6] not only for improving the lower bounds on the maximum number
of perfect matchings, but also for some other kinds of geometric graphs: triangulations, spanning
trees and polygonizations. It was believed by some researchers in the field that it might give the true
upper bound at least for some of these kinds [1, p. 78]. However, in 2006, Aichholzer, Hackl, Huemer,
Hurtado, Krasser, and Vogtenhuber [1] introduced a new construction, the double zigzag chain with n
points, denoted by DZZCn, see Figure 3 below. They proved that DZZCn improves the lower bound
for the number of triangulations: it is Θ∗(8n) for DCn and Θ∗(8.48n) for DZZCn. (The notations
O∗ and Ω∗ correspond to the usual O- and Ω-notations, but with polynomial factors n±O(1) omitted.
The notation Θ∗ is the conjunction of O∗ and Ω∗, possibly with different hidden polynomial factors.)
To our knowledge, the number of geometric graphs of other kinds mentioned above for DZZCn was
not found.

In this paper we determine asymptotically the number of perfect matchings for DZZCn and its
further generalizations, improving the existing lower bound.

Our results. In Section 4, we will first show that DZZCn has asymptotically more perfect matchings
than DCn:

Theorem 2. The number of perfect matchings of the double zigzag chain with n points is Θ∗(λn),

where λ =
√

(
√

93 + 9)/2 ≈ 3.0532.

In Sections 5 and 6, we will present a generalization of DCn, which comes in two variations:
double r-chains without corners and double r-chains with corners, see Figures 7 and 8 below. Our
best results for these constructions are as follows:

Theorem 3. The number of perfect matchings of the double 11-chain without corners with n points
is Θ∗(νn), where ν = 11

√
240054 ≈ 3.0840.

2https://adamsheffer.wordpress.com/numbers-of-plane-graphs/

2
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Theorem 4. The number of perfect matchings of the double 8-chain with corners with n points is

Ω((ν−ε)n), and O(νn), where ν = 8

√(
8389 + 3

√
7771737

)/
2 ≈ 3.0930 and ε > 0 is arbitrarily small.

A double r-chain without corners has n = 2rk vertices, and a double r-chain with corners has
n = 2rk+2 vertices, for some natural k. Hence, these structures are defined only for particular values
of n. However, the largest number of perfect matchings that an n-point set with n even can have
is clearly monotone increasing in n. Hence, in particular, regarding Theorem 4, one derives easily
that for every even n there is an n-point set with Ω((ν − ε)n) perfect matchings, with the constant
ν ≈ 3.0930. This is currently the best asymptotic lower bound for the maximum number of perfect
matchings that a point set can have.

We shall present proofs for all three theorems because they use different techniques. First, in
Section 3 we introduce the notion of down-free matchings and show in Theorem 6 how one can
generally reduce the problem of asymptotic enumeration of perfect matchings of a “double structure”
to that of down-free matchings of the corresponding “single structure”. In the proof of Theorem 2
(Section 4), we find a recursion for the number of down-free matchings of the zigzag chain, and
translate it into a functional equation satisfied by the generating function. We solve this equation
explicitly, which allows us to find the exponential growth constant (that is, the base of the exponential
term in the asymptotic formula) by looking at the smallest singularity of the function. In the proof
of Theorem 3 (Section 5) we use matchings which possibly have runners – edges with only one
endpoint assigned. We define a sequence of infinite vectors whose entries are the numbers of down-
free matchings of the r-chain of a certain size, sorted by the number of runners. These vectors can be
computed recursively. We reformulate this recursion in term of lattice paths and obtain the desired
growth constant ν with the help of a result of Banderier and Flajolet [3]. The proof of Theorem 4
(Section 6) starts similarly, but due to technical obstacles, we need two sequences of infinite vectors,
defined by a coupled recursion. We find that the desired growth constant is determined by the
dominant eigenvalue of certain 2× 2 matrix.

Notation. We use the following notation and convention. A construction X is a family {Xn}n∈I for
some infinite I ⊆ N, where, for fixed n, Xn is a class of point sets of size n with certain common
properties, for example, a certain order type (or, in some cases: one of several order types) and certain
restrictions concerning position in the plane with respect to coordinate axes. The double chain (DC)
mentioned above is one such construction. Occasionally we will abuse notation and denote by Xn

not only such a class, but also any of its representatives. If we know that all members of Xn have,
for example, the same number of matchings, we can speak unambiguously about “the number of
matchings of Xn”, and so on.

In what follows, pm(Xn) denotes the number of perfect matchings of Xn; am(Xn), the number
of all (non-crossing straight-line, but not necessarily perfect) matchings of Xn; dfm(Xn), the number
of down-free matchings of Xn. For some constructions it can happen that not all representatives of
Xn have the same number of (for example) perfect matchings and, thus, pm(Xn) is not well-defined,
but the common asymptotic bound still can be given, which enables us to write expressions like
pm(Xn) = Θ∗(µn) in such cases as well.

For two distinct points p and q, the straight line through p and q will be denoted by `(p, q).
A set of points is in downward position (respectively, in upward position) if the points lie on

the graph of a convex (respectively, concave) function. In particular, three points with different
x-coordinates are in downward position (respectively, in upward position) if they form a counter-
clockwise (respectively, clockwise) oriented triangle when sorted by x-coordinate.

A point of X not matched by a matching will be called a free point.

2. Double chains and double zigzag chains

In this section we recall the definitions of a double chain and a double zigzag chain, and recall
how the bound pm(DCn) = Θ∗(3n) from Theorem 1 was obtained in [6].

2.1. One set high above another and general “double constructions”

Double constructions are constructed by putting a point set “high above” another point set:

3
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Definition. Let P and Q be two point sets in the plane. We say that P is high above Q if the points
in each of the two sets have distinct x-coordinates, P lies completely above any line through two
points of Q, and Q lies completely below any line through two points of P .

It is easy to see that, for any two point sets P and Q, it is possible to put a translate of P high
above a translate of Q, provided that the points in each set have distinct x-coordinates.

Let Xn be a construction. A double Xn (denoted by DX2n) is the family of sets obtained by taking
a representative point set P of Xn, another representative Q of Xn reflected across a horizontal line,
and placing P high above Q. Examples of such double constructions follow below. In Theorem 6, we
will see that the perfect matchings in DX2n are related to down-free matchings of Xn, which will be
introduced in Section 3.1.

An edge between a point of P and a point of Q will be called a PQ-edge.

2.2. Double chains

A (single) downward chain (respectively, upward chain) of size n is a set of n points in downward
(respectively, upward) position. A downward chain of size n will be denoted by SCn.

Let n be an even number. A double chain of size n consists of a downward chain of size n/2,
P = {p1, p2, . . . , pn/2}, placed high above an upward chain of size n/2, Q = {q1, q2, . . . , qn/2}. See
Figure 1 for an example. A double chain of size n will be denoted by DCn.

P

Q

Figure 1: A double chain of size 22.

2.3. Perfect matchings in the double chain

Theorem 1 was proved in [6] as follows. Denote by pmj(DCn) the number of perfect matchings of
DCn that have exactly j PQ-edges between the upper and the lower chain. If n/2 − j is odd, then
no perfect matching exists, so we assume that n/2− j is even. One can construct a perfect matching
with j PQ-edges in the following way. First choose any j points of P and j points of Q and connect
them by j non-intersecting PQ-edges. It is easy to see that there is a unique way to connect the
chosen points (see also Proposition 5 below). Then, choose any perfect matching of the free points in
each chain. Alternatively, one can first choose n/2− j points of P and n/2− j points of Q, then take
any matching of P and any matching of Q that uses the chosen points; after that, the free points can
be matched by PQ-edges in a unique way. Since Q has the same order type as P , it follows that

pmj(DCn) =
(
amj(SCn/2)

)2
=

((
n/2

j

)
· C(n/2−j)/2

)2

, (1)

where amj(P ) denotes the number of matchings of P (or equivalently, of any set of n/2 points in
convex position) with exactly j free points. Finally, the total number of perfect matchings of DCn is

pm(DCn) =
∑

0≤j≤n/2
j≡n/2 (mod 2)

((
n/2

j

)
· C(n/2−j)/2

)2

. (2)

4
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An analysis shows that the dominant term in this sum is the term corresponding to j ≈ n/6, that

is
((
n/2
n/6

)
· Cn/6

)2

(n/6 should be rounded in one way or the other). Using the estimates Ck =

Θ(4k/k3/2) and
(
ak
bk

)
= Θ

((
aa

bb(a−b)a−b

)k
/k1/2

)
for any constants a > b > 0, which follow from

Stirling’s formula, one obtains pm(DCn,n/6) = Θ(3n/n4), and therefore, pm(DCn) = Ω(3n/n4) and
O(3n/n3). With the help of Stirling’s formula, and replacing the sum (2) by an integral, one can
obtain the more precise estimate pm(DCn) = 3n/n7/2(182/π3/2 + o(1)). (We omit the details.)

2.4. Double zigzag chains

In this section we recall the definitions of a (single) zigzag chain SZZC and a double zigzag chain
DZZC. The concept is elementary and obvious from Figures 2 and 3, but the precise definitions suffer
somewhat from a multitude of variations due to parity conditions. These variations will, however, be
needed in the recursions in Section 4.

Let P = {p1, p2, . . . , pn} be a downward chain (SCn) sorted by x-coordinate. For each even i,
1 < i < n, we move the point pi vertically up, very slightly above the segment pi−1pi+1, so that all
consecutive triples pi−1pipi+1 with even i (1 < i < n) are now in upward position, whereas all other
triples pipjpk of points remain in downward position. After this modification, the points p1, p2, . . . , pn
are still sorted by x-coordinate. A set obtained in this way will be called an even (single) downward
zigzag chain of size n and denoted by eSZZCn. If instead of even i-s we perform this transformation
for each odd i, 1 < i < n, we obtain an odd (single) downward zigzag chain (oSZZCn). If n is even,
then eSZZCn and oSZZCn are reflections of each other with respect to a vertical line; but if n is odd,
then eSZZCn and oSZZCn have different order types, and – as one can verify on some small examples
– different numbers of (perfect or not necessarily perfect) matchings. See Figure 2 for an example.
A zigzag chain of size n, denoted by SZZCn, is either an eSZZCn or an oSZZCn. For both types of
SZZCn, we shall derive the same asymptotic bound on the number of perfect matchings.

