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On the maximum size of an anti-chain of linearly
separable sets and convex pseudo-discs1

Rom Pinchasi∗ Günter Rote†

January 11, 2008

Abstract

We answer a question raised by Walter Morris, and independently by Alon Efrat,
about the maximum cardinality of an anti-chain composed of intersections of a given
set of n points in the plane with half-planes. We approach this problem by establishing
the equivalence with the problem of the maximum monotone path in an arrangement
of n lines. A related problem on convex pseudo-discs is also discussed in the paper.

1 Introduction

Let P be a set of n points in the plane, no three of which are collinear. A subset of P is called
linearly separable if it is the intersection of P with a closed half-plane. A k-set of P is a
subset of k points from P which is linearly separable. Let Ak = Ak(P ) denote the collection
of all k-sets of P . It is a well-known open problem to determine f(k), the maximum possible
cardinality of Ak, where P varies over all possible sets of n points in general position in the
plane. The current records are f(k) = O(nk1/3) by Dey ([D98]) and f(bn/2c) ≥ neΩ(

√
log n)

by Tóth ([T01]).
Let A = A(P ) = ∪n

k=0Ak be the family of all linearly separable subsets of P . The family
A is partially ordered by inclusion. Clearly, each Ak is an anti-chain in A. The following
problem was raised by Walter Morris in 2003 in relation with the convex dimension of a
point set (see [ES88]) and, as it turns out, it was independently raised by Alon Efrat 10
years before, in 1993:

Problem 1. What is the maximum possible cardinality g(n) of an anti-chain in the poset
A, over all sets P with n points?

In Section 2 we show that in fact g(n) can be very large, and in particular much larger
than f(n).
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Theorem 1. g(n) = Ω(n
2− d√

log n ), for some absolute constant d > 0.

In an attempt to bound from above the function g(n) one can view linearly separable
sets as a special case of a slightly more general concept:

Definition 1. Let P be a set of n points in general position in the plane. A Family F of
subsets of P is called a family of convex pseudo-discs if the following two conditions are
satisfied:

1. Every set in F is the intersection of P with a convex set.

2. If A and B are two different sets in F , then both sets conv(A)\conv(B) and conv(B)\
conv(A) are connected (or empty).

One natural example for a family of convex pseudo-discs is the family A(P ), where P is
a set of n points in general position in the plane. To see this, observe that every linearly
separable set is the intersection of P with a convex set, namely, a half-plane. It is therefore
left to verify that if A = P∩HA and B = P∩HB, where HA and HB are two half-planes, then
both conv(A) \ conv(B) and conv(B) \ conv(A) are connected. Let A′ = A \HB = A \B =
A \ conv(B). Since conv(A′) ∩ conv(B) = ∅, we have conv(A) \ conv(B) ⊃ conv(A′). For
any x ∈ conv(A) \ conv(B), we claim that there is a point a′ ∈ A′ such that the line segment
[x, a′] is fully contained in conv(A) \ conv(B). This will clearly show that conv(A) \ conv(B)
is connected. Let a1, a2, a3 be three points in A such that x is contained in the triangle
a1a2a3. If each line segment [x, ai], for i = 1, 2, 3, contains a point of conv(B), it follows that
x ∈ conv(B), contrary to our assumption. Thus there must be a line segment [x, ai] that is
contained in conv(A) \ conv(B), and we are done.

In Section 3 we bound from above the maximum size of a family of convex pseudo-discs
of a set P of n points in the plane, assuming that this family of subsets of P is by itself an
anti-chain with respect to inclusion:

Theorem 2. Let F be a family of convex pseudo-discs of a set P of n points in general
position in the plane. If no member of F is contained in another, then F consists of at most
4
(

n
2

)
+ 1 members.

Clearly, in view of Theorem 1, the result in Theorem 2 is nearly best possible. We show by
a simple construction that Theorem 2 is in fact tight, apart from the constant multiplicative
factor of n2.

2 Large anti-chains of linearly separable sets

Instead of considering Problem 1 directly, we will consider a related problem.

Definition 2. For a pair x, y of points and a pair `1, `2 of non-vertical lines, we say that
x, y strongly separate `1, `2 if x lies strictly above `1 and strictly below `2, and y lies strictly
above `2 and strictly below `1.

