D1:01	On the maximum size of an anti-chain of linearly
D1:02	separable sets and convex pseudo-discs ¹
D1:03	Rom Pinchasi [*] Günter Rote [†]
D1:04	January 11, 2008

Abstract

We answer a question raised by Walter Morris, and independently by Alon Efrat, about the maximum cardinality of an anti-chain composed of intersections of a given set of n points in the plane with half-planes. We approach this problem by establishing the equivalence with the problem of the maximum monotone path in an arrangement of n lines. A related problem on convex pseudo-discs is also discussed in the paper.

1 Introduction D1:11

D1:05

D1:06

D1:07

D1:08

D1:09

D1:10

Let P be a set of n points in the plane, no three of which are collinear. A subset of P is called D1:12 linearly separable if it is the intersection of P with a closed half-plane. A k-set of P is a D1:13 subset of k points from P which is linearly separable. Let $\mathcal{A}_k = \mathcal{A}_k(P)$ denote the collection D1:14 of all k-sets of P. It is a well-known open problem to determine f(k), the maximum possible D1:15 cardinality of \mathcal{A}_k , where P varies over all possible sets of n points in general position in the D1:16 plane. The current records are $f(k) = O(nk^{1/3})$ by Dey ([D98]) and $f(\lfloor n/2 \rfloor) \ge ne^{\Omega(\sqrt{\log n})}$ D1:17 by Tóth ([T01]). D1:18

Let $\mathcal{A} = \mathcal{A}(P) = \bigcup_{k=0}^{n} \mathcal{A}_{k}$ be the family of all linearly separable subsets of P. The family D1:19 \mathcal{A} is partially ordered by inclusion. Clearly, each \mathcal{A}_k is an anti-chain in \mathcal{A} . The following D1:20 problem was raised by Walter Morris in 2003 in relation with the convex dimension of a D1:21 point set (see [ES88]) and, as it turns out, it was independently raised by Alon Efrat 10 years before, in 1993: D1:22

Problem 1. What is the maximum possible cardinality g(n) of an anti-chain in the poset D1:23 \mathcal{A} , over all sets P with n points? D1:24

In Section 2 we show that in fact q(n) can be very large, and in particular much larger D1.25 than f(n).

¹This research was supported by a Grant from the G.I.F., the German-Israeli Foundation for Scientific D1:26 Research and Development. D1:27

D1:28 *Mathematics Dept., Technion—Israel Institute of Technology, Haifa 32000, Israel. D1:29

room@math.technion.ac.il.

[†]Institut für Informatik, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany. D1:30 rote@inf.fu-berlin.de D1:31

- D2:01Theorem 1. $g(n) = \Omega(n^{2-\frac{d}{\sqrt{\log n}}})$, for some absolute constant d > 0.D2:02In an attempt to bound from above the function g(n) one can view linearly separableD2:03sets as a special case of a slightly more general concept:D2:04Definition 1. Let P be a set of n points in general position in the plane. A Family F ofD2:05subsets of P is called a family of convex pseudo-discs if the following two conditions areD2:061. Every set in F is the intersection of P with a convex set.
- D2:08 2. If A and B are two different sets in F, then both sets $conv(A) \setminus conv(B)$ and $conv(B) \setminus D2:08$

 $\operatorname{conv}(A)$ are connected (or empty).

D2:09

One natural example for a family of convex pseudo-discs is the family $\mathcal{A}(P)$, where P is D2:10 a set of n points in general position in the plane. To see this, observe that every linearly D2:11 separable set is the intersection of P with a convex set, namely, a half-plane. It is therefore D2:12 left to verify that if $A = P \cap H_A$ and $B = P \cap H_B$, where H_A and H_B are two half-planes, then D2:13 both $\operatorname{conv}(A) \setminus \operatorname{conv}(B)$ and $\operatorname{conv}(B) \setminus \operatorname{conv}(A)$ are connected. Let $A' = A \setminus H_B = A \setminus B =$ D2:14 $A \setminus \operatorname{conv}(B)$. Since $\operatorname{conv}(A') \cap \operatorname{conv}(B) = \emptyset$, we have $\operatorname{conv}(A) \setminus \operatorname{conv}(B) \supset \operatorname{conv}(A')$. For D2:15 any $x \in \operatorname{conv}(A) \setminus \operatorname{conv}(B)$, we claim that there is a point $a' \in A'$ such that the line segment D2:16 [x, a'] is fully contained in conv $(A) \setminus conv(B)$. This will clearly show that $conv(A) \setminus conv(B)$ D2:17 is connected. Let a_1, a_2, a_3 be three points in A such that x is contained in the triangle D2:18 $a_1a_2a_3$. If each line segment $[x, a_i]$, for i = 1, 2, 3, contains a point of conv(B), it follows that D2:19 $x \in \operatorname{conv}(B)$, contrary to our assumption. Thus there must be a line segment $[x, a_i]$ that is D2:20 contained in $\operatorname{conv}(A) \setminus \operatorname{conv}(B)$, and we are done. D2:21

