
Karl-Franzens-Universit�at Graz & Technische Universit�at Graz

SPEZIALFORSCHUNGSBEREICH F 003

OPTIMIERUNG
und

KONTROLLE

Projektbereich

DISKRETE OPTIMIERUNG

G�unter Rote Guochuan Zhang

Optimal Logistics for Expeditions:

the Jeep Problem with Complete Re�lling

Bericht Nr. 71 | Juni 1996

Optimal Logistics for Expeditions | The Jeep

Problem with Complete Re�lling

G�unter Rote Guochuan Zhang

June 24, 1996

Abstract

We consider a variant of the classical jeep problem. We have n cans of

fuel on the edge of a desert and a jeep with an empty tank whose capacity

is just one can. The jeep can carry one can in addition the fuel in its tank.

Moreover, when a can is opened, the fuel must immediately be �lled into the

jeep's tank. The goal is to �nd the farthest point in the desert which the jeep

can reach by consuming the n cans of fuel. Derick Wood [1984] treated this

problem similarly to the classical problem and gave the �rst solution. Ute and

Wilfried Brauer [1989] presented a new strategy and got a better solution than

Wood's. They also conjectured that their solution was optimal for in�nitely

many values of n. We give an algorithm which produces a better solution

than Brauers' for all n > 6, and we use a linear programming formulation to

derive an upper bound which shows that our solution is optimal.

1 The jeep problem

A jeep starts at a depot in the desert with n cans of fuel and wants to reach a distant
oasis. The jeep has a certain capacity for carrying fuel, and it can deposit fuel at
intermediate depots along the way. This logistics problem has obvious applications

to arctic expeditions, space travel, or military logistics. A version of this problem

was posed more than 1000 years ago in the propositiones ad acuendos iuvenes, the
oldest known mathematical puzzle collection in Latin, attributed to Alcuin of York
(around 732{804). In the 52-nd problem, propositio de homine patrefamilias (a lord

of the manor), a certain amount of grain is to be carried across a given distance by

a camel which eats some of the grain on the way. The original Latin text with a

German translation can be found in Gericke and Folkerts [1993, pp. 356{357], based

on a critical edition of the text by Folkerts [1978, pp. 74{75], see also Folkerts [1993].

This research was supported by the Spezialforschungsbereich F 003, Optimierung und Kon-

trolle, Projektbereich Diskrete Optimierung
Authors' address: Institut f�ur Mathematik, Technische Universit�at Graz, Steyrergasse 30, A-

8010 Graz, Austria, e-mail: rote@opt.math.tu-graz.ac.at, zhang@opt.math.tu-graz.ac.at

1

There is an annotated English translation of Hadley and Singmaster [1992, p. 124{

125], who note that the given solution is not the correct optimal solution. They also

point out references to the literature where the problem appears in other guises.

The jeep problem was introduced in the modern mathematical literature by

Fine [1947]. Since then, many variations of the problem have been proposed.

Phipps [1947] considered the case of a group of jeeps. Suppose m jeeps fully loaded

with fuel set out from a depot in the desert. The goal is to advance one of them to

the greatest possible distance away from the depot. Phipps also mentioned several

related variations.

The problem has continued to attract the attention of mathematicians and puzzle

solvers alike, see Gale [1970, 1994] or Dewdney [1987]. Some recent references are

Hausrath, Jackson, Mitchem, and Schmeichel [1995] and Jackson, Mitchem, and

Schmeichel [1995].

The jeep problem with re�lling of whole cans only. In the classical jeep

problem, depots can be set up anywhere, and fuel can be freely exchanged between

depots and the tank. We consider a variation with the following constraints.

1. Fuel can only be stored in cans (besides the jeep's tank).

2. In addition to the fuel in its tank, the jeep can carry one can of fuel.

3. No fuel is ever moved from the tank into a can.

4. The jeep can be re�lled only when its tank is empty.

5. The jeep's tank is always re�lled to its full capacity.

In other words, when a can is opened the whole content is immediately �lled into
the jeep's tank. Thus, in contrast to the classical problem, intermediate dumps can
only contain an integral multiple of one canful of fuel. In the context of the jeep in
the desert, these constraints appear natural. We might think of the fuel as stored in

drums or barrels which cannot be sealed once they are opened. Fuel in open drums
is wasted because it evaporates too fast in the desert.

We make the simplest additional assumptions:

6. All cans have the same size. The jeep's tank contains precisely one can of fuel.

7. The fuel consumption is independent of the load. Without loss of generality

we de�ne one unit of length as the distance which the jeep can travel with one
tankful.

8. The jeep's tank is initially empty.

Under these constraints, we treat the following problem.

With n cans of fuel at the starting point, what is the most distant point

which the jeep can reach?

This problem was �rst stated in an exercise in a computer science textbook by

Wood [1984, section 8.3, pp. 173{180]. Wood proposed an algorithm which is anal-

ogous to the optimal algorithm for the classical jeep problem. He declared that

his algorithm yields the optimal distance. However, while the algorithm serves its

purpose in illustrating the principles of recursion in algorithms and reduction of a

given problem to a simpler problem, it is not optimal. Optimality of his algorithm

must have appeared so obvious to Wood that he did not even mention that such

an optimality claim ought to be proved, thus fostering among computer scientists a

negligent attitude towards rigor and mathematical proof.

Brauer and Brauer [1989] were the �rst to note that Wood's algorithm is not

optimal and proposed a better algorithm, which follows a greedy strategy. They

conjectured that their algorithm is optimal for a certain in�nite family of values

of n.

We will give the optimal solution to the problem, which is better than Brauer

and Brauer's algorithm for all n > 6. It is a modi�ed greedy algorithm, and it will be

described in Section 2. Section 3 is devoted to the optimality proof. In Section 3.1

we derive some conditions on a feasible tour. We introduce appropriate variables

and derive conditions which any solution must necessarily ful�ll. In Section 3.2, we
model the problem as a linear programming problem. In Section 3.3 we derive an

upper bound for the maximum distance from the inequalities of the linear program.
Since this bound coincides with the value achieved by our algorithm, optimality is
proved.

In Appendix B we show that any set of values satisfying the inequalities gives rise
to a feasible solution of the jeep problem, thus showing that our model of Section 3.2

is complete.

Related work. A similar linear programming formulation, based on essentially

the same ideas, was used by Jackson, Mitchem, and Schmeichel [1995] to solve
another variant of the jeep problem proposed by Dewdney [1987]. We will discuss
this problem and the relation to our solution in the concluding section 4.

Problem variations. Actually,Wood explicitly stated only constraint 4 but not 5.
If one does not interpret the phrase \re�lling the tank" in the strictest sense, one
need not assume property 5.

Both Wood's and Brauer and Brauer's algorithms satisfy property 5. The omis-
sion of property 5 allows even better solutions, as we will show in the �nal section.

2 The optimal algorithm

For describing the algorithm we will need some terminology. The jeep moves on

a line between the starting point and the destination. We place the origin 0 at

the starting point, and we let the positive coordinate direction point towards the
destination. As mentioned above, one unit is the distance which the jeep can travel

with one tankful (one can) of gas.

The part of the trip from one �lling of the tank to the next will be called a

move. A move can be at most one unit long, and it is clear that every move must

start at a depot where a nonempty can is available, and every move except the last

must end at such a position. The structure of the algorithm is best described by

combining two successive moves into one double-move. At the start and end of each

double-move, the situation is always in a well-structured state:

1. There is a sequence of depots containing cans, and each depot contains an

even number of full cans.

For this reason we may also group the full cans into pairs which we call double-cans.

Let ei � ei+1 � � � � � ej denote the current positions of full double-cans from left to

right.

2. The jeep is positioned at the left-most full double-can ei and the jeep's tank

is empty.

3. The jeep carries no can.

4. The following invariant is maintained:

ek+1 � ek + 1=2 for k = i; : : : ; j � 1. (1)

This invariant ensures that the algorithm can continue.

If n is even these conditions are initially ful�lled, and we can set i := 1, j := n=2,
and

e1 = e2 = � � � = en=2 = 0:

If n is odd we make one exceptional single move to satisfy the conditions: We
transport two cans from 0 to 1=4 and return to 0, using up fuel of one can. We set
i := 2, j := (n + 1)=2, and

e1 = e2 = � � � = e(n�1)=2 = 0; e(n+1)=2 =
1
4
:

Now we describe the double-move. It is illustrated in Figure 1. We assume that
j > i+ 1, that is, at least three double-cans are available.

1. The jeep �lls the tank with one can of the double-can ei and loads the other

can.

2. The jeep brings this can forward to fi+1=2 := (ei + ei+1)=2 + 1=2 and unloads

it there.

3. The jeep moves back to position ei+1. Now the jeep has traveled precisely one

unit, and the �rst move is �nished.

4. The second move is more complicated: The jeep �lls the tank with one can of

the double-can ei+1 and loads the other can.

ei ei+1 ei+2 fi+1=2 ej+1

1.
2. !

 3.

 9.

4.

5. ! 6.

8.7.

after: : :: : :

before: : :: : :

Figure 1: A double-move. The numbers indicate the operations as described in the
text. The successive operations are shown from top to bottom. Whenever the jeep
carries a full can the jeep's path is drawn as a thick line. (This occurs precisely
when the jeep moves forward.) When the jeep �lls the tank this is indicated by a
circle, which symbolizes the empty can that is left behind.