We will also take the dual viewpoint and say that `1, `2 strongly separate x, y. (In fact,
this relation is invariant under the standard point-line duality.)
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If we have a set L of lines, we say that the point pair x, y is strongly separated by L, if
L contains two lines `1, `2 that strongly separate x, y.

A pair of lines `1, `2 is said to be strongly separated by a set P of points if there are two
points x, y ∈ P that strongly separate `1 and `2.

Using the above terminology one can reduce Problem 1 to the following problem:

Problem 2. Let P be a set of n points in the plane. What is the maximum possible
cardinality h(n) (taken over all possible sets P of n points) of a set of lines L in the plane
such that for every two lines `1, `2 ∈ L, P strongly separates `1 and `2.

Figure 1: Problem 2.

To see the equivalence of Problem 1 and Problem 2, let P be a set of n points and L
be a set of h(n) lines that answer Problem 2. We can assume that none of the points lie
on a line of L. Then with each of the lines ` ∈ L we associate the subset of P which is
the intersection of P with the half-plane below `. We thus obtain h(n) subsets of P each
of which is a linearly separable subset of P . Because of the condition on L and P , none of
these linearly separable sets may contain another. Therefore we obtain h(n) elements from
A(P ) that form an anti-chain, hence g(n) ≥ h(n).

Conversely, assume we have an anti-chain of size g(n) in A(P ) for a set P of n points.
Each linearly separable set is the intersection of P with a half-plane, which is bounded by
some line `. We can assume without loss of generality that none of these lines is vertical,
and at least half of the half-spaces lie below their bounding lines. These lines form a set L
of at least dg(n)/2e lines, and each pair of lines is separated by two points from the n-point
set P . Thus, h(n) ≥ dg(n)/2e.

Before reducing Problem 2 to another problem, we need the following simple lemma.

Lemma 1. Let `1, . . . , `n be n non-vertical lines arranged in increasing order of slopes. Let
P be a set of points. Assume that for every 1 ≤ i < n, P strongly separates `i and `i+1.
Then for every 1 ≤ i < j ≤ n, P strongly separates `i and `j.

3
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Proof. We prove the lemma by induction on j − i. For j = i + 1 there is nothing to prove.
Assume j − i ≥ 2. We first show the existence of a point x ∈ P that lies above `i and below
`j. Let B denote the intersection point of `i and `j. Let ri denote the ray whose apex is
B, included in `i, and points to the right. Similarly, let rj denote the ray whose apex is B,
included in `j, and points to the right.

Since the slope of `i+1 is between the slope of `i and the slope of `j, `i+1 must intersect
either ri or rj (or both, in case it goes through B).
Case 1. `i+1 intersects ri. Then there is a point x ∈ P that lies above `i and below `i+1.
This point x must also lie below `j.
Case 2. `i+1 intersects rj. Then, by the induction hypothesis, there is a point x ∈ P that
lies above `i+1 and below `j. This point x must also lie above `i.

The existence of a point y that lies above `j and below `i is symmetric.

By Lemma 1, Problem 2 is equivalent to following problem.

Problem 3. What is the maximum cardinality h(n) of a collection of lines L = {`1, . . . , `h(n)}
in the plane, indexed so that the slope of `i is smaller than the slope of `j whenever i < j,
such that there exists a set P of n points that strongly separates `i and `i+1, for every
1 ≤ i < h(n)?

We will consider the dual problem of Problem 3:

Problem 4. What is the maximum cardinality h(n) of a set of points P = {p1, . . . , ph(n)}
in the plane, indexed so that the x-coordinate of pi is smaller than the x-coordinate of pj,
whenever i < j, such that there exists a set L of n lines that strongly separates pi+1 and pi,
for every 1 ≤ i < h(n)?

We will relate Problem 4 to another well-known problem: the question of the longest
monotone path in an arrangement of lines.

Consider an x-monotone path in a line arrangement in the plane. The length of such
a path is the number of different line segments that constitute the path, assuming that
consecutive line segments on the path belong to different lines in the arrangement. (In other
words, if the path passes through a vertex of the arrangement without making a turn, this
does not count as a new edge.)

Problem 5. What is the maximum possible length λ(n) of an x-monotone path in an
arrangement of n lines?

A construction of [BRSSS04] gives a simple line arrangement in the plane which consists

of n lines and which contains an x-monotone path of length Ω(n
2− d√

log n ) for some absolute
constant d > 0. No upper bound that is asymptotically better than the trivial bound of
O(n2) is known.