1

2

n = 2k+1

3

n = 2k

1

2

3

An even SZZC for odd n

An odd SZZC for odd n

An even SZZC for even n

An odd SZZC for even n

1

2

n = 2k+1

3

1

2 n = 2k

3

Figure 2: A (single) zigzag chain – several cases.

An upward zigzag chain (of either kind) is a downward zigzag chain reflected across a horizontal
line. The construction of a double zigzag chain from zigzag chains is analogous to the construc-
tion of the double chain from two single chains: A double zigzag chain of (even) size n (DZZCn)
consists of a downward zigzag chain P = {p1, p2, . . . , pn/2} high above an upward zigzag chain
Q = {q1, q2, . . . , qn/2}. We can combine even and odd zigzag chains in various ways, but as mentioned
above, this will make no difference for the asymptotic number of perfect matchings. See Figure 3 for
an example of double zigzag chain obtained from two even zigzag chains of odd size.

3. Down-free matchings and perfect matchings

3.1. Down-free matchings

Suppose that we want to adapt the argument that was used for estimating pm(DCn) for the case
of pm(DZZCn) (of any kind). That is: for fixed j (such that n/2−j is even) we want to choose j PQ-
edges, and to complete this matching to a perfect matching by choosing edges that connect free points

5
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P

Q

Figure 3: A double zigzag chain of size n = 22.

of the same chain in all possible ways. One can hope for improvement since the number of perfect

matchings in SZZCn (of any kind) is Θ∗(νn) with ν =
√

2 + 2
√

2 ≈ 2.1974, in contrast to Θ∗(2n)
for SCn. (This bound for SZZCn was proven in [1] for a slightly different construction, the so called
double circle. The order type of SZZC is different from that of a double circle only in one triple of
points; it is easy to show that they have the same asymptotic number of perfect matchings.) However,
in comparison with the case of DCn, here we have less freedom and no uniformity in constructing
the matchings inside P and Q, once PQ-edges are chosen. Indeed, the j chosen PQ-edges may block
visibility between certain pairs of free points from P or from Q. Moreover, for different choices of j
PQ-edges, we have in general different numbers of ways to complete them to a perfect matching of
DZZCn. This follows from the fact that sets of points that remain free after choosing j PQ-edges
have in general various order types, and, so, it seems hopeless to enumerate them in this way. On
the other hand, if we first choose (n − 2j)/4 edges between two points of P and (n − 2j)/4 edges
between two points of Q, then – as we prove below in Proposition 5 – there is at most one way to
complete such a matching to a perfect matching of DZZCn. More precisely, if the free points of P
“see” all free points of Q, there is exactly one way of complete a matching to a perfect one, otherwise
it is impossible. Next we define a property of matchings which – for two sets being one high above
another – ensures the desired visibility of free points.

Definition. Let P be a set of points with distinct x-coordinates. A down-free matching is a matching
of P in which no edge passes below an unmatched point. In other words: for each free point p ∈ P ,
the vertical ray going down from p does not cross any edge of the matching. Similarly, one defines an
up-free matching.

Proposition 5. Let P and Q be two point sets in general position such that P is high above Q.

1. Every perfect matching of P ∪Q with j PQ-edges gives rise, after removing the PQ-edges, to a
down-free matching MP of P and an up-free matching MQ of Q with j free points each.

2. Conversely, let MP be a down-free matching of P and MQ an up-free matching of Q. If MP

and MQ have the same number of free points, then there is a unique way to complete MP ∪MQ

to a perfect matching of P ∪Q by adding PQ-edges.

Proof. We assume that the points P = {p1, p2, p3, . . . } and Q = {q1, q2, q3, . . . } are sorted by x-
coordinate.

1. We only have to show that MP is down-free and MQ is up-free. For contradiction, assume
without loss of generality that MP is not down-free. Then there is a free point pβ in MP so
that the vertical downward ray from pβ crosses an edge pαpγ , with α < β < γ. See Figure 4(a)
for an illustration. Since P is high above Q, the set Q must lie below `(pα, pβ), `(pα, pγ), and
`(pβ , pγ). There is no way to connect pβ to a point q ∈ Q without crossing the edge pαpγ .

2. Assume that MP is down-free and MQ is up-free.
First we observe that for any four points the points pα, pβ , qδ, qγ with pα, pβ ∈ P , qδ, qγ ∈ Q,
α < β, and γ < δ lie on the boundary of their convex hull in this clockwise order, see Figure 4(b)

6
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for an illustration. Since P lies high above Q, the points of Q lie below `(pα, pβ) and thus the
points pα and pβ lie on the convex hull consecutively and in this clockwise order. Similarly qδ
and qγ lie on the convex hull consecutively and in this clockwise order. This implies the claim.

pα

pβ

qγ

qδ

e

pα

qγ

r1

r2

Γ

pα

pγ

q

pβ

(a) (b) (c)

`(pα, pβ)

`(qγ , qδ)

Q

px

Figure 4: Illustrations to the proof of Proposition 5.

Let pα1
, pα2

, . . . , pαj
be the free points of P and let qγ1 , qγ2 , . . . , qγj be the free points of Q,

sorted from left to right. We complete MP ∪MQ to a perfect matching of P ∪Q by connecting
pαi

with qγi for i = 1, 2, . . . , j. By the just-proven claim about the cyclic order of pα, pβ , qδ, qγ ,
these new PQ-edges do not cross each other. Moreover, they do not cross the edges of MP

and of MQ. Indeed, assume that an edge pαqγ = pαiqγi crosses an edge e ∈MP . Consider the
angular sector Γ bounded by the downward vertical ray r1 with the origin pα and the ray r2

from pα through qγ , see Figure 4(c). The edge e crosses the ray r2 by assumption and does not
cross the ray r1, because the matching MP is down-free. Therefore, one of the endpoints of e,
say px, lies in the interior of Γ. However, this is impossible because in such a case qγ lies above
the line `(pα, px), which contradicts P being high above Q.
Finally, we need to show that this is the only way to complete MP ∪MQ to a perfect matching
of P ∪ Q. Indeed, for any other possibility to match the free points we would have a pair of
edges pαqδ and pβqγ with α < β, γ < δ. However, it follows from the claim about the cyclic
order of pα, pβ , qδ, qγ that such edges necessarily cross.

3.2. Down-free matchings of X and perfect matchings of double X
In Section 2.1, we have shown how to construct a double structure DX from any point set structure

X. In the following theorem we show how asymptotic bounds on dfm for a structure X imply those
on pm for the corresponding double structure DX.

Theorem 6. Let X be a construction so that dfm(Xn) = Θ∗(λn). Then for the double structure DX
we have pm(DXn) = Θ∗(λn) for even n.

More precisely: If dfm(Xn) = Θ(λn/nα), then pm(DXn) = Ω(λn/n2α+1) and O(λn/n2α).

Proof. Denote by dfmj(Xn/2) the number of down-free matchings of Xn/2 with exactly j free points,
for 0 ≤ j ≤ n/2, and let pj = dfmj(Xn/2)/dfm(Xn/2). Now

pm(DXn) =

n/2∑
j=0

pmj(DXn) by the definition of pmj

=

n/2∑
j=0

dfmj(Xn/2)2 by Proposition 5, see explanation below

= dfm(Xn/2)2 ·
n/2∑
j=0

p2
j by the definition of pj

= Θ
( λn/2

(n/2)α

)2

·
n/2∑
j=0

p2
j by assumption

= Θ(λn/n2α) ·
n/2∑
j=0

p2
j .
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The second equation follows from Proposition 5, which relates perfect matchings for a set P ∪ Q of
type DXn to pairs of down-free matchings of P with up-free matchings of Q, which conform to the
structure Xn/2.

Since
∑n/2
j=0 pj = 1, we immediately get an upper bound for the last factor:

∑n/2
j=0 p

2
j ≤ 1. For a

lower bound, we apply Jensen’s equality with the convex function x 7→ x2, which gives
∑n/2
j=0 p

2
j ≥

1
n/2+1 . These bounds imply the claims.

As the first application of Theorem 6, we show how one can reprove Theorem 1 without need to
determine the dominant term in (2). We use the following well-known fact.

Proposition 7 ([9] A001006). The number of all matchings in a set of n points in convex position
is the n-th Motzkin number Mn. Asymptotically, Mn = Θ(3n/n3/2).

Moreover, every matching of a downward chain is obviously down-free. Therefore, Theorem 6,
with λ = 3 and α = 3/2 gives immediately pm(DCn) = Ω(3n/n4) and O(3n/n3).

In the next sections we use Theorem 6 for estimating pm for other constructions.

4. Zigzag chains

By Theorem 6, asymptotic bounds on dfm(SZZCn) imply those on pm(DZZCn). Thus, we analyze
the number of down-free matchings of SZZCn. We defined above two kinds of double chains: even
and odd. We introduce three generating functions depending on the kind of chain and on the parity
of n:

1. A(x) =
∑
k≥0 akx

k, where ak = dfm(eSZZC2k+1);

2. B(x) =
∑
k≥0 bkx

k, where bk = dfm(oSZZC2k+1);

3. C(x) =
∑
k≥0 ckx

k, where ck = dfm(eSZZC2k) = dfm(oSZZC2k).

We find recursive relationships between the coefficients of these functions.

Recursion for ak. For every k ≥ 0 we have the following cases (Figure 5).

1. p1 is not matched. This contributes ck matchings.
2. p1 is matched to p2i+1 with 2 ≤ i ≤ k. This contributes

∑
2≤i≤k bi−1ck−i matchings.

3. p1 is matched to p2i with 1 ≤ i ≤ k, p2i−1 and p2i+1 are not matched to each other. This
contributes

∑
1≤i≤k ci−1ak−i matchings.

4. p1 is matched to p2i with 2 ≤ i ≤ k, p2i−1 and p2i+1 are matched to each other. This contributes∑
2≤i≤k bi−2ck−i matchings.

5. p1 is matched to p3. Then p2 must be matched to some point p2i+1 with 2 ≤ i ≤ k. This
contributes

∑
2≤i≤k bi−2ck−i matchings.

6. p1 is matched to p3, p2 is matched to p2i with 2 ≤ i ≤ k, and p2i−1 and p2i+1 are not matched
to each other. This contributes

∑
2≤i≤k ci−2ak−i matchings.