5. The jeep brings this can forward to ej+1 := (ei + 2ei+1 + ei+2)=4 + 1=2 and
unloads it there.

6. The jeep moves back to position fi+1=2.

7. The jeep loads the can that was deposited there in Step 2.

8. The jeep brings also this can forward to ej+1 and unloads it there.

9. The jeep moves back to position ei+2. Now the jeep has traveled one more
unit, and the second move is completed.

This double move has removed the double cans at ei and ei+1, and it has established
a new double-can at ej+1. The jeep is now positioned at the leftmost non-empty

double-can ei+2. Thus we can set j := j+1 and i := i+2, and the situation is ready

for the next double-move. Note that the double-move leaves precisely two empty
cans at positions ei and ei+1. To show that all required moves can be carried out in

the described direction we must check that

ei; ei+1 � fi+1=2, and

ei+1; fi+1=2; ei+2 � ej+1
(2)

holds for the new values of fi+1=2 and ej+1 de�ned above. This follows easily from
the invariant (1). It follows also that ej+1 � ej +1=2, and thus (1) is again ful�lled.

When ei = ei+1 = ei+2, we have fi+1=2 = ej+1 and Steps 6{8 are void. All other

inequalities in (2) are satis�ed as strict inequalities.

For showing that all required moves are possible with the fuel of the two cans,

it can be easily checked that

(fi+1=2 � ei) + (fi+1=2 � ei+1) = 1, and

(ej+1 � ei+1) + (ej+1 � fi+1=2) + (ej+1 � fi+1=2) + (ej+1 � ei+2) = 1:

At the end we have to make a modi�ed double-move and two exceptional last

moves. Since the number of double-cans decreases at each step. we will eventually

come to the situation when j = i+1, that is, only four cans are left. It will turn out

that i = n � 3 then. In this case we carry out a modi�ed double move as follows.

(A modi�ed double-move appears in Figure 2 between e19 and e21.) Steps 1{4 are

as above, but the second move is modi�ed. There is no point in returning to ei+2 at

the end of the second move because ei+2 is not even de�ned yet. Therefore we make

the following modi�ed steps.

50. The jeep brings the can which it has just loaded from ei+1 forward to ej+1 �

ei+2 := (ei + 2ei+1)=3 + 2=3 and unloads it there.

60. The jeep moves back to position fi+1=2.

70. The jeep loads the can that was deposited there in Step 2.

80. The jeep brings also this can forward to ej+1. This concludes the modi�ed
double-move. Now there are just two cans remaining, and they are located at

ej+1 � en�1.

90. Now the algorithm makes two �nal moves. It �lls the tank with the can which
was deposited in Step 50.

100. It moves the can which is still loaded to en�1 + 1;

110. It �lls the tank from the loaded can.

120. It drives to en := en�1 + 2 and stops at en.

With the correct values of i and j the new location in Step 50 is written as

en�1 :=
en�3 + 2en�2

3
+

2

3
: (3)

Summary of the algorithm. We assume that n � 4.

Set e1 := e2 := � � � := ebn=2c := 0;

if n is odd then Move two cans from 0 to 1=4 and return to 0;

Set e(n+1)=2 := 1=4; i := 2; j := (n+ 1)=2;
else Set i := 1; j := n=2;

while j < n� 2 do

Perform a double-move, transforming two double-cans

at positions ei and ei+1 into one double-can

at position ej+1 := (ei + 2ei+1 + ei+2)=4 + 1=2;

Set i := i+ 2; j := j + 1;

end while;

Perform a modi�ed double-move, transforming two double-cans

at positions en�3 and en�2 into one double-can

at position en�1 := (en�3 + 2en�2)=3 + 2=3;

Make a move to en�1 + 1, and from there make a move to en := en�1 + 2.

When n = 1 and n = 2, the problem is trivial. When n = 3, the jeep �rst moves

two cans of fuel to e2 = 1=3 and the following is the same as the case of n = 2.

The following example gives the sequence (e1; : : : ; en) for n = 22.�
0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1

2
; 1
2
; 1
2
; 1
2
; 1
2
; 7
8
; 1; 35

32
; 191
128

; 389
192

; 773
192

�

The corresponding tour of the jeep, which reaches a distance of 773
192

= 4 5
192

, is shown
in Figure 2.

Several observations can be made.

� Whenever the jeep moves backward it has no can loaded.

� Whenever the jeep moves forward it has a full can loaded, except in the last
move (Step 120). In this sense, there are no \wasted" moves.

� There are \big" dumps with many double-cans at half-integer positions 0, 1/2,
1, 3/2, : : :

� In addition, there are \singular" dumps with single double-cans at interme-
diate positions. Between 0 and 1=2, there is a singular dump at position 1=4
whenever n is odd. Between successive big dumps beyond the point 1=2, there
are in general two singular dumps, but there may also be only one.

� All can positions are fractions whose denominator is a power of 2, except en�1
and en, which may have an additional factor of 3 in the denominator.

� At any time during the algorithm there are at most two big dumps and possibly

two more single dumps plus possibly one \temporary" dump of the type fi+1=2
with only one can deposited after Step 2 of the algorithm. However, at a time,
there can be at most four dumps with non-empty cans.

The values ei can be given by an explicit formula, which is however a little
complicated to describe. Since i and j change simultaneously in increments of 2 and

1, respectively, we always have n � i = 2(n � j) � 1. Writing j as n � k � 1, the

recursive equation de�ning ej+1 takes the following form.

en�k :=
en�2k�1 + 2en�2k + en�2k+1

4
+ 1=2, for k = 1; : : : ; bn=2c � 1 (4)

11
179

768

77

256

7

128

11

32

3

32

1

8

1

8

1

4

1

2

773

192
2 3 4581

192

35

32

23

16

191

128

459

256

389

192

3

4

7

8
10 1

2

e21
e22

e1

e2
e3

e4
e5
e6
e7

e8
e9
e10

e11
e12

e13
e14
e15
e16

e18

e19 e20

1 2 3 40

5

10

15

20

y
0

5

10

15

20

h(y)

g(y)
22

1

1

3
1

3
53

7
5

11

9

11

5

21

e17

21

11

9

7

5

3

1

Figure 2: The optimal tour of the jeep with n = 22 cans. The top part shows the
functions g(y) and h(y) de�ned in Section 3.1 (equations (8) and (9), respectively).
The graph of h(y) has been slightly o�set from g(y). The small numbers adjacent

to the graphs are the negative slopes of the linear pieces.

Note that this equation is true even for k = 1, where it is equivalent to (3). Through-

out this paper we will denote

p := blog2(n� 1)c � 1;

i. e., we have 2p+1 < n � 2p+2.

For 0 � q � p we set

aq :=

�
n� 1

2q

�
; bq := n� 1 � aq2

q; �bq := 2q � bq: (5)

In other words, bq = (n � 1) mod 2q, and �bq is the \complementary" remainder.

Then we have n = aq2
q + bq + 1. Furthermore, we set

Aq := n� aq; for q � 0.

The indices i = Aq and i = Aq � 1 are those indices for which ei is possibly not a

multiple of 1=2 and therefore the position of a singular dump. The following formula

de�nes ei for 1 � i � n� 3.

eAq�1 =
q � 1

2
+
b(bq=2)

2c

4q
; for q � 1, Aq � 1 � n� 3

eAq =
q

2
�
b(�bq=2)

2c

4q
; for q � 0, Aq � n� 3

ei =
q

2
; for Aq < i < Aq+1 � 1, q � 0, i � n� 3

(6)

The last three values are given as follows.

en�2 =

(
p=2 � 2 + 5(n � 1)=2p+2 � 3b(n� 1)2=4c=4p+1 (2p+1 < n � 3 � 2p)
p=2 + 1=4 � (n� 1)=2p+2 + b(n� 1)2=4c=4p+1 (3 � 2p < n � 2p+2)

en�1 =
p � 1

2
+

n� 1

2p+1
�
b(n � 1)2=4c

6 � 4p

en = en�1 + 2 =
p+ 3

2
+

n� 1

2p+1
�
b(n� 1)2=4c

6 � 4p
(7)

The proof that these values ful�ll the inductive de�nition (4) is somewhat tedious

and is given in Appendix A.