D2:22 In Section 3 we bound from above the maximum size of a family of convex pseudo-discs D2:23 of a set P of n points in the plane, assuming that this family of subsets of P is by itself an D2:24 anti-chain with respect to inclusion:

D2:25 **Theorem 2.** Let F be a family of convex pseudo-discs of a set P of n points in general position in the plane. If no member of F is contained in another, then F consists of at most $D_{2:27}$ $4\binom{n}{2} + 1$ members.

D2:28 Clearly, in view of Theorem 1, the result in Theorem 2 is nearly best possible. We show by D2:29 a simple construction that Theorem 2 is in fact tight, apart from the constant multiplicative D2:30 factor of n^2 .

2 Large anti-chains of linearly separable sets

D2:31 Instead of considering Problem 1 directly, we will consider a related problem.

D2:32 **Definition 2.** For a pair x, y of points and a pair ℓ_1, ℓ_2 of non-vertical lines, we say that x, y strongly separate ℓ_1, ℓ_2 if x lies strictly above ℓ_1 and strictly below ℓ_2 , and y lies strictly D2:34 above ℓ_2 and strictly below ℓ_1 .

D2:35 We will also take the dual viewpoint and say that ℓ_1, ℓ_2 strongly separate x, y. (In fact, D2:36 this relation is invariant under the standard point-line duality.)

2

D3:01 If we have a set L of lines, we say that the point pair x, y is strongly separated by L, if D3:02 L contains two lines ℓ_1, ℓ_2 that strongly separate x, y.

D3:03 A pair of lines ℓ_1, ℓ_2 is said to be strongly separated by a set P of points if there are two D3:04 points $x, y \in P$ that strongly separate ℓ_1 and ℓ_2 .

D3:05 Using the above terminology one can reduce Problem 1 to the following problem:

Problem 2. Let *P* be a set of *n* points in the plane. What is the maximum possible cardinality h(n) (taken over all possible sets *P* of *n* points) of a set of lines *L* in the plane such that for every two lines $\ell_1, \ell_2 \in L$, *P* strongly separates ℓ_1 and ℓ_2 .

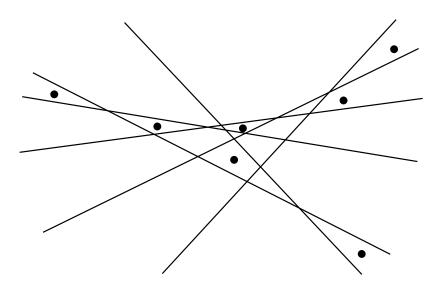


Figure 1: Problem 2.

To see the equivalence of Problem 1 and Problem 2, let P be a set of n points and Lbe a set of h(n) lines that answer Problem 2. We can assume that none of the points lie on a line of L. Then with each of the lines $\ell \in L$ we associate the subset of P which is the intersection of P with the half-plane below ℓ . We thus obtain h(n) subsets of P each of which is a linearly separable subset of P. Because of the condition on L and P, none of these linearly separable sets may contain another. Therefore we obtain h(n) elements from D3:15 $\mathcal{A}(P)$ that form an anti-chain, hence $g(n) \geq h(n)$.

D3:16 Conversely, assume we have an anti-chain of size g(n) in $\mathcal{A}(P)$ for a set P of n points. Each linearly separable set is the intersection of P with a half-plane, which is bounded by D3:18 some line ℓ . We can assume without loss of generality that none of these lines is vertical, D3:19 and at least half of the half-spaces lie below their bounding lines. These lines form a set LD3:20 of at least $\lceil g(n)/2 \rceil$ lines, and each pair of lines is separated by two points from the n-point D3:21 set P. Thus, $h(n) \geq \lceil g(n)/2 \rceil$.