7. p1 is matched to p3, p2 is matched to p2i with 3 ≤ i ≤ k, and p2i−1 and p2i+1 are matched to
each other. This contributes

∑
3≤i≤k bi−3ck−i matchings.

Thus we obtain

ak = ck +
∑

2≤i≤k
bi−1ck−i +

∑
1≤i≤k

ci−1ak−i + 2
∑

2≤i≤k
bi−2ck−i +

∑
2≤i≤k

ci−2ak−i +
∑

3≤i≤k
bi−3ck−i. (3)

Recursion for bk. For every k ≥ 0 we have the following cases, see Figure 6, left side.

1. p1 is not matched. This contributes ck matchings.
2. p1 is matched to p2i with 1 ≤ i ≤ k. This contributes

∑
1≤i≤k ci−1bk−i matchings.

3. p1 is matched to p2i+1 with 1 ≤ i ≤ k, p2i and p2i+2 are not matched to each other. This
contributes

∑
1≤i≤k ai−1ck−i matchings.

4. p1 is matched to p2i+1 with 1 ≤ i ≤ k − 1, p2i and p2i+2 are matched to each other. This
contributes

∑
1≤i≤k−1 ci−1bk−i−1 matchings.

This yields

bk = ck +
∑

1≤i≤k
ci−1bk−i +

∑
1≤i≤k

ai−1ck−i +
∑

1≤i≤k−1

ci−1bk−i−1. (4)
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Figure 5: The cases in the recursion for ak.

Recursion for ck. Clearly, c0 = 1. For k ≥ 1 we have the following cases, see Figure 6, right side.

1. p1 is not matched. This contributes ak−1 matchings.

2. p1 is matched to p2i with 1 ≤ i ≤ k. This contributes
∑

1≤i≤k ci−1ck−i matchings.

3. p1 is matched to p2i+1 with 1 ≤ i ≤ k − 1, p2i and p2i+2 are not matched to each other. This
contributes

∑
1≤i≤k−1 ai−1ak−i−1 matchings.

4. p1 is matched to p2i+1 with 1 ≤ i ≤ k − 1, p2i and p2i+2 are matched to each other. This
contributes

∑
1≤i≤k−1 ci−1ck−i−1 matchings.

This gives

ck = ak−1 +
∑

1≤i≤k
ci−1ck−i +

∑
1≤i≤k−1

ai−1ak−i−1 +
∑

1≤i≤k−1

ci−1ck−i−1. (5)

After simplifying equations (3–5), we obtain:

ak = ck − ck−1 +

k−1∑
i=0

bick−1−i +

k−1∑
i=0

ciak−1−i + 2

k−2∑
i=0

bick−2−i +

k−2∑
i=0

ciak−2−i +

k−3∑
i=0

bick−3−i

bk = ck +

k−1∑
i=0

cibk−1−i +

k−1∑
i=0

aick−1−i +

k−2∑
i=0

cibk−2−i

ck = ak−1 +

k−1∑
i=0

cick−1−i +

k−2∑
i=0

aiak−2−i +

k−2∑
i=0

cick−2−i

We translate these equations into generating functions A(x) =
∑∞
k=0 akx

k, etc., and obtain the
following system, where we write A,B,C for A(x), B(x), C(x):

A = C((1− x) + x(1 + x)A+ x(1 + x)2B)

B = C(1 + xA+ x(1 + x)B)

C = 1 + xA+ x2A2 + x(1 + x)C2
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Figure 6: The cases in the recursions for bk and ck.

We eliminate A and B from this system and find that C satisfies the equation

1− (1 + 3x+ 5x2)C + x(5 + 8x+ 8x2 + 9x3)C2 − 8x2(1 + x)(1 + x+ x3)C3 +

+ 4x3(1 + x+ x3)(1 + x)2C4 = 0, (6)

and that A and B are related to C as follows:

A =
C(1− x+ 2x2C + 2x3C)

1− 2xC − 2x2C
(7)

B =
C(1− 2x2C)

1− 2xC − 2x2C

Equation (6) has four solutions. Only one of them can be written as a formal power series:

C =

2(1 + x+ x3)−
√

2(1 + x+ x3)
(

1− 2x− 8x2 − 3x3 + (1 + x)
√

(1− x− 3x2)(1− 9x− 3x2)
)

4x(1 + x)(1 + x+ x3)

The other three solutions have different combinations of signs before the two square roots. For those
combinations, the numerator has a non-zero constant term, and this cannot balance the absence of a
constant term in the denominator. For the series C(x) given above, the singularity closest to 0 occurs

in µ =
√

93
6 − 3

2 , one of the roots of 1− 9x− 3x2. It is a square root singularity, and there is no other
singularity with the same absolute value; thus, by the exponential growth formula [5, Thm. IV.7]
and a transfer theorem [5, Thm. VI.1], the asymptotics of the sequence is ck = Θ((1/µ)k k−3/2) with
1/µ = (

√
93 + 9)/2 ≈ 9.3218.

Since ck counts matchings of 2k points, it follows that the number of down-free matchings of

SZZCn of this kind is Θ(λn/n3/2), where λ =
√

1/µ =
√

(
√

93 + 9)/2 ≈ 3.0532. It is easy to see that

the same bound holds for all kinds of zigzag chains: for the proof, note that a zigzag chain of kind C
with 2k points includes a zigzag chain of kind A with 2k− 1 points and is included in a zigzag chain
of kind A with 2k + 1 points; similarly for kind B.

Finally, it follows from Theorem 6 that the number of perfect matchings of DZZCn (of either
kind) is Ω(λn/n4) and O(λn/n3). This proves Theorem 2.
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5. r-chains without corners

5.1. Definition of r-chains with and without corners

In the following two sections we deal with further generalizations of the double chain. An upward
single chain will be called an arc. As usual, the size of an arc is the number of its points. Recall
that three points with distinct x-coordinates are in upward position if they form a clockwise oriented
triangle when sorted by x-coordinate.

We define an r-chain (with corners) with k arcs, to be denoted by CH(r, k), see Figure 7(a) for an
example. It consists of k arcs of size r+1, the rightmost point of the ith arc (1 ≤ i ≤ k−1) coinciding
with the leftmost point of the (i+ 1)st arc, such that any three points are in upward position if and
only if they belong to the same arc. An r-chain CH(r, k) has rk+1 points. As a special case, a simple
(downward) chain is a 1-chain, and an even zigzag chain of odd size is a 2-chain.

One can construct an r-chain CH(r, k) with k arcs as follows:

• Take k+1 points V0, V1, V2, . . . , Vk, sorted by x-coordinate, in downward position. These points
will be called the corners.

• For each i = 1, 2, . . . , k, add r − 1 points on the segment Vi−1Vi.

• Replace each segment Vi−1Vi by a very flat upward circular arc through Vi−1 and Vi. Move
the r − 1 points from the segment vertically upwards so that they lie on this circular arc. The
radius of the circular arc must be sufficiently big so that the orientation of triples of points that
do not lie on the same segment is not changed.

We shall often use a compact schematic drawing of r-chains as in Figure 7(b). In such drawings we
have to draw some matching edges as curved lines rather than as straight-line segments, to avoid
crossings.

(a)

(b)

V0

V1

V2

V3

V4

V5

V6

Figure 7: A 5-chain (with corners) with six arcs: (a) a precise drawing; (b) a schematic drawing.

The class of (double) r-chains was earlier used for finding lower bounds on the maximal number of
triangulations (tr) of point sets in the plane. Garćıa, Noy, and Tejel [6] showed that tr(DCn) = Θ∗(8n).
Aichholzer, Hackl, Huemer, Hurtado, Krasser, and Vogtenhuber [1] improved this bound by showing
that tr(DZZCn) = Θ∗(8.48n). This result was further improved by Dumitrescu, Schulz, Sheffer,
and Tóth [4], who showed that a double 4-chain of size n, denoted in their work by D(n, 3n/8), has
Ω(8.65n) triangulations.

Now we define a variation of this structure whose analysis is easier. An r-chain without corners
with k arcs, denoted by CH∗(r, k), is a set obtained from CH(r + 1, k) by deleting the corners. It
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consists of rk points. See Figure 8 for an example. In this section, we will analyze r-chains without
corners, and we will find precise asymptotic estimates for the number of down-free matchings. In the
next section, we will turn to r-chains with corners. They give even stronger lower bounds, but the
analysis will be more laborious and not so precise.

(a)

(b)

Figure 8: A 4-chain without corners with six arcs: (a) precise drawing; (b) schematic drawing.

5.2. Matchings with runners

Consider a matching of X = CH∗(r, k). We want to build down-free matchings incrementally
from left to right by adding one arc at a time. If we cut such a matching between two arcs, then we
possibly have some edges cut into two “half-edges”, which we call runners. (In botany, runners are
shoots that connect individual plants.) A runner can be formally defined as a marked vertex. Such a
vertex must not be matched by “proper” edges and must be visible from above. These requirements
ensure that, in the course of the incremental construction, two runners can be joined into one edge.
Runners are visualized as half-edges that have one endpoint in X and the other end dangling, see
Figure 9(a). Note that it is not assigned in advance whether a runner will be matched to the left or
to the right.

A matching which possibly has runners will be called a ρ-matching. Extending our previous
definition of free points, we call a point free in a ρ-matching if it is neither matched by a “proper”
edge nor marked as an endpoint of a runner. A ρ-matching is down-free if all free vertices are visible
from below.

(a)

(b)

A B

Figure 9: (a) A down-free ρ-matching MA with four runners of A = CH∗(6, 3). (b) Combining MA with a down-free
ρ-matching with three runners of B = CH∗(6, 1).
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In the course of the recursive construction of down-free ρ-matchings, runners from different arcs
can be matched as follows. Let A and B be two r-chains without corners, and let MA and MB be
down-free ρ-matchings of these sets. We place B to the right of A. If MA has j runners and MB

has β runners, then for each ` in the range 0 ≤ ` ≤ min{j, β} we can match, in a unique way, the
rightmost ` runners of MA to the leftmost ` runners of MB . The obtained ρ-matching M is also
down-free; the runners which were not matched in this procedure remain runners in M ; the number
of such runners is j + β − 2`. Conversely, each down-free ρ-matching of A ∪ B can be obtained by
this procedure from two uniquely determined down-free ρ-matchings of A and B. Figure 9(b) shows
an example with j = 4, β = 3, ` = 2.