Theorem 1 The maximum distance Ln which the jeep can reach with n cans and

restricted re�lling is given by

Ln =
p+ 3

2
+

n� 1

2p+1
�
b(n� 1)2=4c

6 � 4p
;

where 2p+1 < n � 2p+2, for n � 2, and L1 = 1.

n Ln

1 1 = 1 = 1.0000000

2 2 = 2 = 2.0000000

3 7/3 = 14=6 = 2.3333333

4 8/3 = 16=6 = 2.6666667

5 17/6 = 68=24 = 2.8333333

6 3 = 72=24 = 3.0000000

7 25/8 = 75=24 = 3.1250000

8 13/4 = 78=24 = 3.2500000

9 10/3 = 320=96 = 3.3333333

10 41/12 = 328=96 = 3.4166667

11 335/96 = 335=96 = 3.4895833

12 57/16 = 342=96 = 3.5625000

13 29/8 = 348=96 = 3.6250000

14 59/16 = 354=96 = 3.6875000

15 359/96 = 359=96 = 3.7395833

16 91/24 = 364=96 = 3.7916667

17 23/6 = 1472=384 = 3.8333333

18 31/8 = 1488=384 = 3.8750000

19 501/128 = 1503=384 = 3.9140625

20 253/64 = 1518=384 = 3.9531250

n Ln

21 383/96 = 1532=384 = 3.9895833

22 773/192 = 1546=384 = 4.0260417

23 1559/384 = 1559=384 = 4.0598958

24 131/32 = 1572=384 = 4.0937500

25 33/8 = 1584=384 = 4.1250000

26 133/32 = 1596=384 = 4.1562500

27 1607/384 = 1607=384 = 4.1848958

28 809/192 = 1618=384 = 4.2135417

29 407/96 = 1628=384 = 4.2395833

30 273/64 = 1638=384 = 4.2656250

31 549/128 = 1647=384 = 4.2890625

32 69/16 = 1656=384 = 4.3125000

33 13/3 = 6656=1536 = 4.3333333

34 209/48 = 6688=1536 = 4.3541667

35 6719/1536 = 6719=1536 = 4.3743490

36 1125/256 = 6750=1536 = 4.3945313

37 565/128 = 6780=1536 = 4.4140625

38 1135/256 = 6810=1536 = 4.4335938

n = 2p+1 + 1 (p � 0): Ln = p=2 + 7=3

n = 3 � 2p + 1 (p � 1): Ln = p=2 + 21=8

Table 1: Values of Ln

We have just seen that the distance Ln, which coincides with the formula for en
given above, can be attained. The proof that Ln is also an upper bound will be
given in Section 3.

Table 1 gives a few values of Ln, and Figure 3 shows Ln as a function of n.

The �gure exhibits a logarithmic behavior, and indeed, when one interpolates a
logarithmic function through the values L2k+1 = (3k + 11)=6, one gets a very good
approximation:

11

6
+ log4(n� 1) � 0:005 < Ln <

11

6
+ log4(n� 1) + 0:005; for all n � 9.

When restricted to even values of n or to odd values of n, the function is piecewise
quadratic, with breakpoints at the powers of 2. The recurrence relation L4n+1 =

L2n+1 + 1=2, which can be proved easily, is also in accordance with the logarithmic

growth of Ln.

Comparison with Brauer and Brauer's solution Brauer and Brauer [1989]

conjectured that for the values of the form n = (4k + 2)=3 (k � 0), their solution
achieves the optimal distance fU (n) = k+1. For these values of n, we have p = 2k�3,

1

2

3

4

5

1 20 40 60 80 100

Ln

n

Figure 3: The maximum attainable distance Ln for the jeep problem with n cans

and with re�lling of whole cans only.

and we get

Ln = k + 1 +
1

27
�

�
1 �

5

4k�1
+

1

42k�3

�
:

Therefore, when n = 2 (k = 1) or n = 6 (k = 2), our solution is the same as
Brauer and Brauer's solution, but for n > 6 (k � 3), our solution is better, and the
di�erence approaches 1=27 as k !1. In contrast to Wood's solution, whose length
is bounded by a constant fraction of the optimum, Brauer and Brauer's solution
achieves the correct asymptotic growth factor.

One characteristic of our algorithm is that cans are always kept in pairs. To
see why this is a good idea, consider the situation after a double-move, as shown
in Figure 1, but assume that position ei+2 contains only a single can. Then the
jeep can only �ll the tank there but carry no useful load. (The other possibility
would be to skip this can, but then the can would be wasted.) This unsatisfactory

situation can never be avoided when the jeep tries to follow the straightforward

greedy strategy that always goes from ei to fi+1=2 and back to ei+1. The optimal
algorithm also follows the greedy approach, but with the additional proviso that the
single can fi+1=2 is never left alone: in the next move, instead of bringing a new can

to fi+1+1=2, it is better to fetch the single can from fi+1=2 and have the two cans in

one place. This approach leads naturally to the structure of double-moves.

3 The upper bound

3.1 Valid inequalities

Let's take the attitude of the Desert Intelligence Service who would like to prove

that the driver of the jeep could not have completed the journey without illicit help.

Besides the traces on the road-track, which are not very reliable, the clues which

are at our disposal for investigating the matter are the empty cans on the way. We

assume that, whenever the tank is �lled, the empty can is left behind, because an

empty can would block the transport of a full can. As an exception to this rule, we

assume that, after �lling the tank for the last time, in the absence of other cargo, the

jeep carries the last empty can to the �nal destination. Let's denote the positions

of the empty cans by e1 � e2 � � � � � en. It is no coincidence that we use the

same notation ei as for the positions of the double-cans in Section 2, because in

that solution, one empty can is left at each double-can position. The jeep starts at

position 0 = e1 and terminates at en. We can assume without loss of generality that

en � en�1 + 1, because at least one can was opened to the right of en�1, and thus

the jeep could certainly have reached en�1 + 1. (If this condition is not ful�lled we
rede�ne en := en�1 + 1.)

Let's look at a segment [ei; ei+1] with ei < ei+1. Between ei and ei+1, we know
that the jeep must have passed at least 2(n � i) � 1 times: Since n � i cans were

moved into the interval [ei+1;1], the jeep must have passed at least n � i times
in the forward direction, in order to bring these cans to ei+1 or beyond. Hence it
must have passed at least n� i� 1 times in the backward direction. We denote this
necessary driving density, which depends on the location y, by c(y). So we have

c(y) = 2 � jf j : 1 � j � n; ej � y gj � 1; for 0 � y � en

This gives us, for any position y between 0 and en, a lower bound g(y) on the
total distance which the jeep has driven in the interval [y;1], or in other words, on

the total amount of fuel spent in this interval. If ei � y � ei+1 for some 1 � i � n

then

g(y) :=
Z

en

y

c(x) dx

= (ei � y) � (2(n� i)� 1) +
n�1X
j=i+1

(ej+1 � ej) � (2(n � j)� 1)

= �y(2n� 2i� 1) +
n�1X
j=i+1

2ej + en =
n�1X
j=i+1

2(ej � y) + (en � y):

(8)

Now we derive an upper bound h(y) on the amount of fuel used in the interval
[y;1]. For this bound, we will just consider the positions ei at which the tank was

�lled, without caring how the cans got there.

Lemma 1 For any y with 0 � y � en, the amount of fuel consumed by driving in

the interval [y;1] is bounded by

h(y) :=
i�1X
j=1

maxf1 + ej + ej+1 � 2y; 0g+ (1 + ei � y) + (n� i); (9)

where i (1 � i < n) is an index for which ei � y � ei+1 holds.

An example of the function h is shown in the upper part of Figure 2.

Before proving this bound we note that the bound h(y) in the lemma is actually

achieved by a \right-extreme consumption tour", which visits the cans in the left-to-

right order e1; : : : ; en. Between ej and ej+1, the jeep moves forward to the turning

point fj+1=2 = (ej + ej+1 + 1)=2 and retreats to ej+1. If ej+1 � ej + 1 and such a

tour is at all possible, h(y) equals the amount of fuel consumed by driving in the

interval [y;1], for all y with 0 � y � en.

Proof. Let us call a move relevant if the jeep reaches some point in the interval [y;1]

during the move. Let l1; l2; : : : ; ls denote the starting cans and let m1;m2; : : : ;ms�1

denote the ending cans of the relevant moves. (The last move has no ending can.)

Each can 1; : : : ; n occurs at most once in the list l1; l2; : : : ; ls and at most once in
the list m1;m2; : : : ;ms�1, and each can i+1; : : : ; n occurs either in both lists or in
none (in case the can is not used at all). We now delete cans � i+1 from both lists.

Let l1; l2; : : : ; lt (1 � t � i) denote the starting cans of the relevant moves among
the �rst i cans, and let m1;m2; : : : ;mt�1 denote the ending cans of the relevant
moves among the �rst i cans. There are at most t+ (n � i) relevant moves, which
contribute to the fuel consumed in the interval [y;1]. From the total amount of
fuel consumed during these moves, t+ n� i, we must subtract

(y � el1) + (y � el2) + � � �+ (y � elt)

for the fuel that is necessary to reach y from lj, and

(y � em1
) + (y � em2

) + � � �+ (y � emt�1
)

for the fuel to return from y to mj. Thus we have

h(y) � (n� i) + t� [(y � el1) + (y � el2) + � � � + (y � elt)]

� [(y � em1
) + (y � em2

) + � � �+ (y � emt�1
)]:

Since the lj and the mj are distinct indices from the set f1; : : : ; ig and e1 � e2 �

� � � � ei we get

h(y) � (n � i) + t� [(y � ei) + (y � ei�1) + � � � + (y � ei�t+1)]

� [(y � ei) + (y � ei�1) + � � �+ (y � ei�t+2)]

= (n� i) + (1 + ei � y) +
i�1X

j=i�t

(1 + ej + ej�1 � 2y):

� (n � i) + (1 + ei � y) +
i�1X

j=i�t

maxf1 + ej + ej�1 � 2y; 0g

This is clearly bounded by expression (9).

With g(y) and h(y) as de�ned above, we can write a necessary condition that

the sequence e1; : : : ; en comes from a feasible solution.

g(y) � h(y), for all y 2 [0; en] (10)

These are in�nitely many conditions, but we will show that it su�ces to check them

at a �nite number of points.

3.2 A linear programming formulation

First, note that the function g(y) is continuous, piecewise linear, and convex, see

Figure 2. Its slope g0(y), when it is de�ned, equals �c(y). As y decreases from en+1
to e1, this quantity decreases (becomes more negative, i. e., the function becomes

steeper). Therefore g(y) is convex.