Before reducing Problem 2 to another problem, we need the following simple lemma.

D3:23 Lemma 1. Let ℓ_1, \ldots, ℓ_n be n non-vertical lines arranged in increasing order of slopes. Let D3:24 P be a set of points. Assume that for every $1 \le i < n$, P strongly separates ℓ_i and ℓ_{i+1} . D3:25 Then for every $1 \le i < j \le n$, P strongly separates ℓ_i and ℓ_j .

D3:22

- *Proof.* We prove the lemma by induction on j i. For j = i + 1 there is nothing to prove. Assume $j - i \ge 2$. We first show the existence of a point $x \in P$ that lies above ℓ_i and below D4:02 ℓ_i . Let B denote the intersection point of ℓ_i and ℓ_i . Let r_i denote the ray whose apex is D4:03 B, included in ℓ_i , and points to the right. Similarly, let r_j denote the ray whose apex is B, D4:04 included in ℓ_i , and points to the right. D4:05 Since the slope of ℓ_{i+1} is between the slope of ℓ_i and the slope of ℓ_j , ℓ_{i+1} must intersect D4:06 either r_i or r_j (or both, in case it goes through B). D4:07 **Case 1.** ℓ_{i+1} intersects r_i . Then there is a point $x \in P$ that lies above ℓ_i and below ℓ_{i+1} . D4:08 This point x must also lie below ℓ_i . D4:09 **Case 2.** ℓ_{i+1} intersects r_j . Then, by the induction hypothesis, there is a point $x \in P$ that D4:10 lies above ℓ_{i+1} and below ℓ_i . This point x must also lie above ℓ_i . D4:11 The existence of a point y that lies above ℓ_i and below ℓ_i is symmetric. D4:12 By Lemma 1, Problem 2 is equivalent to following problem. D4:13 **Problem 3.** What is the maximum cardinality h(n) of a collection of lines $L = \{\ell_1, \ldots, \ell_{h(n)}\}$ D4:14 in the plane, indexed so that the slope of ℓ_i is smaller than the slope of ℓ_j whenever i < j, D4:15 such that there exists a set P of n points that strongly separates ℓ_i and ℓ_{i+1} , for every D4:16 $1 \le i \le h(n)$? D4:17 We will consider the dual problem of Problem 3: D4:18 **Problem 4.** What is the maximum cardinality h(n) of a set of points $P = \{p_1, \ldots, p_{h(n)}\}$ D4:19 in the plane, indexed so that the x-coordinate of p_i is smaller than the x-coordinate of p_i , D4:20 whenever i < j, such that there exists a set L of n lines that strongly separates p_{i+1} and p_i , D4:21 for every $1 \le i < h(n)$? D4:22 We will relate Problem 4 to another well-known problem: the question of the longest D4:23 monotone path in an arrangement of lines. D4:24 Consider an x-monotone path in a line arrangement in the plane. The *length* of such D4:25 a path is the number of different line segments that constitute the path, assuming that D4:26 consecutive line segments on the path belong to different lines in the arrangement. (In other D4:27 words, if the path passes through a vertex of the arrangement without making a turn, this
- **Problem 5.** What is the maximum possible length $\lambda(n)$ of an x-monotone path in an D4:29 arrangement of n lines? D4:30
- A construction of [BRSSS04] gives a simple line arrangement in the plane which consists D4:31 of n lines and which contains an x-monotone path of length $\Omega(n^{2-\frac{d}{\sqrt{\log n}}})$ for some absolute D4:32 constant d > 0. No upper bound that is asymptotically better than the trivial bound of D4:33 $O(n^2)$ is known. D4:34

Problem 5 is closely related to Problem 4, and hence also to the other problems:

Proposition 1. D4:36

does not count as a new edge.)

$$h(n) \ge \left\lceil \frac{\lambda(n) + 1}{2} \right\rceil,\tag{1}$$

D4:38

D4:35

D4:37

D4:28

D4:01

 $\lambda(n) \ge h(n) - 2$ (2) D5:01 Proof. We first prove $h(n) \ge \lceil (\lambda(n)+1)/2 \rceil$. Let L be a simple arrangement of n lines that admits an x-monotone path of length $m = \lambda(n)$. Denote by x_0, x_1, \ldots, x_m the vertices of a monotone path arranged in increasing order of x-coordinates. In this notation x_1, \ldots, x_{m-1} are vertices of the line arrangement L, while x_0 and x_m are chosen arbitrarily on the corresponding two rays which constitute the first and last edges, respectively, of the path. For each $1 \le i < m$ let s_i denote the line that contains the segment $x_{i-1}x_i$, and let r_i denote the line through the segment $x_i x_{i+1}$.