We summarize these observations for the special case that we will use in the recursive construction
of r-chains: adding one new arc to the right of a given r-chain, see Figure 10.

j i

β

A: k − 1 arcs
zk−1
j zki

B: the kth arc

`
. . .

Figure 10: Runners in a recursive construction of a ρ-matching of an r-chain without corners.

Observation 8. Let X = CH∗(r, k) be an r-chain without corners with k ≥ 1 arcs. Let B be the
rightmost arc of X, and let A = X \B. Let MA be a down-free ρ-matching of A with j runners, and
let MB be a down-free ρ-matching of B with β runners. For each 0 ≤ ` ≤ min{j, β} there exists a
unique down-free ρ-matching MX,` of X obtained by matching the rightmost ` runners of MA with
the leftmost ` runners of MB. The number of runners in MX,` is i = j + β − 2`.

Conversely, each down-free ρ-matching M of X can be obtained in this way from uniquely deter-
mined matchings MA and MB (of A and B) as above. If M has i runners, MA has j runners, and MB

has β runners, then the number of edges obtained by matching of pairs of runners is ` = (j+β− i)/2.

For k = 1, this observation holds trivially: A is empty, and the only possibility is j = ` = 0, β = i.
From the above relations between the parameters i, j, β, `, one can work out the constraints on the
possible values of β for given i and j: The equation i = j + β − 2` together with 0 ≤ ` ≤ min{j, β}
implies that β must satisfy |i− j| ≤ β ≤ i+ j and β ≡ i− j (mod 2).

5.3. Recursion for matchings with runners in r-chains without corners

Denote the number of down-free ρ-matchings of CH∗(r, k) with i runners by zki (r) or simply by
zki , since we will regard r as fixed (see the right part of Figure 10). The down-free matchings of
X = CH∗(r, k) are just the down-free ρ-matchings without runners. Since the size of X is rk, the

growth constant for the number of its down-free matchings is limk→∞
rk
√
zk0 (r).

For k = 0 we have z0
0 = 1 and z0

i = 0 for i > 0. The numbers z1
i for a chain consisting of a single

arc (or equivalently, a single upward chain of size r) will serve as a basis of the recursion. They are
determined in the following proposition.

Proposition 9. 1. The number of down-free matchings (without runners) of a single arc of size
r is

z1
0 = z1

0(r) =

(
r

br/2c

)
.

2. The number of down-free ρ-matchings of a single arc of size r that have i runners is

z1
i = z1

i (r) =

(
r

i

)(
r − i

b(r − i)/2c

)
=

(
r

i, b(r − i)/2c, d(r − i)/2e

)
.
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Proof. 1. For the first equation, let f(x) =
∑∞
r=0 z

1
0(r)xr be the generating function for the number

of such matchings in terms of the size r of an arc. We will show that f(x) satisfies the equation

f(x) =
1

1− x
(
x2 · c(x2) · f(x) + 1

)
, (8)

where c(x) = (1 −
√

1− 4x)/2x is the generating function of the Catalan numbers. Therefore, we
have

f(x) =
1

1− x− x2c(x2)
,

and this is known to be the generating function for
(

r
br/2c

)
[9, A001405].

To see why (8) holds, consider the leftmost matched point p (if there is any). Suppose that p
is matched with q, see Figure 11 for illustration. Then all points to the left of p are free, which
contributes 1/(1 − x) to the generating function. The points between p and q are not visible from
below and, therefore, they are matched by a perfect matching; this contributes c(x2). Finally, the
points to the right of q are matched by a down-free matching, whose generating function is again
f(x). The factor x2 accounts for the two points p and q, and the additive term +1 accounts for the
case that p does not exist.

p

q

Figure 11: The leftmost edge pq in the proof of Proposition 9.1.

We give another proof – a bijective one. For a given matching, we mark the left and right
endpoints of each edge by L and R, respectively. We leave the free points unmarked for the moment.
Then the non-crossing matching can be reconstructed from the labels: We traverse the points from
left to right, and we match each R that we meet with the closest previous unmatched L. Moreover,
since the matching is down-free, free vertices can only appear when there are no previous unmatched
L-vertices. Now we label the free points: If there are γ free points, we label the first bγ/2c free points
by R and the last dγ/2e free points by L, see Figure 12 for illustration. The free points marked R

can be recovered in a left-to-right sweep as those R-vertices for which we find no previous matching
L-vertex in the above procedure. The free points marked L can be recovered similarly in a right-to-left
sweep, and finally, the matching among the non-free points can be found as described above. Thus
we have established a bijection with sequences of length r over the alphabet {L, R} that contain br/2c
many R’s.

RRLLL LRRLL RLRLL RLLRL RLLLR

LLRRL LRLRL LLLRR LLRLR LRLLR

Figure 12: The coding of down-free matchings in the second proof of Proposition 9.1.

2. Let us turn to the second equation. Once we choose i endpoints of runners, the whole matching
is down-free if and only if its restriction on the remaining r − i points is down-free. Therefore, the
result follows directly from the first part.

Now we find a recursion for zki , k ≥ 1.
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Proposition 10. For fixed r, we have the recursion

zki =
∑
j≥0

aijz
k−1
j , (9)

with coefficients

aij =
∑

0≤β≤r,
|i−j|≤β≤i+j,

β≡i−j (mod 2)

z1
β = z1

|i−j| + z1
|i−j|+2 + · · ·+ z1

min{r∗,i+j}, (10)

where r∗ is r or r − 1 and has the same parity as i− j.

Proof. For k = 1, (9) can be verified directly. Assume now X = CH∗(r, k) with k > 1, let B be
the rightmost arc of X, and let A = X \ B. For each j ≥ 0 and each possible β we will find the
number of ρ-matchings of X with i runners whose restriction to A has j runners and restriction to
B has β runners. By Observation 8, ρ-matchings of A and B and the values of i, j and β determine
uniquely an ρ-matching of X. Therefore ρ-matchings of A and B with (respectively) j and β runners
contribute zk−1

j · z1
β ρ-matchings of X with i runners.

For given i and j, the bounds |i − j| ≤ β ≤ i + j and the restriction β ≡ i − j (mod 2) given
in (10) are explained in the remark after Observation 8.

5.4. Analysis of the recursion

For each k ≥ 0, denote vk = (zk0 , z
k
1 , z

k
2 , z

k
3 , . . . )

>. In particular we have v0 = (1, 0, 0, 0, . . . )>.
Consider the infinite coefficient matrix A = (aij)i,j∈N0

with aij given by (10). By Proposition 10, we
have Avk−1 = vk for each k ≥ 1. One easily verifies that the matrix A has the following properties:

• A is symmetric.

• A is a band matrix of bandwidth r: for |i− j| > r we have aij = 0.

• The entries of the first row and column are ai0 = a0i = z1
i =

(
r
i

)(
r−i

b(r−i)/2c
)
.

• For i+j ≥ r∗ we have ai+1,j+1 = aij . That is, the diagonals – sets of entries with fixed q := j−i,
|q| ≤ r – stabilize starting from the entry a(r∗−q)/2,(r∗+q)/2. For these entries we have:

aij = ai,i+q =
∑
|q|≤β≤r

β≡q (mod 2)

z1
β . (11)

In particular, starting from the rth row (resp. column), the rows (resp. columns) are shifts of
each other, and therefore, have the same sum of elements.

• The elements in the upper-left corner (i + j < r∗) are positive and smaller than the elements
in the same diagonal after stabilization – since in this case we have a partial sum of (11).

For example, for r = 5, the matrix is

A =



10 30 30 20 5 1 0 0 0 0 0 · · ·
30 40 50 35 21 5 1 0 0 0 0 · · ·
30 50 45 51 35 21 5 1 0 0 0 · · ·
20 35 51 45 51 35 21 5 1 0 0 · · ·
5 21 35 51 45 51 35 21 5 1 0 · · ·
1 5 21 35 51 45 51 35 21 5 1 · · ·
0 1 5 21 35 51 45 51 35 21 5 · · ·
0 0 1 5 21 35 51 45 51 35 21 · · ·
0 0 0 1 5 21 35 51 45 51 35 · · ·
0 0 0 0 1 5 21 35 51 45 51 · · ·
0 0 0 0 0 1 5 21 35 51 45 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .



(12)
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The column sum λr after stabilization of the columns, that is, starting from the (r+ 1)st column,
is as follows:

λr =

r∑
i=0

(i+ 1)z1
i =

r∑
i=0

(i+ 1)

(
r

i

)(
r − i

b(r − i)/2c

)
=

r∑
i=0

(i+ 1)

(
r

i, b(r − i)/2c, d(r − i)/2e

)
(13)

In the spirit of the Perron-Frobenius theorem for non-negative stochastic matrices, one can expect
that λr is the growth constant for (zk0 )k≥0. This is indeed the case. We will prove it by using a result
by Banderier and Flajolet [3] about enumeration of certain kinds of colored lattice paths.

Proposition 11. For fixed r, we have zk0 = Θ∗
(
(λr)

k
)
.

Note that the superscript k in the left-hand side denotes an index, whereas in the right-hand side
it is a power.

Proof. We begin with some notion for lattice paths. Families of lattice paths are usually defined by
indicating a starting point – normally (0, 0) – and a set of possible moves of the form (1, β). For
many familiar families it is additionally required that the paths never go below the x-axis and/or end
at the x-axis. The paths that start at (0, 0) and satisfy both these restrictions are called excursions.
For example, Motzkin paths [9, A001006] are excursions that use the moves (1, 1), (1, 0), (1,−1).

In a more general setting, a set of possible moves may depend on the point reached by a path.
Moreover, each move (1, βi) starting in a certain point can have a non-negative integer multiplicity
mi. This is sometimes expressed by saying that these are mi copies of the same move that are
distinguished by different “colors”.

In summary, to each lattice point (a, b) we assign a rule – a set of moves that can be used for the
next step once a path has reached this point, together with multiplicities. It is assumed that for each
lattice point the number of moves with non-zero multiplicity is finite. The condition of not crossing
the x-axis can be expressed in terms of such rules: for each point (a, b) there must be only moves
(1, β) with β ≥ −b.