The function h(y), on the other hand, is also piecewise linear and continuous,

but neither concave nor convex. As y increases from 0 to en, the function will make

a downward bend at each point ej (and its slope h0(y) decreases by 2) because the

summation bound i in (9) increases by 1. On the other hand, h(y) will make an
upward bend at each point y for which 1 + ej + ej+1 � 2y = 0 (and h0(y) increases
by 2). These are just the points y = fj+1=2 = (ej + ej+1+1)=2. Of course, if several
of these events occur at the same point y, their e�ects may cumulate or cancel each
other, and h may either bend upward or downward.

What is important, however, is that h may bend upward only at the points
fj+1=2. Between two such points, it is a concave function.

Now if some function g is convex and another function h is concave over some
interval, then g(y) � h(y) holds for the whole interval if and only if it holds for the
endpoints of the interval. Thus by decomposing the whole range into subintervals

where h is concave, we see that it is su�cient to check (10) at the possible points
of nonconcavity of h, i. e, at the points fj+1=2, and at the endpoints 0 and en of the
whole interval. All values y = fj+1=2 lie in the interval [0; en] and can be tested, since
fn�1=2 � en follows from en � en�1 + 1. At y = en, we have g(y) = h(y) = 0, and
thus g(y) � h(y) is automatically ful�lled. Condition (10) takes now the following

form.

g(y) � h(y); for y = 0; f3=2; f5=2; : : : ; fn�1=2 (11)

We will now substitute these values y into (10), using (8) and (9). For y = 0 we get

g(0) =
n�1X
j=1

2ej + en (12)

and h(0) = n, which yields the �rst inequality:

n�1X
j=1

2ej + en � n (13)

For the values y = fk+1=2 = (ek + ek+1 + 1)=2 (k = 1; 2; : : : ; n� 1), we can simplify

the expression (9) for h(y), because we have 1 + ej + ej+1 � 2y � 0 for j � k, and

1 + ej + ej+1 � 2y � 0 for j < k.

h(fk+1=2) = h(y) =
i�1X
j=k

(1 + ej + ej+1 � 2y) + (1 + ei � y) + (n � i)

= (ek � y) +
iX

j=k+1

2(ej � y) + (n� k + 1)

Combining this with (8) gives

0 � �h(y) + g(y)

= (y � ek) +
iX

j=k+1

2(y � ej)� (n� k + 1) +
n�1X
j=i+1

2(ej � y) + (en � y)

= en � ek +
n�1X

j=k+1

2jej � yj � (n� k + 1):

The last equation is true because ej � y for j � i and ej � y for j > i. So we �nally
get the following inequalities.

en � ek +
n�1X

j=k+1

2 �
���ej � fk+1=2

��� � n � k + 1; for k = 1; : : : ; n� 1

It will be convenient to change the index variable from k to k0 = n � k. Writing
again k instead of k0 gives us the �nal form in which we want to use the inequalities.

en � en�k +
n�1X

j=n�k+1

2jej � fn�k+1=2j � k + 1; for k = 1; : : : ; n� 1 (14)

To summarize, we get the following optimization problem whose objective value
is an upper bound on the solution of the jeep problem.

maximize en

subject to (13), (14), and 0 = e1 � e2 � � � � � en�1 � en � 1.
(15)

This problem can be formulated as a linear programming problem. The standard
way to get rid of the absolute value signs in the constraints is as follows: replace

each absolute value jEj of an expression E that occurs on the left side by a new

variable x, and add the two inequalities E � x and �E � x to the set of constraints.

This results in a standard linear programming problem, which can be solved by the

simplex algorithm or any of the more recent linear optimization algorithms. This
is how we initially obtained the values ei which are given in Section 2, for di�erent

values of n.
It turns out that the optimal solution is highly degenerate: all inequalities (13)

and (14) are ful�lled with equality, and many of the expressions in (14) whose abso-

lute value is taken are zero. Thus, when solving the linear programs on the computer

by the simplex method, it seems preferable to solve the dual linear program. Indeed,

we observed a speedup factor of almost 10 for large problems when we switched from

the primal simplex method to the dual simplex method.

3.3 An upper bound

The inequalities (14) are di�cult to handle because they contain absolute values.

Using the fact that x � jxj and �x � jxj holds for all x, we can replace each

expression jej � fn�k+1=2j either by (ej � fn�k+1=2) or by �(ej � fn�k+1=2), as we

please, and we derive a valid inequality.

We now take inequality (14) for each even k and replace jej � fn�k+1=2j by

(ej � fn�k+1=2) for j > n � k=2 and by �(ej � fn�k+1=2) otherwise. This gives the

following inequalities

en � en�k+1 �

n�k=2X
j=n�k+2

2(ej � fn�k+1=2) +
n�1X

j=n�k=2+1

2(ej � fn�k+1=2) � k:

The terms fn�k+1=2 cancel, and we get

� en�k+1 �

n�k=2X
j=n�k+2

2ej +
n�1X

j=n�k=2+1

2ej + en � k; for 2 � k � n � 1, k even. (16)

Examples. For n = 10, this gives, together with (13), the following 5 inequalities:

�e9 + e10 � 2 (I1)

�e7 � 2e8 + 2e9 + e10 � 4 (I2)

�e5 � 2e6 � 2e7 + 2e8 + 2e9 + e10 � 6 (I3)

�e3 � 2e4 � 2e5 � 2e6 + 2e7 + 2e8 + 2e9 + e10 � 8 (I4)

2e1 + 2e2 + 2e3 + 2e4 + 2e5 + 2e6 + 2e7 + 2e8 + 2e9 + e10 � 10 (I0)

Multiplying the inequalities by 2
3
, 1
6
, 1
24
, 1
24

and 1
12
, and summing them gives

e1

6
+

e2

6
+

e3

8
+

e4

12
+

e5

24
+ e10 �

41

12
:

Since e1; e2; e3; e4; e5 � 0, this implies that the farthest distance that a jeep can

travel with 10 cans of fuel is at most e10 = 41=12. This is the value achieved by the
algorithm in Section 2.

For n = 9, we get the following 5 inequalities:

�e8 + e9 � 2 (I1)

�e6 � 2e7 + 2e8 + e9 � 4 (I2)

�e4 � 2e5 � 2e6 + 2e7 + 2e8 + e9 � 6 (I3)

�e2 � 2e3 � 2e4 � 2e5 + 2e6 + 2e7 + 2e8 + e9 � 8 (I4)

2e1 + 2e2 + 2e3 + 2e4 + 2e5 + 2e6 + 2e7 + 2e8 + e9 � 9 (I0)

The same multipliers as above lead to

e1

6
+

e2

8
+

e3

12
+

e4

24
+ e9 �

10

3
;

giving a bound of 10=3 for 9 cans.

Generally, we proceed as follows. We denote the inequalities (16) by I1; I2; : : : ;

Ib(n�1)=2c, where Il denotes the inequality with k = 2l. By I0 we denote the inequal-

ity (13). Consider the in�nite sequence (m1;m2; : : :) = (2
3
; 1
6
; 1
24
; 1
24
; 1
96
; 1
96
; 1
96
; 1
96
; 1
384

;
1
384

; : : :) de�ned by

ml = gq :=
1

6 � 4q
; for 2q < l � 2q+1, q = �1; 0; 1; 2; : : : ,

which has
P1

l=1ml = 1. Now we multiply Il by ml for l = 1; : : : ; b(n� 1)=2c and I0
by r, where

r = 1�
b(n�1)=2cX

l=1

ml

denotes the remaining part of the series
P1

l=1ml. By summing these inequalities we
obtain one inequality of the following form.

c1e1 + c2e2 + � � � + cn�1en�1 + cnen � Sn (17)

Lemma 2 c1 � c2 > c3 > � � � > cbn=2c > 0 = cbn=2c+1 = � � � = cn�1 = 0, and cn = 1.

Proof. e1 and e2 have the same coe�cients in all inequalities except in I(n�1)=2, when
n is odd. There the coe�cient of e1 is 0 and the coe�cient of e2 is �1. Thus c1 � c2.

If 2 � j � n=2, ej and ej+1 have the same coe�cients in all inequalities except

Id(n�j)=2e, where the coe�cients of ej and ej+1 are �1 and �2 if n� j is odd 0 and
�1 if n� j is even. In any case, the coe�cient of ej+1 is smaller than the coe�cient
of ej and hence cj > cj+1.

For n=2 � j � n � 2, we will �rst show that cj = cj+1; in the end we will show
that cn�1 = 0. If n=2 � j � n � 2, then ej and ej+1 have di�erent coe�cients only

in the two inequalities In�j and Id(n�j)=2e:

�e2j�n+1 � � � � � 2ej + 2ej+1 + � � � � 2n� 2j (In�j)

The other inequality Id(n�j)=2e reads

�ej � 2ej+1 + � � �+ en � n � j + 1; (I(n�j+1)=2)

if n� j is odd, and

�ej+1 � 2ej+2 + � � �+ en � n � j; (I(n�j)=2)

if n � j is even. If 2q < d(n � j)=2e � 2q+1, then 2q+1 < n � j � 2q+2. Hence,

md(n�j)=2e = gq and mn�j = gq+1 for some q, and

cj � cj+1 = gq+1(�2� (+2)) + gq(�1� (�2)) = �4gq+1 + gq = 0;

if n� j is odd, and

cj � cj+1 = gq+1(�2� (+2)) + gq(0 � (�1)) = 0;

if n� j is even. Finally, we consider cn�1 and cn. We have

cn�1 = �2=3 + 2(1 � 2=3) = 0

and

cn = r +
b(n�1)=2cX

l=1

ml = 1:

The proof is complete.