Problem 5 is closely related to Problem 4, and hence also to the other problems:

Proposition 1.

h(n) ≥
⌈

λ(n) + 1

2

⌉
, (1)

λ(n) ≥ h(n)− 2 (2)

4



D5:01

D5:02

D5:03

D5:04

D5:05

D5:06

D5:07

D5:08

D5:09

D5:10

D5:11

D5:12

D5:13

D5:14

D5:15

D5:16

D5:17

D5:18

D5:19

D5:20

D5:21

D5:22

D5:23

D5:24

D5:25

D5:26

D5:27

D5:28

Proof. We first prove h(n) ≥ d(λ(n) + 1)/2e. Let L be a simple arrangement of n lines that
admits an x-monotone path of length m = λ(n). Denote by x0, x1, . . . , xm the vertices of a
monotone path arranged in increasing order of x-coordinates. In this notation x1, . . . , xm−1

are vertices of the line arrangement L, while x0 and xm are chosen arbitrarily on the corre-
sponding two rays which constitute the first and last edges, respectively, of the path. For
each 1 ≤ i < m let si denote the line that contains the segment xi−1xi, and let ri denote the
line through the segment xixi+1.

For 1 ≤ i < m, we say that the path bends downward at the vertex xi if the slope of si is
greater than the slope of ri, and it bends upward if the slope of si is smaller than the slope of
ri. Without loss of generality we may assume that at least half of the vertices x1, . . . , xm−1

of the monotone path are downward bends.

xik

pk

xi2

xi1

p0

p1
p2

xi3

xi4

p3

Figure 2: Constructing a solution for Problem 4.

Let i1 < i2 < · · · < ik be all indices such that xij is a downward bend, where k ≥
(m − 1)/2. Observe that for every 1 ≤ j < k, the monotone path between xij and xij+1

is
an upward-bending convex polygonal path.

We will now define k + 1 points p0, p1, . . . , pk such that for every 0 ≤ j < k the x-
coordinate of pj is smaller than the x-coordinate of pj+1, and the line rij lies above pj and
below pj+1 while the line sij lies below pj and above pj+1. This construction will thus show

that h(n) ≥ dλ(n)+1
2

e.
For every 1 ≤ j ≤ k let Uj and Wj denote the left and respectively the right wedges

delimited by rij and sij . That is, Uj is the set of all points that lie below rij and above sij .
Similarly, Wj is the set of all points that lie above rij and below sij .

Claim 1. For every 1 ≤ j < k, Wj and Uj+1 have a nonempty intersection.

Proof. We consider two possible cases:
Case 1. ij+1 = ij + 1. In this case rij = sij+1

. Therefore any point above the line segment
[xijxij+1

] that is close enough to that segment lies both below sij and below rij+1
and hence

Wj ∩ Uj+1 6= ∅.
Case 2. ij+1 − ij > 1. In this case, as we observed earlier, the monotone path between xij

and xij+1
is a convex polygonal path. Therefore, rij and sij+1

are different lines that meet at

5
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a point B whose x-coordinate is between the x-coordinates of xij and xij+1
. Any point that

lies vertically above B and close enough to B belongs to both Wj and Uj+1.
Now it is very easy to construct p0, p1, . . . , pk, see Figure 2. Simply take p0 to be any

point in U1, and for every 1 ≤ j < k let pj be any point in Wj ∩ Uj+1. Finally, let pk be
any point in Wk. It follows from the definition of U1, . . . , Uk and W1, . . . ,Wk that for every
0 ≤ j < k, rij+1

lies above pj and below pj+1 and the line sij+1
lies below pj and above pj+1.

We now prove the opposite direction: λ(n) ≥ h(n)− 2.
Assume we are given h(n) points p1, . . . , ph(n) sorted by x-coordinate and a set of n lines L

such that every pair pi, pi+1 is strongly separated by L. By perturbing the lines if necessary,
we can assume that none of the lines goes through a point, and no three lines are concurrent.
For 1 < i < h(n), let fi be the face of the arrangement that contains pi, and let Ai and Bi be,
respectively, the left-most and right-most vertex in this face. (The faces fi are bounded, and
therefore Ai and Bi are well-defined.) The monotone path will follow the upper boundary
of each face fi from Ai to Bi.