Consider now the case that all points that lie on the same horizontal line have the same rule.
Namely, for y = j and i ≥ 0 we denote by dij the multiplicity of the move (1, i − j) at (any) point
(a, j). We collect these data in the infinite matrix D = (dij)i,j∈N0 . Let u = (1, 0, 0, . . . )>. Then the
number of paths that start at (0, 0), do not cross the x-axis, and end at a point (a, b) is equal to the
bth component of Dau – this follows directly from matrix multiplication. In particular, the upper-left
entry of Dk is the number of excursions of length k, which we will denote by Ex(D, k). The quantity
in which we are interested, the number zk0 of down-free matchings, is then given by zk0 = Ex(A, k),
where A is the coefficient matrix given above (11).

Suppose now that we have an even more restricted case: all points have the same rules; yet still
we want to consider only paths that remain weakly above the x-axis, so we exclude the moves that
violate this requirement. For such families, a result of [3, Theorem 3] can be applied. It states that the
number of excursions of length k with moves {(1, b1), (1, b2), . . . , (1, bm)} and associated multiplicities
w1, . . . , wm, is of the form Θ(Ck/k3/2), where the base C of the exponential growth is determined as
follows: For the Laurent polynomial P (u) =

∑m
j=1 wju

bj , let τ be the unique positive number such
that P ′(τ) = 0; then C = P (τ). The situation is particularly easy for families with a symmetric
set of moves, that is, if (1, b) is a move then (1,−b) is also a move with the same multiplicity, or
equivalently, P (u) = P (u−1). In this case, τ = 1, and consequently, C = P (τ) =

∑m
j=1 wj .

The situation for our matrix A is very similar to this case, except that the first r − 1 horizontal
lines of the lattice follow different rules, in accordance with the fact that the first r− 1 rows of A are
different from the others. However, this does not affect the asymptotic growth constant. Indeed, let
us look at the matrix A′ in which the first r rows and columns of A have been removed. It coincides
with A for i + j ≥ r, but the rule ai+1,j+1 = aij holds for all entries – also in the upper-left corner.
Since A ≤ A′ elementwise, we clearly have Ex(A, k) ≤ Ex(A′, k) = Θ(λkr/k

3/2). To see that we
have a lower bound of the same asymptotic form, consider only those excursions that start with the
move (1,+r), end with the move (1,−r), and never go below level r. The intermediate part of the
excursion is governed by the matrix A from which the first r rows and columns have been removed,
which coincides with the matrix A′. Thus Ex(A, k) ≥ Ex(A′, k − 2) = Θ(λkr/k

3/2).
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5.5. Asymptotic growth constants

Since A = CH∗(r, k) has n = rk points, it follows from Proposition 11 that the growth constant
for the number of down-free matchings of the r-chain without corners of size n is r

√
λr. In order to

estimate λr, we note that the expression (13), when the factor (i + 1) is ignored, counts partitions
of r elements into three subsets (the latter two being of almost equal size). The total number of
such partitions is 3r. Hence, λr ≤ (r + 1)3r, and r

√
λr converges to 3. Computations suggest that

the maximum of r
√
λr is obtained for r = 11: 11

√
λ11 = 11

√
240054 ≈ 3.0840; after that it apparently

decreases monotonically to 3, see the left part of Table 1 for the first few values. To prove that r = 11
gives indeed the maximum, one estimates that r

√
λr ≤ 3 r

√
r + 1 < 3.0838 for r ≥ 191, and the finitely

many values up to r = 190 can be checked individually. This completes the proof of Theorem 3.
In order to find a more precise estimate for λr, we notice that the middle expression in (13)

expresses λr as the binomial convolution of the sequence of natural numbers and the sequence
(

m
bm/2c

)
.

It follows that the exponential generating function for (λr)r≥0 is

(1 + x) ex (I0(2x) + I1(2x)),

where I0(x) and I1(x) are the modified Bessel functions of the first kind. From this we can conclude
that the sequence (λr)r≥0 is the sum of the sequence A005773 and a shifted copy of A132894 in [9].
The ordinary generating function for this sequence is then

1

2x

(
1− 2x− x2

(1 + x)1/2(1− 3x)3/2
− 1

)
,

and it follows from the exponential growth formula that λr = Θ(3rr1/2). By Theorem 6 this number
is also the growth constant of the number of perfect matchings for the corresponding double structure.

6. r-chains with corners

6.1. Definitions and notation

In this section, we will treat r-chains with corners, but we will simply refer to them as r-chains.
The analysis of these r-chains is more complicated due to the fact that the corners belong to two
arcs. As before, we will incrementally build the r-chain and estimate the number of matchings of the
r-chain with k arcs, which possibly have runners. We extend the notions of runners, free points, and
ρ-matchings to r-chains with corners in the obvious way.

Recall that the corners of the chain are denoted by V0, V1, . . . , Vk, . . .: Vk is the rightmost point
of the kth arc. We cut a down-free ρ-matching M of CH(r, k) to the right of Vk−1 and obtain two
down-free ρ-matchings: the first, MA, of A – the set consisting of the first k− 1 arcs of CH(r, k); and
the second, MB , of B – the rightmost arc of CH(r, k) without the point Vk−1, see Figure 13 for an
example. Note that in the case of r-chains with corners a runner incident to Vk−1, upon adding B on
the right, can be also connected to a point of B: in such a case we say that it is matched internally.

We distinguish whether M has a runner incident to Vk or not. Let Cki be the number of down-free
ρ-matchings of CH(r, k), where Vk has a runner and there are i runners in addition to the runner
at Vk. Let F ki be the number of down-free ρ-matchings of CH(r, k), where Vk has no runner and there
are i runners. (C stands for “corner”, F for “free”.) For k = 0, there is a single vertex, and we have
C0

0 = F 0
0 = 1 and C0

i = F 0
i = 0 for all i > 0. The number that we are interested in, the number of

matchings in CH(r, k), is F k0 .

6.2. Recursions

Next we find interdependent recursive expressions for Cki and for F ki .

Recursion for Cki . For Cki , the new corner Vk has a runner and is not available for receiving edges
from the left. Thus for the formulae below, it can be treated as if it were not present in the kth arc.
We have the following three cases:

1. (Figure 13.) The previous corner Vk−1 has a runner which is not matched internally in the kth
arc. It is thus matched to the right. Suppose there are α runners originating in the k-th arc, in
addition to the runner originating in Vk−1. These runners must also be matched to the right.
The contribution to Cki is ∑

0≤α≤min{r−1,i−1}
ZαC

k−1
i−1−α, (14)
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r λr
r
√
λr Mr Tr

1 3 3
(

1 1
2 2

)
3

2 9 3
(

3 3
7 6

)
3.0532

3 28 3.0366
(

10 9
21 19

)
3.0711

4 87 3.0541
(

31 28
66 59

)
3.0819

5 271 3.0662
(

97 87
204 184

)
3.0877

6 843 3.0735
(

301 271
632 572

)
3.0909

7 2619 3.0783
(

933 843
1952 1776

)
3.0925

8 8123 3.0812
(

2885 2619
6022 5504

)
3.0930

9 25153 3.0829
(

8907 8123
18550 17040

)
3.0929

10 77763 3.0837
(

27457 25153
57071 52610

)
3.0923

11 240054 3.0840
(

84528 77763
175381 162291

)
3.0915

12 740017 3.0839
(

259909 240054
538386 499963

)
3.0904

13 2278329 3.0835
(

798295 740017
1651140 1538312

)
3.0893

14 7006093 3.0829
(

2449435 2278329
5059251 4727764

)
3.0880

15 21520872 3.0822
(

7508686 7006093
15489221 14514779

)
3.0867

16 66039651 3.0813
(

22997907 21520872
47384904 44518779

)
3.0854

17 202462113 3.0804
(

70382811 66039651
144857454 136422462

)
3.0841

18 620164491 3.0794
(

215240265 202462113
442540653 417702378

)
3.0828

19 1898109900 3.0785
(

657780918 620164491
1351126551 1277945409

)
3.0815

20 5805127269 3.0774
(

2008907469 1898109900
4122747150 3907017369

)
3.0803

Table 1: Summary of results for r-chains without and with corners, for 1 ≤ r ≤ 20. For r-chains without corners,
λr is the row sum of the matrix A (Section 5.4), and r

√
λr is the growth constant for pm. For r-chains with corners,

the condensed coefficient matrix Mr is derived from the recursion (Section 6.5), and Tr, the r-th root of its dominant
eigenvalue, is the growth constant for pm. In both cases, the values for r = 1 and r = 2 reproduce the known bounds.
Indeed, a 1- and a 2-chain without corners, as well as a 1-chain with corners, is just a downward chain, and thus the
growth constant of 3 agrees with Theorem 1. A 2-chain with corners is a zigzag chain, and thus T2 ≈ 3.0532 agrees
with Theorem 2.

where

Zα =

(
r − 1

α

)(
r − 1− α

b(r − 1− α)/2c

)
.

The expression for Zα is similar to z1
α from Proposition 9.2, but here we have only r− 1 points:

all the points of the kth arc, excluding the corners.

2. (Figure 14.) Vk−1 has no runner. This possibility contributes∑
j≥0

∑
|i−j|≤α≤i+j

α≡i−j (mod 2)
0≤α≤r−1

ZαF
k−1
j . (15)

This formula (as well as some of the formulae in the following cases) has the same pattern as
(9), with appropriate changes.

3. (Figure 15.) Vk−1 has a runner matched internally in the k-th arc. The contribution to Cki is∑
j≥0

∑
|i−j|≤α≤i+j

α≡i−j (mod 2)
0≤α≤r−1

IαC
k−1
j , (16)

where

Iα =

(
r − 1

α

)[(
r − α

b(r − α)/2c

)
−
(

r − 1− α
b(r − 1− α)/2c

)]
=

(
r − 1

α

)(
r − 1− α

b(r − 2− α)/2c

)
.

18



P637

P638

P639

P640

P641

P642

P643

P644

P645

P646

P647

P648

P649

P650

P651

P652

the kth arc

Vk−1 Vk
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A B

Figure 13: Case 1 in the recursion for Ck
i : Vk−1 has a runner not matched internally in the kth arc.

the kth arc

Vk−1 Vk

i

α

j

Figure 14: Case 2 in the recursion for Ck
i : Vk−1 has no runner.

In the expression for Iα, the first factor counts the choices of α runners from the r − 1 points.
In the second factor, we subtract from all down-free ρ-matchings on the remaining r−α points
(including Vk−1) those in which Vk−1 is unmatched, which is the same as down-free ρ matchings
on r − 1− α points.