Lemma 3 The constant term Sn in inequality (17) is given by the expression

Sn =
p + 3

2
+

n� 1

2p+1
�
b(n � 1)2=4c

6 � 4p
;

where 2p+1 < n � 2p+2.

Proof. We have

Sn = nr +
b(n�1)=2cX

l=1

2lml

Since 2p+1 < n � 2p+2, we have 2p � b(n � 1)=2c � 2p+1 � 1, and the two parts in
this expression can be calculated as follows.

r = 1 �
b(n�1)=2cX

l=1

ml = 1�
�
2

3
+

p�1X
q=0

2qgq + (bn�1
2
c � 2p)gp

�

= 1 �

0
@2
3
+

p�1X
q=0

2q

6 � 4q
+
�
bn�1

2
c � 2p

� 1

6 � 4p

1
A

=
1

3
�

1

6
� 2
�
1 �

1

2p

�
�
�
bn�1

2
c � 2p

� 1

6 � 4p

=
1

3 � 2p
+

1

6 � 2p
�
b(n � 1)=2c

6 � 4p
=

1

2p+1
�
b(n� 1)=2c

6 � 4p

b(n�1)=2cX
l=1

2lml =
4

3
+

p�1X
q=0

1

6 � 4q

2q+1X
l=2q+1

2l +
1

6 � 4p

b(n�1)=2cX
l=2p+1

2l

=
4

3
+

p�1X
q=0

4q+1 + 2q+1 � 4q � 2q

6 � 4q
+
bn�1

2
c2 + bn�1

2
c � 4p � 2p

6 � 4p

=
4

3
+

p

2
+

2

6

�
1�

1

2p

�
+
bn�1

2
c
2
+ bn�1

2
c

6 � 4p
�

1

6
�

1

6 � 2p

=
3

2
+

p

2
+
b
n�1
2
c2 + b

n�1
2
c

6 � 4p
�

1

2p+1

Therefore,

Sn =
p + 3

2
+

n

2p+1
�

1

2p+1
+
bn�1

2
c2 � nbn�1

2
c+ bn�1

2
c

6 � 4p

When n is odd,

bn�1
2
c
2
� nbn�1

2
c+ bn�1

2
c = �(n� 1)2=4 = �b

(n�1)2

4
c;

and when n is even,

bn�1
2
c2 � nbn�1

2
c+ bn�1

2
c = �n(n� 2)=4 = �b

(n�1)2

4
c:

So we �nally get

Sn =
p + 3

2
+

n� 1

2p+1
�
b(n � 1)2=4c

6 � 4p
;

and the proof is complete.

With the two previous lemmas, the proof of Theorem 1 can be completed. By

Lemma 2, (17) gives rise to

en � c1e1 + c2e2 + � � �+ cn�1en�1 + en � Sn; (18)

and by Lemma 3, the upper bound Sn is equal to the value Ln claimed in Theorem 1.

Remark 1. The optimal values of e1; : : : ; en are unique. This can be seen as
follows. Since the upper bound in (18) is tight, all inequalities that entered into
the derivation of en � Sn must be ful�lled as equations. These are the inequalities

I0, I1, : : : , Ib(n�1)=2c, i. e. the relations (13) and (16); all of them were used with
positive multipliers ml and r. In addition, the inequalities e1 � 0, e2 � 0, : : :
ebn=2c � 0 were used in (18) with positive multipliers, by Lemma 2. (Note that the
relations ei � ei+1 were not used in bounding en, but of course they are important
for deriving the constraints (10) and hence (13) and (14).)

So any solution with en = Sn must have e1 = e2 = � � � = ebn=2c = 0. This
corresponds to the initialization step of the algorithm in Section 2. Now we use the
relations (16) as equations. From (16) with k = 2 obtain directly en = en�1 + 2. If
we take the equations (16) for two successive even values k = 2l and k = 2l+ 2 and
form their di�erence, we obtain

�en�2l�1 � 2en�2l � en�2l�1 + 4en�l = 2; for l = 1; : : : ; b(n� 1)=2c � 1.

(See the examples after (16).) This is just the recursive relation (4), which in-

cludes (3) as a special case. One more relation can be obtained by taking the
di�erence of (13) and (16) for k = 2bn�1

2
c. Simplifying by the fact that the �rst val-

ues e1; e2; : : : ; ebn=2c are 0, we obtain 4en=2+1 = 2 if n is even, and 4e(n+1)=2 = 1 if n

is odd. In the even case, this corresponds to the case en=2+1 :=
e1+2e2+e3

4
+1=2 = 1=2

of the recursion (4), which was still missing. If n is odd, this corresponds to the
initialization statement e(n+1)=2 := 1=4 of the algorithm, which was also missing. So

we have derived all initial conditions and recursive equations that are necessary to

determine the values ei uniquely.

The above argument can also be reversed to show that the values ei given by the

initial conditions and the recursion ful�ll (16), (13), and hence (18) as equations.

This gives an independent veri�cation that the value en calculated in Appendix A

must equal the value Sn computed in Lemma 3.

Remark 2. All inequalities (13) and (14) are ful�lled with equality. We have just

observed that (14) is ful�lled as inequality for all even k because (16) is derived

from these inequalities. If we take (14) for an odd value k0 and use the same rules

for replacing the absolute values as at the beginning of Section 3.3 in the derivation

of (16), it turns out that we get precisely the same inequality as (16) with k = k0+1,

and hence equality must hold for all k.

Remark 3. Theorem 2 and Corollary 1 in Appendix B show that the necessary

inequalities for ei of problem (15), which we have derived in this section, are su�cient

to guarantee a feasible trip where the jeep leaves the empty cans at the speci�ed

positions. (Actually, it turns out that a very restricted set of inequalities is already

su�cient for this purpose.)
In the proof, we construct the tour for the jeep in a way which is somewhat

similar to the algorithm of Section 2, except that the values ei are given in advance,
and there is the possibility of failure, in which case one violated condition must be
identi�ed. Although this construction in its generality is not needed for proving

the optimality results in our paper, we think that it might be useful to treat other
variations of the problem.

We used a construction procedure similar to the one given in Appendix B to �nd
the feasible solutions for some sets of values (e1; : : : ; en) which we had obtained from
our model with linear programming software. By studying many optimal solutions

which were obtained in this way we �nally discovered the easy strategy lying behind
them which is described in Section 2.

Finally, knowing the optimal solution, we went back to the constraints of the
linear program to investigate which of them are really needed to bound the optimum.
This is how we obtained the above optimality proof.

4 Other Variants of the Problem

Dewdney [1987] proposed a variant of the problem in which only constraint 1 but
none of the constraints 4 and 5 is enforced, i. e., fuel can only be stored in cans,

but any amount of fuel can be �lled in the tank at any time. This problem was

solved by Jackson, Mitchem, and Schmeichel [1995]. Actually, Dewdney proposed
a variation where each can holds C = 5 tankfuls of fuel, and this variation is the

problem which was explicitly solved by Jackson et al. As they pointed out in their
paper, their solution can be applied for general C. Their approach also uses a linear

programming problem which is derived in a very similar way as the inequality in our

paper. However, their solution has a completely di�erent character from the solution

of our problem. Dewdney's constraint leads to a di�erent expression for h(y), and the

�nite set of \critical values" y at which the inequality g(y) � h(y) must be checked

consists of the values ei+1=2, as opposed to fi+1=2 in our case. Moreover, they could

show that their linear program can be solved in a greedy manner from right to left,

by setting en at some arbitrary value and successively minimizing en�1; en�2; : : : ; e1.

This is in contrast to our solution, where ei is successively determined from left to

right. All depot locations ei are \singular" in the sense that only one can is stored

in each location, apart from the cans which remain at the starting location and are

never moved. It even turns out that locations of the cans which are moved form

a pattern which is independent of n. In other words, for any n, the sequence of

numbers en � en�1; en � en�2; en � en�3; : : : forms an initial segment of an in�nite

sequence which is independent of n.

Despite this large amount of structure, it seems di�cult to give an explicit for-

mula for the maximumdistance that can be traveled with n cans, or even to compute

the precise order of magnitude.

We initially developed our solution for our version of the jeep problem indepen-

dently of the paper of Jackson et al. [1995]. However, their paper made us aware
that assumption 5 must be stated explicitly, and in general one must distinguish

very carefully the di�erent constraints that are formulated in di�erent versions of
the jeep problem. \It is good exercise to cultivate the habit of being very wary about
the exact wording of a puzzle. It teaches exactitude and caution," as Dudeney [1917,
p. vi] put it in the introduction to his classic collection of mathematical puzzles.

When only property 5 but not 4 is omitted, we have another possible interpreta-
tion of Wood's jeep problem, as mentioned in the introduction: Any amount of fuel

may be �lled into the tank, but only when the tank is empty. The range of permis-
sible solutions is now intermediate between our problem and Dewdney's problem,
and the optimal solution is di�erent from both problems.

The example in Figure 4 shows a solution for the case n = 22. The distance
traveled exceeds the optimal solution of our problem (shown in Figure 2) by 1=224.