We have to show that we can connect Bi to Ai+1 by a monotone path. This follows
from the separation property of L. Let si, ri be a pair of lines that strongly separates pi and
pi+1 in such a way that ri lies above pi and below pi+1 and si lies below pi and above pi+1.
Since Bi lies on the boundary of the face fi that contains pi, Bi lies also between ri and si,
including the possibility of lying on these lines. We can thus walk on the arrangement from
Bi to the right until we hit ri or si, and from there we proceed straight to the intersection
point Qi of ri and si. Similarly, there is a path in the arrangement from Ai+1 to the left that
reaches Qi. and these two paths together link Bi with Ai+1.

To count the number of edges of this path, we claim that there must be at least one bend
between Bi and Ai+1 (including the boundary points Bi and Ai+1). If there is no bend at
Qi, the path must go straight through Qi, say, on ri. But then the path must leave ri at
some point when going to the right: if the path has not left ri by the time it reaches Ai+1

and Ai+1 lies on ri, then the path must bend upward at this point, since it proceeds on the
upper boundary of the face fi+1 that lies above ri.

Thus, the path makes at least h(n)−3 bends (between Bi and Ai+1, for 1 < i < h(n)−1)
and contains at least h(n)− 2 edges.

Now it is very easy to give a lower bound for g(n), and prove Theorem 1. Indeed, this

follows because g(n) ≥ h(n) and h(n) ≥ dλ(n)+1
2

e = Ω(n
2− d√

log n ),
The close relation between Problems 1 and 5 comes probably as no big surprise if one

considers the close connection between k-sets and levels in arrangements of lines (see [E87,
Section 3.2]). For a given set of n points P , the k-sets are in one-to-one correspondence with
the faces of the dual arrangements of lines which have k lines passing below them and n− k
lines passing above them (or vice versa). The lower boundaries of these cells form the k-th
level in the arrangement, and the upper boundaries form the (k + 1)-st level.

Our chain of equivalence from Problem 1 to Problem 5 extends this relation between
k-sets and levels in a way that is not entirely trivial: for example, establishing that we get
sets that form an antichain requires some work, whereas for k-sets this property is fulfilled
automatically.
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A

B

B
A

L

L

L

Figure 3: The two cases of common tangents in Lemma 2

3 Proof of Theorem 2

The heart of our argument uses a linear algebra approach first applied by Tverberg [T82]
in his elegant proof for a theorem of Graham and Pollak [GP72] on decomposition of the
complete graph into bipartite graphs.

Let F be a collection of convex pseudo-discs of a set P of n points in general position in
the plane. We wish to bound from above the size of F assuming that no set in F contains
another. For every directed line L = −→xy passing through two points x and y in P we denote
by Lx the collection of all sets A ∈ F that lie in the closed half-plane to the left of L such
that L touches conv(A) at the point x only. Similarly, let Ly be the collection of all sets
A ∈ F that lie in the closed half-plane to the left of L such that L touches conv(A) at the
point y only. Finally, let Lxy be those sets A ∈ F that lie in the closed half-plane to the left
of L such that L supports conv(A) at the edge xy.

Definition 3. Let A and B be two sets in F . Let L be a directed line through two points
x and y in P . We say that L is a common tangent of the first kind with respect the pair
(A, B) if A ∈ Lx and B ∈ Ly.

We say that L is a common tangent of the second kind with respect to (A, B) if A ∈ Lxy

and B ∈ Ly, or if A ∈ Lx and B ∈ Lxy.

The crucial observation about any two sets A and B in F is stated in the following lemma.

Lemma 2. Let A and B be two sets in F . Then exactly one of the following conditions is
true.

1. There is precisely one common tangent of the first kind with respect to (A, B) and no
common tangent of the second kind with respect to (A, B), or

2. there is no common tangent of the first kind with respect to (A, B), and there are
precisely two common tangents of the second kind with respect (A, B).

Proof. The idea is that because A and B are two pseudo-discs and none of conv(A) and
conv(B) contains the other, then as we roll a tangent around C = conv(A ∪B), there is

7
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precisely one transition between A and B, and this is where the situation described in the
lemma occurs (see Figure 3).

Formally, by our assumption on F , none of A and B contains the other. Any directed
line L that is a common tangent of the first or second kind with respect to A and B must
be a line supporting conv(A ∪B) at an edge.

Let x0, . . . , xk−1 denote the vertices of C = conv(A ∪B) arranged in counterclockwise
order on the boundary of C. In what follows, arithmetic on indices is done modulo k.