Cki is the sum of the three expressions (14–16).

Recursion for F ki . For F ki , we have again three cases:

1. (Figure 16.) Vk−1 has a runner not matched internally in the kth arc. In this case, all the
additional α runners originating in the interior of the k-th arc must be matched to the right.
Vk is either free or matched internally to the left. The contribution to F ki is∑

0≤α≤min{r−1,i−1}
WαC

k−1
i−1−α, (17)

where

Wα =

(
r − 1

α

)(
r − α

b(r − α)/2c

)
is again similar to z1

α from Proposition 9.2, but here we have r − 1 in the first factor because
no runner originates from Vk.
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Figure 15: Case 3 in the recursion for Ck
i : Vk−1 has a runner matched internally in the kth arc.
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Vk−1 Vk
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α

Figure 16: Case 1 in the recursion for Fk
i : Vk−1 has a runner not matched internally in the kth arc.

2. (Figure 17.) Vk has a runner connected to a point of A \ {Vk−1}. In this case, all α runners
originating in the k-th arc must be matched to the left. The contribution to F ki is∑

0≤α≤r−1

(IαC
k−1
i+1+α + ZαF

k−1
i+1+α). (18)

The two terms – with Ck−1 and with F k−1 – correspond to the subcases where Vk−1 is internally
matched or, respectively, not matched to a point of the kth arc.

3. (Figure 18.) Vk−1 has no runner, and Vk has no runner matched to a point of A \ {Vk−1}. The
contribution to F ki is ∑

j≥0

∑
|i−j|≤α≤i+j

α≡j−i (mod 2)
0≤α≤r−1

(UαC
k−1
j +WαF

k−1
j ), (19)

where

Uα =

(
r − 1

α

)[(
r + 1− α

b(r + 1− α)/2c

)
−
(

r − α
b(r − α)/2c

)]
=

(
r − 1

α

)(
r − α

b(r − 1− α)/2c

)
The two terms correspond to the same possibilities as in the previous case. The factor Uα is
similar to Iα in the third case for Cki , but here we count the down free ρ-matchings of the whole
kth arc with both its corners, hence we have r + 1 instead of r in the second factor.

F ki is the sum of the three expressions (17–19).
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Figure 17: Case 2 in the recursion for Fk
i : Vk is connected to a point to the left of Vk−1.
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Figure 18: Case 3 in the recursion for Fk
i : Vk−1 has no runner and Vk is not connected to a point to the left of Vk−1.

6.3. Analysis of the recursion

The expressions above imply a coupled mutual recurrence between two sequences of vectors Ck =
(Ck0 , C

k
1 , C

k
2 , . . .)

> and F k = (F k0 , F
k
1 , F

k
2 , . . .)

>. The initial values are C0 = F 0 = (1, 0, 0, . . .)>. Ck

and F k are expressed in terms of Ck−1 and F k−1 as follows. For i ≥ r, we have:

Cki =

r∑
β=−r

aCCβ Ck−1
i+β +

r∑
β=−r

aCFβ F k−1
i+β

F ki =

r∑
β=−r

aFCβ Ck−1
i+β +

r∑
β=−r

aFFβ F k−1
i+β ,

(20)

where the numbers aCC , aCF , aFC , aFF are to be read out from the expressions in Section 6.2. For
the small indices i < r, we have irregularities, like for r-chains without corners: The coefficients in
(20) must be replaced by smaller coefficients which depend also on i. In matrix notation, the recursion
is written as

Ck = ACCCk−1 +ACFF k−1

F k = AFCCk−1 +AFFF k−1,
(21)

where there are four band matrices ACC , ACF , AFC , AFF of bandwidth r, similar to the matrix A
from (12).
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Figure 19: The recursion (20) gives the number of paths on this network. The neighborhood of a typical vertex Ci is
shown in a schematic way.

This system can be interpreted as a set of lattice paths on a two-layer lattice, see Figure 19. We
have a row of nodes C0, C1, C2, . . . and another row of nodes F0, F1, F2, . . . immediately below it.
The possible jumps and their multiplicity depend only on the row, with irregularities close to the left
edge. In this representation, the lattice paths considered in the proof of Proposition 11 in Section 5.3
correspond to walks on a ray 0, 1, 2, . . .. The x-coordinate of the two-dimensional lattice in Section 5.3
is now represented as time.)

We are not able to provide as precise estimates for the growth constant as for chains without
corners, where we had a single recursion. One would expect a similar behaviour. However, we can
still pin down the base of the exponential growth as an eigenvalue of an associated 2× 2 matrix.

First, we can get rid of the irregularities by cutting off the first r rows and columns of the coefficient
matrices. As for the case of a single matrix, this does not affect the asymptotic growth. We can now
assume that the diagonals are constant, and the recursion (20) holds for all i, with the convention
that Ck−1

j and F k−1
j in the right-hand side are taken as 0 for j < 0.

For better readability, we will now replace the vectors Ck and F k by more generic names xk and
yk:

xki =

r∑
β=−r

aXXβ xk−1
i+β +

r∑
β=−r

aXYβ yk−1
i+β

yki =

r∑
β=−r

aY Xβ xk−1
i+β +

r∑
β=−r

aY Yβ yk−1
i+β ,

(22)

for all i, with the understanding that quantities xk−1
j and yk−1

j with negative subscripts j are regarded
as zero on the right-hand side.

We start with the vectors
x0 = y0 = (1, 0, 0, 0, . . .), (23)

but any other nonnegative start vectors different from the zero vector will lead to the same asymptotic
growth.

Our analysis below relies on the fact that the coefficients of the recursion don’t exhibit a tendency
to favor larger or smaller indices, or in other words, that the Markov chain associated to the system
does not systematically drift to the left or to the right. (In the one-vector recursion analyzed in
the proof of Proposition 11, this no-drift condition was not an issue because the set of moves was
symmetric.) To formulate this condition precisely, we have to set up some notation and establish
some terms.

Let us denote the coefficient sums in the terms of the recursion (22) as follows:

AXX =

r∑
β=−r

aXXβ , AXY =

r∑
β=−r

aXYβ , AY X =

r∑
β=−r

aY Xβ , AY Y =

r∑
β=−r

aY Yβ .

These numbers are the column sums of the coefficient matrices after stabilization. These sums form
the condensed coefficient matrix (

AXX AXY

AY X AY Y

)
. (24)

Let M denote its dominant eigenvalue. Let (ρX , ρY ) be the corresponding left eigenvector and
(πX , πY )> be the corresponding right eigenvector, with the normalization ρX + ρY = πX + πY = 1.
Since the matrix is positive, these two vectors are positive.
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We define the total group-to-group jump sizes of the system:

DXX =

r∑
β=−r

aXXβ β, DXY =

r∑
β=−r

aXYβ β, DY X =

r∑
β=−r

aY Xβ β, DY Y =

r∑
β=−r

aY Yβ β.

The weighted total jump size D of the system is then defined as follows:

D = ρXπXD
XX + ρXπYD

XY + ρY πXD
Y X + ρY πYD

Y Y (25)

=
(
ρX ρY

)(DXX DXY

DY X DY Y

)(
πX
πY

)
Now we can state the main result of the analysis.

Theorem 12. Suppose the system (22) has non-negative coefficients, and the weighted total jump
size D is zero. Assume that the coefficients aXXβ , aXYβ , aY Xβ , aY Yβ are positive for β = −1, 0, 1. Let
M be the dominant eigenvalue of the condensed coefficient matrix (24). Then

xk0 = O(Mk), yk0 = O(Mk),

and
xk0 = Ω((M − ε)k), yk0 = Ω((M − ε)k)

for every ε > 0.

Since the proof is quite substantial, we devote a separate section to it.

6.4. Proof of the theorem about mutually coupled recursions

We will transform the problem to a recursion in which the left eigenvector is (ρX , ρY ) = (1, 1),
and thus the column sums of the coefficient matrix (after stabilization) are constant. We achieve this
by rescaling the vectors x and y to x̃ki = ρXx

k
i and ỹki = ρY y

k
i . Clearly, the asymptotic growth of x

and y is unaffected by this multiplication with a constant. For these new vectors, the coefficients of
the recursion change to ãXYβ = ρX/ρY ·aXYβ and ãY Xβ = ρY /ρX ·aY Xβ , while ãXXβ = aXXβ , ãY Yβ = aY Yβ
are unchanged. Consequently, the first column sum of the condensed coefficient matrix (24) becomes
AXX + ρY /ρX · AY X = (ρX · AXX + ρY · AY X)/ρX = (MρX)/ρX = M , and similarly for the
second column. Theorem 12 follows therefore from the following theorem, which is a special case of
Theorem 12 with the additional assumption that the matrix (24) has constant column sums.

Theorem 13. Suppose the system (22) has non-negative coefficients and constant column sums

M = AXX +AY X = AXY +AY Y . (26)

Suppose that
πX
(
DXX +DY X

)
+ πY

(
DXY +DY Y

)
= 0, (27)

where (πX , πY ) is a right eigenvector of the matrix (24) with eigenvalue M . Suppose further that the
coefficients aXXβ , aXYβ , aY Xβ , aY Yβ are positive for β = −1, 0, 1. Then

xk0 = O(Mk), yk0 = O(Mk),

and
xk0 = Ω((M − ε)k), yk0 = Ω((M − ε)k)

for every ε > 0.

Theorem 13 is formulated in terms of the original recursion (22), but it must be applied to x̃
and ỹ instead of x and y in order to prove Theorem 12. Our rescaling modifies group-to-group
jump sizes in the same way as the coefficients: D̃XY = ρX/ρY · DXY , etc.; the eigenvectors of the
modified condensed coefficient matrix are (π̃X , π̃Y ) = (ρXπX , ρY πY ) and (ρ̃X , ρ̃Y ) = (1, 1) (without
normalization), and with these substitutions, the condition that D from (25) is zero translates into
(27), after erasing the tildes. This concludes the proof of Theorem 12.
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Proof of Theorem 13. The upper bound is easy: by summing all equations of (22), one sees that∑
i≥0 x

k
i +
∑
i≥0 y

k
i can grow at most by the factor M in each iteration, since the column sums of the

coefficient matrix are bounded by M . It follows that xk0 , y
k
0 ≤

∑
i x

k
i +
∑
i y
k
i ≤Mk(

∑
i x

0
i +
∑
i y

0
i ) =

2Mk.
Let us now turn to the lower bound: To have a compact notation for the linear operator expressing

in the recursion (22), we denote it by φ:

(xk, yk) = φ(xk−1, yk−1)

As an intermediate lemma, we will show that any “sub-eigenvector” with eigenvalue λ is enough for
a lower bound on the growth.