Whereas the �nal part (from e14 to the end) follows the same scheme of double-
moves as our algorithm of section 2, the initial part is di�erent. The parameters of
the initial part have been \locally" optimized, but we do not claim that the optimal

algorithm would follow this type of strategy.
The di�erence between the problem with constraint 4 and Dewdney's jeep prob-

lem, where constraint 4 is omitted, can be ascertained already for n = 5. The
optimal solution of Dewdney's problem has the unique values e1 = e2 = 0, e3 = 1=5,

e4 = 13=15, and e5 = 43=15. It can be checked quite easily that it is impossible to
attain these values when constraint 4 is in e�ect.

Acknowledgement. We thank Professor W. Oberschelp for pointing out the ref-

erences to Alcuin's problem collection.

11
635

1792

1

8

149

896

75

448

75

448

37

224

37

112

1

8

1

8

1

28

3

56

0
3

56

5

56

3

14

19

56

75

112

187

224

449

448

131

112

171

128

187

128
2 3 42729

1344

4073

1344

5417

1344

+2

7

3141

1792

1152

5376

e3
e4
e5
e6
e7
e8
e9

e10

e2

e1

e14

e15
e16
e17

e18

e19

e20

e21
e22

e11 e12e13

Figure 4: A solution for n = 22 cans where partial re�lling is allowed. The jeep
starts by �lling the tank only to a level 2=7 and carrying the partially emptied can
to e11 := 5=56. With the remaining fuel and an additional can, two full cans are
deposited at e12 := 12=56 and e13 := 19=56. These two cans and the can at e11,
which contains 5=7 tankfuls of fuel, are used to support the transportation of 8 full

cans from 0 to 75=128. On the back movements of these 8 trips, the jeep takes in

just enough fuel at e13, e12, and e11 to reach the next depot with an empty tank.
In total, the 8 trips use up all the fuel from the three support cans. The remaining

tour of the jeep, from e10 onward, follows the strategy of Section 2.

References

U. Brauer and W. Brauer [1989]

A new approach to the jeep problem, Bull. EATCS No. 38 (June 1989), 145{

154.

A. K. Dewdney [1987]

Computer Recreations, Sci. Amer. 256, 6 (June 1987), 106{109. Solutions in

257, 4 (October 1987), p. 169, and 257, 5 (November 1987), p. 122. German

translation: Computer-Kurzweil, Spektrum der Wissenschaft, September 1987,

6{10; January 1988, p. 12; February 1988, p. 13.

Henry E. Dudeney [1917]

Amusements in Mathematics, Thomas Nelson & Sons, 1917. Reprinted by

Dover Publications, 1958.

N. J. Fine [1947]

The jeep problem, Amer. Math. Monthly 54 (January 1947), 24{31.

M. Folkerts [1978]
Die �alteste mathematische Aufgabensammlung in lateinischer Sprache: Die
Alkuin zugeschriebenen Propositiones ad acuendos iuvenes. �Uberlieferung, In-

halt, kritische Edition. �Osterreich. Akad. Wiss. Math.-Natur. Kl. Denkschr.

116,2, (6. Abh.), 13{80.

M. Folkerts [1993]
Die Alkuin zugeschriebenen \Propositiones ad acuendos iuvenes in: Science in
Western and Eastern Civilization in Carolingian Times, ed. P. L. Butzer and
D. Lohrmann, Birkh�auser Verlag, Basel 1993, pp. 273{281.

D. Gale [1970]
The jeep once more or jeeper by the dozen, Amer. Math. Monthly 77 (1970),
493{501.

D. Gale [1994]
The return of the jeep, Math. Intelligencer 16, No. 1, (Winter 1994), 42{44.

H. Gericke and M. Folkerts [1993]

Die Alkuin zugeschriebenen Propositiones ad acuendos iuvenes (Aufgaben zur

Sch�arfung des Geistes der Jugend), in: Science in Western and Eastern Civi-

lization in Carolingian Times, ed. P. L. Butzer and D. Lohrmann, Birkh�auser

Verlag, Basel 1993, pp. 283{362.

J. Hadley and D. Singmaster [1992]
Problems to sharpen the young, Math. Gazette 76 (No. 475, March 1992),

102{126.

A. Hausrath, B. Jackson, J. Mitchem, and E. Schmeichel [1995]

Gale's round-trip jeep problem, Amer. Math. Monthly 102 (April 1995), 299{

309.

B. Jackson, J. Mitchem, and E. Schmeichel [1995]

A solution to Dewdney's jeep problem, in: Graph Theory, Combinatorics, and

Applications: Proc. 7th Quadrenn. Int. Conf. Theory Appl. Graphs, Kalamazoo

(Michigan), Vol. 1, Y. Alavi and A. Schwenk (eds.), Wiley, 1995.

C. G. Phipps [1947]

The jeep problem: A more general solution, Amer. Math. Monthly 54 (October

1947), 458{462.

Derick Wood [1984]

Paradigms and programming with PASCAL, Computer Science Press, Rock-

ville 1984.

A Calculation of the values ei

We will now prove that the values ei given by (6) ful�ll the inductive de�nition (4)

and (3). We assume n � 6. (For smaller n, correctness of (6) can be checked by
direct computation.) From the de�nitions in (5) we obtain

a0 = n� 1; b0 = 0; �b0 = 1;

aq+1 =
aq

2
; bq+1 = bq; �bq+1 = �bq + 2q; if aq is even;

aq+1 =
aq � 1

2
; bq+1 = bq + 2q; �bq+1 = �bq; if aq is odd.

(19)

First we check the initial conditions. From (19) we have a1 = b(n � 1)=2c, and
therefore

A0 = 1 and A1 = bn=2c + 1:

So,

e1 = eA0
= 0� b(1=2)2c = 0;

ei = 0; for 1 < i < bn=2c:

Since b1 = 0 or b1 = 1, we have

en=2 = eA1�1 = 0 +
b(b1=2)

2c

4
= 0:

If n is odd, �b1 = 2, and

en+1

2

= eA1
=

1

2
�
b(2=2)2c

4
=

1

4

Thus the initial conditions are ful�lled.

To check that the values in (6) satisfy the inductive de�nition (4) of en�k for

k � 3, let's �nd out the formula which we have to apply in order to compute

en�2k�1, en�2k, and en�2k+1, respectively: If n� k = Aq+1 or n� k = Aq+1 � 1 then

these formulas depend on the parity of aq. The following table holds for n�k � n�3,

i. e., k � 3.

case n� k parity of aq en�2k�1 en�2k en�2k+1 range of q

1 2 [Aq + 1; Aq+1 � 2] arbitrary q�1
2

q�1
2

q�1
2

(q � 1)

2 aq even
q�1
2

q�1
2

eAq�1 (q � 1)

3
Aq+1 � 1

aq odd
q�1
2

eAq�1 eAq
(q � 1)

4 aq even eAq�1 eAq

q

2
(q � 1)

5
Aq+1 aq odd eAq

q

2

q

2
(q � 0)

The last column gives the range of q for which (4) applies, i. e., k � bn=2c � 1.

Let's check case 1: We have n� k 2 [Aq+1; Aq+1� 2], or aq+1+2 � k � aq � 1.

Using the inequalities aq+1 � aq � 1=2 and aq � aq�1=2, we obtain

n� 2k + 1 � n� 2aq+1 � 3 � n� aq � 2 < Aq � 1

and
n� 2k � 1 � n� 2aq + 1 � n� aq�1 + 1 > Aq�1:

Hence,
en�2k�1 = en�2k = en�2k+1 =

q�1
2
:

In case 2, we have n � k = Aq+1 � 1 and aq is even. We must have q � 1;
otherwise, for q = 0, Aq+1� 1 = A1� 1 = n� n+1

2
, and the value k = n+1

2
is beyond

the bound bn=2c � 1 for which (4) holds.
Since aq is even, we have k = aq+1 + 1 = aq=2 + 1, and thus n � 2k + 1 =

n � aq � 1 = Aq � 1, and n � 2k � 1; n � 2k < Aq � 1. On the other hand, since
k � 3 we have aq+1 � 2, aq � 2aq+1 � 4, and aq�1 � 2aq � aq + 4. Therefore,

n� 2k � 1 = n� aq � 3 � n � aq�1 + 1 > Aq�1;

and

en�2k�1 = en�2k =
k�1
2
:

Cases 3{5 are similar.

Now it is a matter of straightforward computation to check (4). For example,
let us consider case 3, which is, together with its symmetric counterpart, case 4, the

most di�cult case. In order to inductively prove the formula for eAq+1�1 when aq
is odd we have to substitute the expressions given by (6) into the right side of the
following equation.

eAq+1�1 = 1=2 +
en�2k�1 + 2en�2k + en�2k+1

4

= 1
2
+ 1

4
�
h
q�1
2

+ 2 � eAq�1 + eAq

i

Using the substitution �bq := 2q � bq, the expression in (6) for eAq
can be written in

the following more convenient equivalent form:

eAq
=

q � 1

2
+

1

4
+

bq=2

2q
�
b(bq=2)

2c

4q
; for q � 1.

This gives

eAq+1�1 =
1

2
+

1

4
�

�
q � 1

2
+ 2 � eAq�1 + eAq

�

=
1

2
+

1

4
�

"
q � 1

2
+ 2 �

q � 1

2
+
b(bq=2)

2c

4q

!