For $1 \le i < m$, we say that the path bends downward at the vertex x_i if the slope of s_i is ps:09 greater than the slope of r_i , and it bends upward if the slope of s_i is smaller than the slope of ps:10 r_i . Without loss of generality we may assume that at least half of the vertices x_1, \ldots, x_{m-1} ps:11 of the monotone path are downward bends.

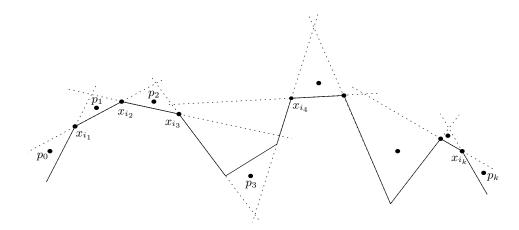


Figure 2: Constructing a solution for Problem 4.

D5:12 Let $i_1 < i_2 < \cdots < i_k$ be all indices such that x_{i_j} is a downward bend, where $k \ge (m-1)/2$. Observe that for every $1 \le j < k$, the monotone path between x_{i_j} and $x_{i_{j+1}}$ is an upward-bending convex polygonal path.

D5:15 We will now define k + 1 points p_0, p_1, \ldots, p_k such that for every $0 \le j < k$ the *x*coordinate of p_j is smaller than the *x*-coordinate of p_{j+1} , and the line r_{i_j} lies above p_j and below p_{j+1} while the line s_{i_j} lies below p_j and above p_{j+1} . This construction will thus show that $h(n) \ge \lfloor \frac{\lambda(n)+1}{2} \rfloor$.

^{D5:19} For every $1 \leq j \leq k$ let U_j and W_j denote the left and respectively the right wedges ^{D5:20} delimited by r_{i_j} and s_{i_j} . That is, U_j is the set of all points that lie below r_{i_j} and above s_{i_j} . ^{D5:21} Similarly, W_j is the set of all points that lie above r_{i_j} and below s_{i_j} .

- D5:22 Claim 1. For every $1 \le j < k$, W_j and U_{j+1} have a nonempty intersection.
- D5:23 *Proof.* We consider two possible cases:

D5:24 **Case 1.** $i_{j+1} = i_j + 1$. In this case $r_{i_j} = s_{i_{j+1}}$. Therefore any point above the line segment D5:25 $[x_{i_j}x_{i_{j+1}}]$ that is close enough to that segment lies both below s_{i_j} and below $r_{i_{j+1}}$ and hence D5:26 $W_j \cap U_{j+1} \neq \emptyset$.

D5:27 **Case 2.** $i_{j+1} - i_j > 1$. In this case, as we observed earlier, the monotone path between x_{i_j} D5:28 and $x_{i_{j+1}}$ is a convex polygonal path. Therefore, r_{i_j} and $s_{i_{j+1}}$ are different lines that meet at ^{D6:01} a point *B* whose *x*-coordinate is between the *x*-coordinates of x_{i_j} and $x_{i_{j+1}}$. Any point that ^{D6:02} lies vertically above *B* and close enough to *B* belongs to both W_j and U_{j+1} .

D6:03 Now it is very easy to construct p_0, p_1, \ldots, p_k , see Figure 2. Simply take p_0 to be any D6:04 point in U_1 , and for every $1 \le j < k$ let p_j be any point in $W_j \cap U_{j+1}$. Finally, let p_k be any point in W_k . It follows from the definition of U_1, \ldots, U_k and W_1, \ldots, W_k that for every D6:06 $0 \le j < k, r_{i_{j+1}}$ lies above p_j and below p_{j+1} and the line $s_{i_{j+1}}$ lies below p_j and above p_{j+1} . We now prove the opposite direction: $\lambda(n) \ge h(n) - 2$.