There must be an index i such that xi ∈ A \B, for otherwise every xi belongs to B and
therefore conv(B) = conv(A ∪B) ⊃ conv(A) and therefore B ⊃ A (because both A and B
are intersections of P with convex sets) in contrast to our assumption. Similarly, there must
be an index i such that xi ∈ B \ A.

Let IA be the set of all indices i such that xi ∈ A \B, and let IB be the set of all indices
i such that xi ∈ B \ A.

We claim that IA (and similarly IB) is a set of consecutive indices. To see this, assume
to the contrary that there are indices i, j, i′, j′ arranged in a cyclic order modulo k such that
xi, xi′ ∈ A \ B and xj, xj′ ∈ B. Then it is easy to see that conv(A) \ conv(B) is not a
connected set because xi and xi′ are in different connected components of this set.

We have therefore two disjoint intervals IA = {iA, iA + 1, . . . , jA} and IB = {iB, iB +
1, . . . , jB}. It is possible that iA = jA or iB = jB.

Observe that xiA , xjA
, xiB , xjB

are arranged in this counterclockwise cyclic order on the
boundary of C, and for every index i /∈ IA∪IB, xi ∈ A∩B. The only candidates for common
tangents of the first kind or of the second kind with respect to A and B are of the form
−−−→xixi+1, that is, they must pass through two consecutive vertices of C.

We distinguish two possible cases:

1. iB = jA + 1. In this case the line through xjA
and xiB is the only common tangent of

the first kind with respect to (A, B) and there are no common tangents of the second
kind with respect to (A, B).

2. iB 6= jA + 1. In this case, there is no common tangent of the first kind with respect
to (A, B). The line through xiB−1 and xiB and the line through xjA

and xjA+1 are the
only common tangents of the second kind with respect to (A, B).

This completes the proof of the lemma.

Let A1, . . . , Am be all the sets in F , and for every 1 ≤ i ≤ m let zi be an indeterminate
associated with Ai. For each directed line L = −→xy, define the following polynomial PL:

PL(z1, . . . , zm) =

( ∑
Ai∈Lx

zi

)( ∑
Aj∈Ly

zj

)
+

1

2

( ∑
Ai∈Lx

zi

)( ∑
Aj∈Lxy

zj

)
+

1

2

( ∑
Ai∈Ly

zi

)( ∑
Aj∈Lxy

zj

)
This polynomial contains a term zuzv whenever L is a tangent line for the pair (Au, Av) or for
the pair (Av, Au) (of the first or of the second kind, and with coefficient 1 or 1

2
, accordingly).

If we sum this equation over all directed lines L, it follows by Lemma 2 that every term zuzv

with u 6= v appears with coefficient 2:∑
L

PL(z1, . . . , zm) =
∑
u<v

2zuzv = (z1 + · · ·+ zm)2 − (z2
1 + · · ·+ z2

m) (3)

8
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Consider the system of linear equations
∑

Ai∈Lx
zi = 0 and

∑
Ai∈Ly

zi = 0, where L = −→xy
varies over all directed lines determined by P . Add to this system the equation z1+· · ·+zm =
0. There are 4

(
n
2

)
+1 equations in this system and if m > 4

(
n
2

)
+1, there must be a nontrivial

solution. However, it is easily seen that a nontrivial solution (z1, . . . , zm) will result in a
contradiction to (3). This is because the left-hand side of (3) vanishes, while the right-hand
side equals −(z2

1 + · · ·+ z2
m) 6= 0. We conclude that |F | = m ≤ 4

(
n
2

)
+ 1.

We now show by a simple construction that Theorem 2 is tight apart from the multi-
plicative constant factor of n2. Fix three rays r1, r2, and r3 emanating from the origin such
that the angle between two rays is 120 degrees. For each i = 1, 2, 3, let pi

1, . . . , p
i
n be n points

on ri, indexed according to their increasing distance from the origin. Slightly perturb the
points to get a set P of 3n points in general position in the plane. For every 1 ≤ j, k, l ≤ n
define

Fjkl = {p1
1, . . . , p

1
j} ∪ {p2

1, . . . , p
2
k} ∪ {p3

1, . . . , p
3
l }.

It can easily be checked that the collection of all Fjkl such that 1 ≤ j, k, l ≤ n and j +k+ l =
n + 2 is an anti-chain of convex pseudo-discs of P . This collection consists of

(
n+1

2

)
sets.
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