+

q � 1

2
+

1

4
+

bq=2

2q
�
b(bq=2)

2c

4q

!#

=
q

2
+

1

16
+

bq

2q+1
+
b(bq=2)

2c

4q+1

=
q

2
+

4q=4 + (2 � 2q � bq)=4 + bb2
q
=4c

4q+1
=

q

2
+
b(2q + bq)

2=4c

4q+1
=

q

2
+
bb2

q+1=4c

4q+1
:

The last equation uses (19). The �nal expression equals the claimed value of eAq+1�1.
The other four cases are handled in the same way.

The above formulas extend only up to en�3. We still have to compute en�2, en�1,
and en. Substituting en�2 =

1
2
+ en�5

4
+ en�4

2
+ en�3

4
into (3) gives

en = 2 + en�1 = 3 +
en�5

6
+

en�4

3
+

en�3

2
: (20)

Since en�2 and en�1 are only intermediate values and not directly of interest, we
shall prove only the formula for en. To �nd out which formulas in (5) apply to

these indices, we again make a case distinction. Since 2p+1 < n � 2p+2, the value of
ap = b(n � 1)=2pc can be 2 or 3.

Case 1. ap = 3. In this case, bp = n � 1 � 3 � 2p and moreover, Ap = n � 3,

Ap � 1 = n� 4, Ap�1 � n� 6 < n� 5 < Ap � 1.

en�3 = eAp =
p

2
�

j
((2p+2 � n+ 1)=2)

2
k

4p
=

p

2
� 4 +

n� 1

2p�1
�
b(n� 1)2=4c

4p

en�4 = eAp�1 =
p� 1

2
+

j
((n� 1� 3 � 2p)=2)2

k
4p

=
p� 1

2
+

9

4
�

3(n� 1)

2p+1
+
b(n� 1)2=4c

4p

en�5 =
p� 1

2

Substituting these values into (20) gives (7).

Case 2. ap = b(n � 1)=2pc = 2. Hence Ap � 1 = n� 3 and bp = n � 1 � 2p+1. This

gives

en�3 = eAp�1 =
p � 1

2
+

j
((n� 1� 2p+1)=2)

2
k

4p

=
p � 1

2
+ 1�

n� 1

2p
+
b(n� 1)2=4c

4p

We further distinguish two subcases according to the value of ap�1 = b(n�1)=2p�1c,

which can be 4 or 5.

Subcase 2.1. ap�1 = 4. In this case, Ap�1 = n � 4, Ap�1 � 1 = n � 5, and

bp�1 = bp = n� 1� 2p+1, �bp�1 = 5 � 2p+1 � n+ 1.

en�4 = eAp�1
=

p � 1

2
�

j
((5 � 2p�1 � n+ 1)=2)

2
k

4p�1

=
p � 1

2
�

25

4
+

5(n � 1)

2p
�
b(n� 1)2=4c

4p�1

en�5 = eAp�1�1 =
p � 2

2
+
b((n� 1� 2p+1)=2)

2
c

4p�1

=
p � 2

2
+ 4�

n� 1

2p�2
+
b(n � 1)2=4c

4p�1

Again, substituting these values of en�5, en�4, and en�3 into (20) gives (7).

Subcase 2.2. ap�1 = 5. In this case, Ap�1 = n � 5, Ap�1 < n � 4 < Ap � 1, and
�bp�1 = 3 � 2p+1 � n+ 1. This gives en�4 =

p�1
2

and

en�5 = eAp�1
=

p � 1

2
�
b((3 � 2p � n+ 1)=2)2c

4p�1
=

p� 1

2
�9+

3(n� 1)

2p�1
�
b(n� 1)2=4c

4p�1
:

Again, we substitute into (20) and obtain formula (7) for en.

B Su�ciency of the conditions

In this section we show that the constraints (13) and (14) which we used to derive an
upper bound on Ln are su�cient for characterizing the possible empty can positions

ei of feasible trips. In fact we will show that this characterization is even achieved by

a very restricted set of O(n) linear inequalities including (13), (16), and the relations
ei � ei+1.

It is clear that in a feasible solution there cannot be a gap larger than 1 between

ei and ei+1, since the jeep cannot cross an interval larger than 1 without opening a

can. We show that this condition arises as a consequence of (13) and (16).

Lemma 4 If 0 = e1 � e2 � � � � � en�1 � en � 1 satis�es (13) and (16), then

ei+1 � ei + 1, for i = 1; : : : ; n� 2, and

en � en�1 + 2:

Proof. By setting k = 2 in (16) we directly obtain en � en�1+2. If n+1
2

� i � n�2,

we take (16) with k := 2n � 2i and we obtain

�e2i�n+1 �
iX

j=2i�n+2

2ej +
n�1X
j=i+1

2ej + en � 2n� 2i:

Using the fact that ej � ei for j � i, ej � ei+1 for j � i + 1, and en � ei+1 + 1, we

get

�(2n� 2i� 1)ei + (2n � 2i� 1)ei+1 + 1 � 2n � 2i;

which clearly implies ei+1 � ei + 1. For 1 � i � n=2, we argue similarly, starting

from (13):

n �
n�1X
j=2

2ej + en �
n�1X
j=i+1

2ej + en � (2n� 2i� 1)ei+1 + 1 � (n� 1)ei+1 + 1

This gives 1 � ei+1 � ei+1 � ei.

Theorem 2 Let e1; : : : ; en be any feasible solution of the inequalities (13), (16),

and 0 = e1 � e2 � � � � � en�1 � en � 1. Then there is a feasible trip of the jeep

which reaches en, leaving empty cans at positions e1; : : : ; en.

Proof. We will prove this by an algorithm which constructs a trip for the jeep, and
we will show its correctness with the help of some intermediate lemmas.

We plan the jeep's trip move by move. (A typical move will look as shown in
Figure 5 below.) However, the tasks belonging to a single move are not planned in

the sequence in which they are �nally carried out. We rather start with a required
initial move of the form ei ! y ! ei+1. Afterwards we extend the move by giving
the jeep additional tasks on its way.

The quantity s will denote the fuel which is still available for new tasks of this

move. These new tasks are planned by sweeping from left to right. During this
sweep, s decreases with the amount of driving that is planned.

The algorithm tries to establish depots of double-cans at the positions e2; e3; : : : .
All remaining cans which have not reached their current destination in some depot ei
are at some common position y, which advances from one move to the next. Between

two moves the jeep and the full cans are in one of three well-structured situations,
which are described below.

It may happen that there is still fuel available (s > 0) but there is no further

work for the jeep to be done on this move, and so the remaining fuel is wasted. A
variable waste accumulates the total amount of wasted fuel.

Description of a move. We now specify how to construct the i-th move, which
starts at ei and ends at ei+1, for 1 � i � n � 2. We assume that the jeep is at
position ei with an empty tank. The description will be somewhat informal, since

we will let a variable y vary continuously, and other variables will vary as a function

of y until something happens. The reader who is unsure about the precise meaning

of the following description may consult the realization of the algorithm in Maple

in Appendix C.

Case 1. There are double-cans at positions ei; ei+1; : : : ; el with l � i+1. In addition

there are ny > 0 cans at some position y with el � y � el+1.

1.1. Plan the initial move ei ! y ! ei+1: �ll the tank and load a can at ei;

move the can to y; and return to ei+1.

Let s := 1 � (y � ei) � (y � ei+1). [We will show below that s � 0, and

hence the initial move is possible.]

Set ny := ny + 1. This accounts for the additional can brought by the

initial move. [Now we have ny = n� 2l + i.]

1.2. While s > 0 and ny > 0, move all ny cans forward, increase y, and

decrease s at speed 2ny. This means that an increase from y to y + �y

will cause a decrease of s from s to s � 2ny ��y. The increase of y and

decrease of s continues until one of the following two events occurs.

{ If s becomes 0, then stop. Set i := i+ 1 and plan the next move. If

we still have i < l, we continue with Case 1; otherwise the next move

will be in Case 2.

{ If y reaches el+1 and ny > 2, then drop a double-can there: set

l := l + 1, ny := ny � 2, and continue. [During the sweep, we alway
maintain the condition ny = n� 2l+ i.] However, if ny � 2, then ny
would become zero or negative at this point. In this case we cannot
continue. We set waste := waste + s; i := i+ 1, and go to the next
move.

Case 2. There is a double-can at position ei, and ny > 0 cans at some position y

with ei � y � ei+1. [We have ny = n� i� 1.]

2.1. Plan the initial move ei ! ei+1: carry a can from ei to ei+1. Let s :=

1 � (ei+1 � ei). By Lemma 4, s � 0.

2.2. While s > 0, increase y, decreasing s at speed 2ny.

{ If s becomes 0 before y reaches ei+1, (i. e., if s=(2ny) � ei+1�y) then
stop. Set i := i+1 and plan the next move. (The next move will be

in Case 3.)

{ If y reaches ei+1, and if ny > 1, then drop a can there. (Another can

was placed there during the initial move.) Set ny := ny�1, l := i+1,
and continue as in Step 1.2.

However, if ny = 1, we stop at this point y = ei+1. We set waste :=

waste + s; i := i + 1, and continue with the next move. (This will
happen if i = n� 2.)

Case 3. There is a single can at position ei, and ny > 0 cans at some position
y � ei. [We have ny = n � i.]

3.1. Plan the initial move ei ! y ! ei+1: �ll the tank at ei; move back to y

and load a can there; bring the can forward to ei+1. Set ny := ny � 1.