D6:08Assume we are given h(n) points $p_1, \ldots, p_{h(n)}$ sorted by x-coordinate and a set of n lines LD6:09such that every pair p_i, p_{i+1} is strongly separated by L. By perturbing the lines if necessary,D6:10we can assume that none of the lines goes through a point, and no three lines are concurrent.D6:11For 1 < i < h(n), let f_i be the face of the arrangement that contains p_i , and let A_i and B_i be,D6:12respectively, the left-most and right-most vertex in this face. (The faces f_i are bounded, andD6:13therefore A_i and B_i are well-defined.) The monotone path will follow the upper boundaryD6:14of each face f_i from A_i to B_i .

We have to show that we can connect B_i to A_{i+1} by a monotone path. This follows D6:15 from the separation property of L. Let s_i, r_i be a pair of lines that strongly separates p_i and D6:16 p_{i+1} in such a way that r_i lies above p_i and below p_{i+1} and s_i lies below p_i and above p_{i+1} . D6:17 Since B_i lies on the boundary of the face f_i that contains p_i , B_i lies also between r_i and s_i , D6:18 including the possibility of lying on these lines. We can thus walk on the arrangement from D6:19 B_i to the right until we hit r_i or s_i , and from there we proceed straight to the intersection D6:20 point Q_i of r_i and s_i . Similarly, there is a path in the arrangement from A_{i+1} to the left that D6:21 reaches Q_i and these two paths together link B_i with A_{i+1} . D6:22

To count the number of edges of this path, we claim that there must be at least one bend between B_i and A_{i+1} (including the boundary points B_i and A_{i+1}). If there is no bend at Q_i , the path must go straight through Q_i , say, on r_i . But then the path must leave r_i at some point when going to the right: if the path has not left r_i by the time it reaches A_{i+1} and A_{i+1} lies on r_i , then the path must bend upward at this point, since it proceeds on the upper boundary of the face f_{i+1} that lies above r_i .

D6:29 Thus, the path makes at least h(n) - 3 bends (between B_i and A_{i+1} , for 1 < i < h(n) - 1) D6:30 and contains at least h(n) - 2 edges.

D6:31 Now it is very easy to give a lower bound for g(n), and prove Theorem 1. Indeed, this D6:32 follows because $g(n) \ge h(n)$ and $h(n) \ge \lceil \frac{\lambda(n)+1}{2} \rceil = \Omega(n^{2-\frac{d}{\sqrt{\log n}}})$, D6:33 The close relation between Problems 1 and 5 comes probably as no big surprise if one

The close relation between Problems 1 and 5 comes probably as no big surprise if one considers the close connection between k-sets and levels in arrangements of lines (see [E87, Section 3.2]). For a given set of n points P, the k-sets are in one-to-one correspondence with the faces of the dual arrangements of lines which have k lines passing below them and n - klines passing above them (or vice versa). The lower boundaries of these cells form the k-th level in the arrangement, and the upper boundaries form the (k + 1)-st level.

D6:39 Our chain of equivalence from Problem 1 to Problem 5 extends this relation between $b_{6:40}$ k-sets and levels in a way that is not entirely trivial: for example, establishing that we get $b_{6:41}$ sets that form an antichain requires some work, whereas for k-sets this property is fulfilled $b_{6:42}$ automatically.

6

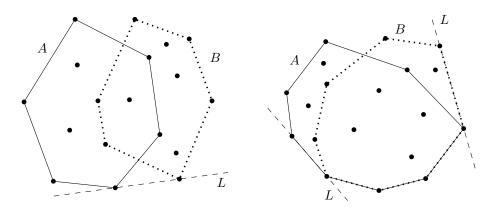


Figure 3: The two cases of common tangents in Lemma 2

D7:01 3 Proof of Theorem 2

D7:18

The heart of our argument uses a linear algebra approach first applied by Tverberg [T82] in his elegant proof for a theorem of Graham and Pollak [GP72] on decomposition of the complete graph into bipartite graphs.

Let F be a collection of convex pseudo-discs of a set P of n points in general position in D7:05 the plane. We wish to bound from above the size of F assuming that no set in F contains D7:06 another. For every directed line $L = \overline{xy}$ passing through two points x and y in P we denote D7:07 by L_x the collection of all sets $A \in F$ that lie in the closed half-plane to the left of L such D7:08 that L touches $\operatorname{conv}(A)$ at the point x only. Similarly, let L_y be the collection of all sets D7:09 $A \in F$ that lie in the closed half-plane to the left of L such that L touches conv(A) at the D7:10 point y only. Finally, let L_{xy} be those sets $A \in F$ that lie in the closed half-plane to the left D7:11 of L such that L supports conv(A) at the edge xy. D7:12

D7:13 **Definition 3.** Let A and B be two sets in F. Let L be a directed line through two points D7:14 x and y in P. We say that L is a common tangent of the *first kind* with respect the pair D7:15 (A, B) if $A \in L_x$ and $B \in L_y$.