Lemma 14. Suppose there is a pair of non-negative non-zero vectors x̄ and ȳ with finitely many
non-zero elements such that the inequality

φ(x̄, ȳ) ≥ λ · (x̄, ȳ) (28)

holds componentwise for some λ > 0. Then there is a constant K > 0 such that xn0 , y
n
0 ≥ Kλn for all

n ∈ N.

Proof. Since φ is a monotone operator, the inequality (28) remains fulfilled if we repeatedly apply φ
to each side:

φk+1(x̄, ȳ) = φ(φk(x̄, ȳ)) ≥ λ · φk(x̄, ȳ)

Applying φ to (x̄, ȳ) sufficiently many times, we eventually obtain a vector (x̃, ỹ) = φk(x̄, ȳ) whose
components x̃0 and ỹ0 are positive, since the coefficients aXX1 , aXY1 , aY X1 , aY Y1 are positive by assump-
tion. Moreover, by scaling we can obtain a vector in which these components are bigger than 1 and
(28) still holds. Thus, renaming the new vector to (x̄, ȳ), we can assume that x̄0 ≥ 1 and ȳ0 ≥ 1.

Now, we find n1 and K such that the following inequality holds componentwise for n = n1:

(xn, yn) ≥ Kλn · (x̄, ȳ) (29)

To see that this is possible, we use the assumption that aXXβ , aXYβ , aY Xβ , aY Yβ are positive for β = 0
and β = −1. Thus, by making n1 big enough, we can ensure that (xn1 , yn1) has positive components
wherever (x̄, ȳ) has positive components. We can then fulfill (29) by choosing K small enough.

The inequality (29) carries over to all larger n by induction, using monotonicity of the operator
φ and the assumption (28). Since x̄0 ≥ 1 and ȳ0 ≥ 1, the desired inequalities follow from (29) for all
n ≥ n1. Finally, for the finitely many values n < n1, we can fulfill the inequalities xn0 , y

n
0 ≥ Kλn by

decreasing K if necessary.

Let us explain the idea for getting “sub-eigenvectors” x̄ and ȳ for Lemma 14. If we wish to fulfill
(28) for λ = M , vectors x̄ and ȳ with constant entries will do the job. However, they have infinitely
many non-zero entries. Thus, we aim for a smaller λ = M − ε, and we make an ansatz where the
entries are determined by a concave quadratic function. This has to be adjusted later because the
vectors have to be non-negative, and because the recursion (22) has some irregularities for the small
values i < r. Moreover, the two coupled sequences x̄ and ȳ depend on each other in a non-symmetric
way, and therefore we cannot use the same quadratic function for both sequences. They have to be
scaled differently, and shifted horizontally relative to each other.

We define the shift constant

δ =
πXD

XX + πYD
XY

−πYAXY
=
−(πXD

Y X + πYD
Y Y )

πY (AY Y −M)
.

In this definition, equality of the numerators follows from the assumption (27), which expresses that
the weighted total jump size is zero. The denominators are equal because the column sums are
M (26).

We take two real parameters that are to be determined later, the peak value p and the shift value
s, and define the quadratic functions hX and hY and two auxiliary vectors x̂ and ŷ as follows:

hX(i) = πX(p− i2) (30)

hY (i) = πY (p− (i+ δ)2) (31)

x̂i = hX(i− s)
ŷi = hY (i− s)
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for all i ∈ Z. The two quadratic functions have their peaks at i = 0 and i = −δ, with respective
values pπX and pπY . These function are shifted to the right by s before they are used as entries of x̂
and ŷ. The setup (30–31) and the shift constant δ have been chosen to make the following statement
true, which expresses the deviation of the vectors x̂ and ŷ from being an eigenvector with eigenvalue
M :

Lemma 15. Each of the two expressions

QX = M · x̂i −

 r∑
β=−r

aXXβ x̂i+β +

r∑
β=−r

aXYβ ŷi+β

 , (32)

QY = M · ŷi −

 r∑
β=−r

aY Xβ x̂i+β +

r∑
β=−r

aY Yβ ŷi+β

 (33)

has a constant positive value independent of i, p, and s.

Proof. First, we replace the quadratic function in each of the summation terms by a Taylor series
around the weighted average point. The linear terms will then cancel, and the quadratic terms have a
constant value. We carry this out by way of example for the sum of the aXX terms. The parameters
i and s always occur together in the combination i − s, and thus we express our terms in terms of
the parameter t := i− s.

r∑
β=−r

aXXβ x̂i+β =

r∑
β=−r

aXXβ hX(i+ β − s) =

r∑
β=−r

aXXβ hX(t+ β)

We denote the average jump size from group X to group X by

D̄XX =

r∑
β=−r

aXXβ β

r∑
β=−r

aXXβ

=
DXX

AXX
.

Then we rewrite hX as a Taylor series in the point t+ D̄XX .

hX(t+ x) = hX(t+ D̄XX) + h′X(t+ D̄XX)(x− D̄XX)− πX(x− D̄XX)2

We get

r∑
β=−r

aXXβ hX(t+ β)

= hX(t+ D̄XX)
∑
β

aXXβ + h′X(t+ D̄XX)
∑
β

aXXβ (β − D̄XX)− πX
∑
β

aXXβ (β − D̄XX)2

= hX(t+ D̄XX)AXX + h′X(t+ D̄XX) · 0− CXX ,

with a constant CXX > 0. We transform the other sum in the expression (32) analogously, using the
average jump size D̄XY = DXY /AXY , and then we can rewrite (32) as follows:

QX = M · hX(t)− hX(t+ D̄XX)AXX + CXX − hY (t+ D̄XY )AXY + CXY

= M · πX(p− t2)− πX
(
p− (t+ D̄XX)2

)
AXX − πY

(
p− (t+ D̄XY + δ)2

)
AXY + (CXX + CXY )

= (p− t2)(πXM − πXAXX − πYAXY )

+ 2t(πXD̄
XXAXX + πY D̄

XYAXY + πY δA
XY ) + (CXX + CXY )

The coefficient of (p− t2) is zero because (πX , πY ) is an eigenvector, and the coefficient of t is zero by
the definition of δ. Thus, the expression QX has a constant positive value CXX + CXY , as claimed.
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For the expression (33), the calculation is slightly different:

QY = M · hY (t)− hX(t+ D̄Y X)AY X + CY X − hY (t+ D̄Y Y )AY Y + CY Y

= M · πY
(
p− (t+ δ)2

)
− πX

(
p− (t+ D̄Y X)2)

)
AY X − πY

(
p− (t+ D̄Y Y + δ)2

)
AY Y + (CY X + CY Y )

= (p− t2)(πYM − πXAY X − πYAY Y )

+ 2t(−πY δM + πXD̄
Y XAY X + πY D̄

Y YAY Y + πY δA
Y Y ) + (CY X + CY Y )

The coefficients of (p − t2) and t vanish for the same reasons as above. This concludes the proof of
the lemma.

The quadratic functions hX and hY are unbounded from below, and hence the vectors x̂ and ŷ
have negative values. To get our desired vectors x̄ and ȳ, we will clip these values to 0. We determine
the parameters p and s in such a way that the resulting vectors x̄ and ȳ start with a big jump from
0 to a positive value, big enough to accommodate the “perturbation” resulting from modifying the
negative values to 0. Let ε > 0 be given, and let K := max{QX , QY } > 0 be the maximum of QX
and QY . We look at the sorted set of values

{ i2 | i ∈ Z } ∪ { (i− δ)2 | i ∈ Z }

and find p as a positive value in this set such that the gap to the largest value which is smaller than p
is at least K/(εmin{πX , πY }). Since the functions i2 and (i− δ)2 are quadratic, there must be larger
and larger gaps as the numbers get bigger, and therefore such a value p exists. For the functions
hX(i) = πX(p − i2) and hY (i) = πY (p − (i + δ)2) in (30–31), this implies that the smallest positive
value in their range is at least K/ε. Now we shift the functions horizontally such that positive values
occur only at positive arguments, by choosing s ≥ √p+ |δ|. Finally, we clip the negative values and
define

x̄i = max{x̂i, 0} = max{hX(i− s), 0}, ȳi = max{ŷi, 0} = max{hY (i− s), 0},
for all i ∈ Z. This will set x̄i = ȳi = 0 for i < 0, in accordance with the interpretation that is given
in (22) when these values appear on the right-hand side.

We will show that
φ(x̄, ȳ) ≥ (M − ε) · (x̄, ȳ), (34)

thus establishing condition (28) and proving the lower bound of the theorem with the help of
Lemma 14.

In concrete terms, our desired relation (34) looks as follows:

(M − ε) · x̄i ≤
r∑

β=−r
aXXβ x̄i+β +

r∑
β=−r

aXYβ ȳi+β (35)

(M − ε) · ȳi ≤
r∑

β=−r
aY Xβ x̄i+β +

r∑
β=−r

aY Yβ ȳi+β (36)

We concentrate on the first inequality (35). When x̄i is 0, the inequality is trivially fulfilled. Thus, we
can restrict ourselves to the case when x̄i > 0, and hence x̄i = x̂i. If we set ε = 0 and replace (x̄, ȳ)
by (x̂, ŷ) everywhere, the difference between the left side and the right side of (35) is the quantity
QX in Lemma 15, and hence it is bounded by K. Going back from (x̂, ŷ) to (x̄, ȳ) cannot make the
right-hand side smaller. Hence we are done if we prove that the “slack term” term ε · x̄i is at least K.
This is true by construction, since the non-zero values of x̄i are at least K/ε. The other inequality
(36) follows similarly.

This concludes the proof of the lower bound and, thus, of Theorem 13.

The theorem can be extended to more than two coupled recursive sequences. Then we need a
separate parameter δ for each function in (30–31). These parameters must be determined from a
system of equations, and the no-drift condition ensures that this system has a solution.