[We have ny = n� i� 1, as in Step 2.1.]

Let s := 1� (ei � y)� (ei+1 � y). If s is negative then stop. There is no

solution.

3.2. This is identical to Step 2.2.

ei y ei+1 ei+2 y0 ei+3 y00 ei+4

ny = 9 ny0 = 6 ny00 = 4

Figure 5: A typical move constructed be the algorithm. This i-th move starts at ei
in Case 2 with ny = 9. During the planning of the move, y advances over y0 to its

�nal value y00, and ny decreases to ny00 = 4 on the way. In the end, we have l = i+3,
and the (i+1)-st move will start in Case 1. The parts which are accompanied by a
thick arrow constitute the \initial move".

We initialize the algorithm by setting i := 1, y := 0, ny := n � 2, waste := 0.

The starting situation is Case 2. It is straightforward to verify that at the end of
each move, the situation of the jeep is again as described in one of the three cases,
and that the expressions for ny in terms of i and l given in brackets remain valid
during the algorithm, and ny remains positive.

The last two moves must be modi�ed a little. For i = n� 1, one can only arrive

in Case 3, with one can at position y, because the other cases would lead to ny � 0.

The (n� 1)-st move is of the form en�1 ! y ! en � 1, like in Step 3.1. This move
is only possible if s := 1� (en�1� y)� (en� 1� y) � 0. The last move goes straight
from en � 1 to en. It is always possible.

Each move of the jeep is initially of the form ei ! y ! ei+1. In addition, the

jeep may have to transport a number of cans from y forward, \dropping" some
cans on the way. So the jeep interrupts the normal course of the initial move upon

reaching y, carries out the additional operations, and resumes the initial move at
the end. The number of additional cans is decreasing as y increases, and so there is

no problem in carrying out the additional transport. A typical move generated by

the algorithm is shown in Figure 5. The program in Appendix C gives details about
the construction of the move.

We will �rst show that, unless the algorithm stops in Step 3.1, it produces a

feasible solution. In the end we will demonstrate that the algorithm can only stop

in Step 3.1 if one of the conditions (16) is violated.

Lemma 5 In Step 1:1, s does not become negative.

Proof. The previous move has started from ei�1, reached y, and terminated in ei.

Therefore,

1 � (y � ei�1) + (y � ei) � (y � ei) + (y � ei+1):

The total amount of driving is at least g(0), where g(0) is given by (12). Since

there are n cans available, it is clear that at most n�g(0) cans of fuel can be wasted.

As soon as we have wasted more than this amount, we are sure to fail. The following

lemma shows that the moves constructed by our algorithm will never waste more

than this bound.

Lemma 6 During the algorithm, the total waste is always bounded by n� g(0).

Proof. Assume that a move terminates in Step 1.2 with s > 0. The total amount of
fuel which has been used equals i cans minus the total waste so far. This must be
equal to the amount B of driving done. We always have ny = n � 2l + i and this
must be 1 or 2 upon reaching el+1. If n+ i is even, we have l + 1 = (n + i)=2, and

the last value of ny is 2. If n+ i is odd, we have l+ 1 = (n+ i+ 1)=2, and the last
value of ny is 1.

The quantity B can now be computed by observing how often the jeep has gone
back and forth between each ei and ei+1, as in the derivation of (8).

B = (2n� 1)e1 + (2n� 3)(e2 � e1) + � � �+
�
2(n � i)� 1

�
(ei+1 � ei)

+
�
2(n � i)� 4

�
(ei+2 � ei+1) +

�
2(n� i)� 8

�
(ei+3 � ei+2) + � � �

= 2e1 + 2e2 + � � �+ 2ei + 3ei+1 + 4ei+2 + � � �

8<
:+ 4el+1; if n+ i is even

+ 4el + 2el+1; if n+ i is odd

We are interested in the quantity g(0) �B. If n+ i is even, we have

g(0) �B = �ei+1 � 2ei+2 � � � � � 2el+1 + 2el+2 + � � � + 2en�1 + en � n� i:

This follows by taking k = n� i in (16). If n+ i is odd, we have similarly

g(0)�B = �ei+1 � 2ei+2 � � � � � 2el + 2el+2 + � � �+ 2en�1 + en � n� i:

The last inequality may be derived by taking (16) for k = n�i�1 and for k = n�i+1.

The average of these two inequalities together with ei � ei+2 gives the above relation.

Summarizing, we have g(0)�B � n� i and B � i� waste, which gives the desired
result.

Now the only thing that can happen is that the algorithm terminates with failure

in Step 3.1 of the i-th move, for 2 � i � n� 1. In this case we compare the amount

of driving which was done with the amount of fuel spent, as above, and we will

obtain a contradiction. Let us �rst assume that i � n� 2.

The situation is as follows. The total amount of fuel spent is i � waste. With

this fuel, the jeep has moved cans to e1; e2; : : : ; ei (they are now empty), and it has

moved ny = n � i additional cans to y; but the jeep did not succeed to bring the

last can from y to ei+1. Thus, if we increase y to (ei + ei+1 � 1)=2 and assume that

a can was brought to ei+1, we get an amount of driving C which is more work than

the jeep has done:

C > i� waste � i� n� g(0); (21)

by Lemma 6. With y := (ei + ei+1 � 1)=2 we can now write

C = 2e1 + 2e2 + � � � + 2ei + ei+1 + 2(n � i� 1)y

= 2e1 + 2e2 + � � � + 2ei�1 + (n� i+ 1)ei + (n� i)ei+1 � (n� i� 1):

Combining this with (21) gives

0 < C � g(0) + n� i

= (n� i� 1)ei + (n � i� 2)ei+1 � 2ei+2 � � � � � 2en�1 � (en � 1) < 0;

using the fact that ei � ei+1 � � � � � en�1 � en � 1. This is a contradiction.

For the (n�1)-st move, the role of ei+1 in the expression for C is taken by en�1
instead of en, and a suitably modi�ed calculation leads again to a contradiction.
This ends the proof of Theorem 2.

It is remarkable that the very small set of constraints (13) and (16), together with
the ordering of ei, is su�cient to characterize feasible solutions. The full generality
of (14) is not necessary.

Corollary 1 Any feasible solution of Problem (15) gives rise to a journey of the

jeep which reaches en.

Proof. Since the conditions (16) were derived from (14), the assumptions of Theo-
rem 2 follow from the constraints of Problem (15).

C Program for the algorithm of Appendix B

The following program implements the algorithm described above. Given the num-
ber n of cans, and the sorted array e1; : : : ; en of desired �nal position of empty cans,

it constructs a feasible tour, or otherwise it prints an error message exhibiting one

of the conditions which is violated.
The program is written in the programming language Maple, but it should be

understandable by anybody who is familiar with some procedural programming
language.

The three cases are encoded by the variable l which is de�ned by the condition

that el+1; el+2; : : : are the positions beyond ei at which no double-cans have yet been

established. The result is a sequence of \commands" (procedure calls) which tell

the jeep what to do, in the correct order. The program assumes that the conditions

e1 = 0, 0 � ei � ei+1 � 1, and 1 � en�1 � en � 2 have been checked beforehand.1

max waste := n � 2 � sum(e[i]; 'i' = 1 : : n� 1)� e[n];

if max waste < 0 then ERROR(`(13) is violated.`) �;

y := 0; n y := n� 2; waste := 0; l := 1; # The jeep starts at e[1] = 0.

for i from 1 to n� 2 do

�ll tank ();

s := 1� abs(e[i]� y)� abs(e[i+ 1]� y);

carry out the �rst part of the initial move, up to y:

if l > i then # CASE 1. e[i+ 1] � e[l] � y

load can(); move to(y); unload can();

n y := n y + 1;

elif l = i then # CASE 2. e[i] � y � e[i+ 1]

load can(); move to(y); unload can();

else # CASE 3. l = i� 1 and y � e[i]
move to(y);
l := l + 1; n y := n y � 1;

�;

plan additional work:
y old := y;
while s > 0 do

Delta y := min(e[l+ 1]� y; s=(2 � n y));

y := y +Delta y;
s := s� 2 �Delta y � n y;
if s = 0 or

n y � 1 or (l > i and n y � 2) then break �; # exit the while loop.
load can(); move to(y); unload can(); move to(y old);
n y := n y � 1;

if l > i then

load can(); move to(y); unload can(); move to(y old);
n y := n y � 1;

�;

l := l+ 1;

od;

for j from 1 to n y do # We always have n y > 0.
load can(); move to(y); unload can(); move to(y old);

od;

waste := waste + s;

if waste > max waste then

1The PostScript �le from which the copy of the paper which you are now looking at was
generated contains the text of a Maple procedure which carries out these statements, together
with some auxiliary procedures, near its beginning.

if (n� i) mod 2 = 0 then ERROR(`(16) is violated for k = n� i.`);

else ERROR(`(16) is violated for k = n� i� 1 or for k = n� i+ 1.`);

� �;

carry out the �nal part of the initial move, from y old :

if y old < e[i+ 1] then load can(); move to(e[i+ 1]); unload can();

else move to(e[i+ 1]);

�;

od;

the last two moves:

s := 1 � abs(e[n� 1]� y)� abs(e[n]� 1 � y);

waste := waste + s;

�ll tank (); move to(y); load can(); move to(e[n]� 1);

�ll tank (); move to(e[n]); unload can();