D7:16 We say that L is a common tangent of the second kind with respect to (A, B) if $A \in L_{xy}$ D7:17 and $B \in L_y$, or if $A \in L_x$ and $B \in L_{xy}$.

The crucial observation about any two sets A and B in F is stated in the following lemma.

D7:19 **Lemma 2.** Let A and B be two sets in F. Then exactly one of the following conditions is D7:20 true.

- D7:21 1. There is precisely one common tangent of the first kind with respect to (A, B) and no D7:22 common tangent of the second kind with respect to (A, B), or
- D7:23 2. there is no common tangent of the first kind with respect to (A, B), and there are precisely two common tangents of the second kind with respect (A, B).

^{D7:25} *Proof.* The idea is that because A and B are two pseudo-discs and none of conv(A) and conv(B) contains the other, then as we roll a tangent around $C = conv(A \cup B)$, there is

 $_{D8:01}$ precisely one transition between A and B, and this is where the situation described in the $_{D8:02}$ lemma occurs (see Figure 3).

D8:03 Formally, by our assumption on F, none of A and B contains the other. Any directed D8:04 line L that is a common tangent of the first or second kind with respect to A and B must D8:05 be a line supporting conv $(A \cup B)$ at an edge.

D8:06 Let x_0, \ldots, x_{k-1} denote the vertices of $C = \operatorname{conv}(A \cup B)$ arranged in counterclockwise D8:07 order on the boundary of C. In what follows, arithmetic on indices is done modulo k.

There must be an index i such that $x_i \in A \setminus B$, for otherwise every x_i belongs to B and therefore $\operatorname{conv}(B) = \operatorname{conv}(A \cup B) \supset \operatorname{conv}(A)$ and therefore $B \supset A$ (because both A and Bare intersections of P with convex sets) in contrast to our assumption. Similarly, there must be an index i such that $x_i \in B \setminus A$.

D8:12 Let I_A be the set of all indices i such that $x_i \in A \setminus B$, and let I_B be the set of all indices D8:13 i such that $x_i \in B \setminus A$.

^{D8:14} We claim that I_A (and similarly I_B) is a set of consecutive indices. To see this, assume to the contrary that there are indices i, j, i', j' arranged in a cyclic order modulo k such that $x_i, x_{i'} \in A \setminus B$ and $x_j, x_{j'} \in B$. Then it is easy to see that $conv(A) \setminus conv(B)$ is not a connected set because x_i and $x_{i'}$ are in different connected components of this set.

D8:18 We have therefore two disjoint intervals $I_A = \{i_A, i_A + 1, \dots, j_A\}$ and $I_B = \{i_B, i_B + 1, \dots, j_B\}$. It is possible that $i_A = j_A$ or $i_B = j_B$.

D8:20 Observe that $x_{i_A}, x_{j_A}, x_{i_B}, x_{j_B}$ are arranged in this counterclockwise cyclic order on the D8:21 boundary of C, and for every index $i \notin I_A \cup I_B$, $x_i \in A \cap B$. The only candidates for common D8:22 tangents of the first kind or of the second kind with respect to A and B are of the form D8:23 $\overrightarrow{x_i x_{i+1}}$, that is, they must pass through two consecutive vertices of C.

We distinguish two possible cases:

D8:24

- D8:25 1. $i_B = j_A + 1$. In this case the line through x_{j_A} and x_{i_B} is the only common tangent of D8:26 the first kind with respect to (A, B) and there are no common tangents of the second D8:27 kind with respect to (A, B).
- D8:28 2. $i_B \neq j_A + 1$. In this case, there is no common tangent of the first kind with respect D8:29 to (A, B). The line through x_{i_B-1} and x_{i_B} and the line through x_{j_A} and x_{j_A+1} are the D8:30 only common tangents of the second kind with respect to (A, B).
- D8:31 This completes the proof of the lemma.