The technical condition of Theorems 12 and 13 that certain coefficients are positive has the purpose
to exclude periodicity and can be replaced by weaker conditions.
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6.5. Asymptotic growth constants

We apply Theorem 12 to the recursion describing the r-chain with corners. It is straightforward to
compute the 2×2 condensed coefficient matrix (24) with a computer by accumulating all terms derived
in Section 6.2, and to compute its dominant eigenvalue. Since n = rk + 1, the growth constant Tr in
terms of n is r-th root of this eigenvector. We observe the same phenomenon as for chains without
corners, see the right-most column of Table 1: The values increase to some maximum, and then the
taper off and converge to 3 as r increases further. The first two entries in the table reproduce the
results for the double-chain (the condensed coefficient matrix is

(
1 1
2 2

)
, which gives T1 = 3) and the

double zigzag chain (the condensed coefficient matrix is
(

3 3
7 6

)
, which gives T2 ≈ 3.0532). We observe

that the maximum is achieved for the 8-chain with corners (r = 8).
To establish this bound rigorously as a lower bound, we have to check the conditions of Theorem 12.

It is easy to check that the coefficients aCCβ , aCFβ , aFCβ , aFFβ are indeed positive for β = −1, 0, 1. The
condensed coefficient matrix (24) is(

ĀCC ĀCF

ĀFC ĀFF

)
=

(
2885 2619
6022 5504

)
. (37)

Its dominant eigenvalue is M = (8389 +
√

69945633 )/2 ≈ 8376.175, with corresponding left (unnor-
malized) eigenvector (ρX , ρY ) = (6022,M − 2885) and right eigenvector (πX , πY )> = (2619,M −
2885)>. The matrix of total group-to-group jump sizes is(

DCC DCF

DFC DFF

)
=

(
−2619 0
−2619 2619

)
.

Weighting these numbers with the eigenvectors and summing them up (25) yields that the weighted
total jump size D is zero. The conditions of Theorem 12 are thus fulfilled.

An intuitive explanation of the equality D = 0 might be as follows. The recursion between the
two vectors Ck and F k is not symmetric, as witnessed, for example, by the non-symmetric condensed
matrix (37). This asymmetry comes from the arbitrary decision to cut the construction to the right
of each corner point. However, on the whole, this irregularity should not cause a systematic “drift”
in the recursion, which would favor a tendency towards larger or smaller numbers i of unfinished
runners crossing the cut. Thus, it is not surprising that D = 0. We expect that D = 0 should hold
for all r, but we have only checked it numerically for small values of r, and we have established it
rigorously only for the concrete case r = 8.

By Theorem 12, the sequence F k0 grows at most like Mk and at least like (M − ε)k, for any ε > 0.
Since n = 8k + 1, the growth constant in terms of n is T8 = 8

√
M ≈ 3.093005695.

Corollary 16. The 8-chains with corners have O(Tn8 ) and Ω((T8 − ε)n) down-free matchings, for
every ε > 0.

This implies Theorem 4 with the help of Theorem 6.
Numerical data suggest the more precise estimate F k0 = Mk/k3/2(u0 + u1/k + O(1/k2)) with

u0 ≈ 0.1321 and u1 ≈ −0.102. This has been computed by Moritz Firsching (personal communication)
using the so-called “asympk” trick of Don Zagier [11], see also [7, Section 5.1]. This method estimates
the coefficients by interpolation from successive elements of the sequence, assuming that the sequence
has the asymptotic form F k0 = Ck/kα(u0 + u1/k + u2/k

2 + · · · ). In our case, we used the elements
F 785

0 , F 786
0 , F 787

0 , . . . , F 1000
0 . The number of decimal digits of C = M that were correctly predicted

in this way was larger than 300, and α = 3/2 was also determined to a precision of more than
300 digits. By comparison, for the sequence ak of down-free matching numbers of the zigzag-chain
(Section 4), for which the explicit generating function (7) and hence the form ak = Ck/k3/2(u0 +
O(1/k)) of the asymptotic growth is known, the same method gave estimates for the coefficients
that were accurate also to more than 300 digits, both regarding the growth constant C = 1/µ =
(
√

93 + 9)/2 and the power α = 3/2 of the polynomial factor. The constant factor was identified as
u0 = [(

√
57017277 + 7551)/1984π]1/2 ≈ 1.5566, but we did not check whether this agrees with the

result from the generating function.
The asymptotic growth of the form F k0 = u0M

k/k3/2(1+o(1)) is not unexpected; it is in accordance
with the behaviour of r-chains without runners, which has been derived in the proof of Proposition 11
(Section 5.4) by the lattice path method [3, Theorem 3].
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7. Concluding remarks

7.1. Table of results for pm, dfm and am

In Table 2 we summarize asymptotic bounds on different structures for three kinds of matchings
considered in this paper – pm, dfm and am. Some of them do not follow from results proven or
mentioned in this paper, and we explain them below. First we want to point out some observations
that can be seen in the table.

Obviously, pm(Xn) ≤ dfm(Xn) ≤ am(Xn), but is dfm(Xn) more likely to behave similarly to
pm(Xn) or to am(Xn)? Table 2 shows that different possibilities exist. For a downward chain SCn,
every matching is down-free and thus dfm(SCn) = am(Xn), but for an upward chain dfm is equal, up
to a polynomial factor, to the lower bound. For SZZCn, the three growth constants are all different,
but the intermediate basis for dfm is closer to the upper bound. However for r-chains without corners,
as r grows, the growth constant for pm and dfm tends to the same value, 3, from below and from
above respectively; whereas that for am tends to 4.

Xn pm(Xn) dfm(Xn) am(Xn)

SCn (downward) Cn/2 = Θ∗(2n) Mn = Θ∗(3n) Mn = Θ∗(3n)

SCn upside down Cn/2 = Θ∗(2n)
(

n
bn/2c

)
= Θ∗(2n) Mn = Θ∗(3n)

SZZCn Θ∗(2.1974n) Θ∗(3.0532n) Θ∗(3.1022n)

CH∗(11, n/11) Θ∗(2.5517n) Θ∗(3.0840n) Θ∗(3.4614n)

CH∗(r, n/r), r →∞ Θ∗(αn), α↗ 3 Θ∗(βn), β ↘ 3 Θ∗(γn), γ ↗ 4

CH(8, (n− 1)/8) Θ∗(3.0930n)

CH(r, (n− 1)/r), r →∞ Θ∗(δn), δ ↘ 3 ?

DCn Θ∗(3n) ? Θ∗(4n)

Table 2: pm, dfm, am for several structures.

Now we describe the entries of the table. The first two lines are classical results, except for the
formula dfm =

(
n
bn/2c

)
for an upward chain, which has been proved in Proposition 9.

The estimate pm(SZZCn) = Θ∗(2.1974n) from [1] was mentioned in Section 3. Actually, it was the
fact that pm increases from SC to SZZC which initially prompted us to try whether the old record of
the double structure DC could be beaten by the corresponding double structure DZZC. The formula
dfm(SZZCn) = Θ∗(3.0532n) is the main result of Section 4. The estimate am(SZZCn) = Θ∗(3.1022n)
can be derived in a similar way, by adding an appropriate term to the recursion (3) for ak: the only
difference is that when P1 is matched to P3, the point P2 can be free. The singularity closest to 0
of the resulting generating functions occurs now in (

√
105− 9)/12, one of the roots of 1− 9x− 6x2.

Thus, in this case the base is
√

12/(
√

105− 9) ≈ 3.1022.
For r-chains without corners, CH∗(r, k), the growth constant for dfm has been determined in

Section 5.3, and, as was discussed in Section 5.4, it converges to 3 from above as r →∞. The other
entries in the line for CH∗ can be obtained by modifying the analysis of Section 5.3; we only need
to replace appropriately in the formula for z1

i in Proposition 9 the factor
(

r−i
b(r−i)/2c

)
, representing the

number of down-free matching on an arc of r− i points. For pm, we have to replace it by the Catalan
number C(r−i)/2 when r− i is even and by 0 when r− i is odd; for am, we replace it by the Motzkin
number Mr−i. The row sums of the recursion matrix can be obtained by plugging these modified
expressions for z1

i into (13). For pm, the resulting sequence of row sums is the sequence A189912
from [9], and for am, it is the sequence A077587. (We omit the proofs.) From the asymptotic behavior
of these sequences it follows that their r-th roots, which are the growth constants, converge to 3 and
4 from below.

The growth constant for dfm for r-chains with corners, CH(r, k), was treated in Section 6. Em-
pirically, they seem to be better than r-chains without corners. The monotone convergence to 3
from above is not proved. It seems plausible that the difference between r-chains with corners and
r-chains without corners should become negligible as r → ∞, and therefore the growth constant
should converge to the same constant 3. That the convergence should be monotonically decreasing is
only based on the empirical observation from Table 1. We have not extended the analysis to pm and
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am, although this would be feasible with some effort. We expect that the results would be the same
as for r-chains without corners.

The formula pm(DCn) = Θ∗(3n) is the classical result of Garćıa, Noy, and Tejel [6], in accordance
with dfm(SCn) = Θ∗(3n) from the first line. The estimate am(DCn) = Θ∗(4n) is due to Sharir and
Welzl [10], and it is currently the best lower bound on the maximum number of am. The growth of
dfm(DCn) remains unknown, but it is Ω∗(3n) and O∗(4n).

We see no reason to think that our best construction CH(8, k) is optimal in the sense that it
has the maximal possible dfm and/or that the corresponding double construction has the maximal
possible pm. Sets with asymptotically higher bounds may very well be more complicated – both in
terms of their description and their analysis. An obvious continuation from single chains to r-chains
would be to insert a third level of downward arcs between the vertices of r-chains, possibly continuing
towards a fractal-like pattern. We have not attempted to analyze these structures.

7.2. Summary and Outlook
We have found new constructions of point sets with a larger number of perfect matchings than

previously known. More importantly, we show that, like for triangulations, the true bound for perfect
matchings is not given by the double chain. For the analysis of these sets, the notion of down-free
matchings was crucial. It allowed us to concentrate on one half of a double-construction.

We have shown that methods from analytic combinatorics are useful for counting problems for
geometric plane graphs. However, the results from analytic combinatorics that we are aware of cannot
be readily applied for r-chains with corners. In this case, the analysis leads to coupled recursions
involving two sets of variables. For these recursions, we had to develop our own methods. These
somewhat pedestrian methods give the growth constant only up to an arbitrarily small error ε. We
hope that the methods of analytic combinatorics will be further developed to encompass such cases
as well.
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