Let A_1, \ldots, A_m be all the sets in F, and for every $1 \le i \le m$ let z_i be an indeterminate associated with A_i . For each directed line $L = \overrightarrow{xy}$, define the following polynomial P_L :

D8:34
$$P_L(z_1,\ldots,z_m) = \left(\sum_{A_i \in L_x} z_i\right) \left(\sum_{A_j \in L_y} z_j\right) + \frac{1}{2} \left(\sum_{A_i \in L_x} z_i\right) \left(\sum_{A_j \in L_{xy}} z_j\right) + \frac{1}{2} \left(\sum_{A_i \in L_y} z_i\right) \left(\sum_{A_j \in L_{xy}} z_j\right)$$

D8:35 This polynomial contains a term $z_u z_v$ whenever L is a tangent line for the pair (A_u, A_v) or for D8:36 the pair (A_v, A_u) (of the first or of the second kind, and with coefficient 1 or $\frac{1}{2}$, accordingly). D8:37 If we sum this equation over all directed lines L, it follows by Lemma 2 that every term $z_u z_v$ D8:38 with $u \neq v$ appears with coefficient 2:

D8:39
$$\sum_{L} P_L(z_1, \dots, z_m) = \sum_{u < v} 2z_u z_v = (z_1 + \dots + z_m)^2 - (z_1^2 + \dots + z_m^2)$$
(3)

D9:01 Consider the system of linear equations $\sum_{A_i \in L_x} z_i = 0$ and $\sum_{A_i \in L_y} z_i = 0$, where $L = \vec{xy}$ varies over all directed lines determined by P. Add to this system the equation $z_1 + \cdots + z_m =$ 0. There are $4\binom{n}{2} + 1$ equations in this system and if $m > 4\binom{n}{2} + 1$, there must be a nontrivial solution. However, it is easily seen that a nontrivial solution (z_1, \ldots, z_m) will result in a contradiction to (3). This is because the left-hand side of (3) vanishes, while the right-hand side equals $-(z_1^2 + \cdots + z_m^2) \neq 0$. We conclude that $|F| = m \leq 4\binom{n}{2} + 1$.

D9:07We now show by a simple construction that Theorem 2 is tight apart from the multi-
plicative constant factor of n^2 . Fix three rays r_1, r_2 , and r_3 emanating from the origin such
that the angle between two rays is 120 degrees. For each i = 1, 2, 3, let p_1^i, \ldots, p_n^i be n points
points
on r_i , indexed according to their increasing distance from the origin. Slightly perturb the
points to get a set P of 3n points in general position in the plane. For every $1 \le j, k, l \le n$
define

$$F_{jkl} = \{p_1^1, \dots, p_j^1\} \cup \{p_1^2, \dots, p_k^2\} \cup \{p_1^3, \dots, p_l^3\}.$$

D9:14 It can easily be checked that the collection of all F_{jkl} such that $1 \le j, k, l \le n$ and j+k+l = n+2 is an anti-chain of convex pseudo-discs of P. This collection consists of $\binom{n+1}{2}$ sets.

D9:16 **References**

D9:13

- D9:17 [BRSSS04] J. Balogh, O. Regev, C. Smyth, W. Steiger, and M. Szegedy, Long monotone paths in line arrangements. *Discrete Comput. Geom.* **32** (2004), no. 2, 167–176.
- D9:19 [D98] T. K. Dey, Improved bounds for planar k-sets and related problems. Discrete Comput. Geom. 19 (1998), no. 3, 373–382.
- D9:21[ES88]P. H. Edelman and M. E. Saks, Combinatorial representation and convex dimen-
sion of convex geometries. Order 5 (1988), no. 1, 23–32.
- D9:23 [E87] H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs D9:24 on Theoret. Comput. Sci., vol. 10, Springer-Verlag, Berlin, 1987.
- D9:25[GP72]R. L. Graham and H. O. Pollak, On embedding graphs in squashed cubes. InD9:26Proc. Conf. Graph Theory Appl., Western Michigan Univ., May 10–13, 1972, ed.D9:27Y. Alavi, D. R. Lick, and A. T. White, Lecture Notes in Mathematics, vol. 303,D9:28Springer-Verlag, Berlin, 1972, pp. 99–110.
- D9:29 [T01] G. Tóth, Point sets with many k-sets, Discrete Comput. Geom. **26** (2001) no. 2, 187–194.

D9:31 [T82] H. Tverberg, On the decomposition of K_n into complete bipartite graphs. J. D9:32 Graph Theory 6 (1982), no. 4, 493–494.