
101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Loopless Gray Code Enumeration and the Tower of Bucharest

Felix Hertera, Günter Rotea

aInstitut für Informatik, Freie Universität Berlin Takustr. 9, 14195 Berlin, Germany

Abstract

We give new algorithms for generating all n-tuples over an alphabet of m letters, changing only one letter at a time (Gray
codes). These algorithms are based on the connection with variations of the Tower of Hanoi game. Our algorithms
are loopless, in the sense that the next change can be determined in a constant number of steps, and they can be
implemented in hardware. We also give another family of loopless algorithms that is based on the idea of working
ahead and saving the work in a buffer.

Keywords: Tower of Hanoi, Gray code, enumeration, loopless generation

Contents

1 Introduction: The binary reflected Gray code and the Tower of Hanoi 2
1.1 The Gray code . 2
1.2 Loopless algorithms . 2
1.3 The Tower of Hanoi . 2
1.4 Connections between the Tower of Hanoi and Gray codes . 3
1.5 Loopless Tower of Hanoi and binary Gray code . 3
1.6 Overview . 4
1.7 Algorithms without computers . 4

2 Loopless generation algorithms 5

3 Bitwise operations as a fast alternative 5

4 Ternary Gray codes and the Towers of Bucharest 6

5 Gray codes with general radixes and with mixed radixes 7

6 Generating the m-ary Gray code with odd m 8

7 Generating the m-ary Gray code with even m 9

8 The Towers of Bucharest++ 10

9 Computer simulation 12

10 Working ahead 12
10.1 Working ahead, or delaying the output . 14
10.2 An alternative STEP procedure . 15
10.3 Analysis and correctness proofs for the work-ahead algorithms . 15

Email addresses: avealx@zedat.fu-berlin.de (Felix Herter), rote@inf.fu-berlin.de (Günter Rote)

Preprint submitted to Theoretical Computer Science August 9, 2017

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

11 Conclusion 17
11.1 Open questions . 17

1. Introduction: The binary reflected Gray code and the Tower of Hanoi

1.1. The Gray code

The Gray code, or more precisely, the reflected binary Gray code Gn, orders the 2n binary strings of length n in such
a way that successive strings differ in a single bit. It is defined inductively as follows, see Figure 1a for an example.
The Gray code G1 = 0, 1, and if Gn = C1,C2, . . . ,C2n is the Gray code for the bit strings of length n, then

Gn+1 = 0C1, 0C2, . . . , 0C2n , 1C2n , 1C2n−1, . . . , 1C2, 1C1. (1)

In other words, we prefix each word of Gn with 0, and this is followed by the reverse of Gn with 1 prefixed to each
word.

(a)

000000
000001
000011
000010
000110
000111
000101
000100
001100
001101
001111
001110
001010

001011
001001
001000
011000
011001
011011
011010
011110
011111
011101
011100
010100
010101

010111
010110
010010
010011
010001
010000
110000
110001
110011
110010
110110
110111
110101

110100
111100
111101
111111
111110
111010
111011
111001
111000
101000
101001
101011
101010

101110
101111
101101
101100
100100
100101
100111
100110
100010
100011
100001
100000

(b)

0000
0001
0002
0012
0011
0010
0020
0021
0022
0122
0121
0120
0110

0111
0112
0102
0101
0100
0200
0201
0202
0212
0211
0210
0220
0221

0222
1222
1221
1220
1210
1211
1212
1202
1201
1200
1100
1101
1102

1112
1111
1110
1120
1121
1122
1022
1021
1020
1010
1011
1012
1002

1001
1000
2000
2001
2002
2012
2011
2010
2020
2021
2022
2122
2121

2120
2110
2111
2112
2102
2101
2100
2200
2201
2202
2212
2211
2210

2220
2221
2222

Figure 1: (a) The binary Gray code G6 for 6-tuples. (b) The ternary Gray code for 4-tuples, as considered in Section 4 and defined in Section 5.

1.2. Loopless algorithms

The Gray code has an advantage over alternative algorithms for enumerating the binary strings, for example in
lexicographic order: one can change a binary string anan−1 . . . a1 to the successor in the sequence by a single update
of the form ai := 1 − ai in constant time. However, we also have to compute the position i of the bit which has to be
updated. A straightforward implementation of the recursive definition (1) leads to an algorithm with an optimal overall
runtime of O(2n), i.e., constant average time per enumerated bit string, which is optimal.

A stricter requirement is that the worst-case time between two successive strings is constant. Such an algorithm is
called a loopless generation algorithm. We will discuss this concept more thoroughly in Section 2. Different loopless
algorithms for Gray codes are known, see Bitner, Ehrlich, and Reingold [1] and Knuth [2, Algorithms 7.2.1.1.L and
7.2.1.1.H]. These algorithms achieve constant time by maintaining additional pointers in a smart way.

1.3. The Tower of Hanoi

The Tower of Hanoi is the standard textbook example for illustrating the principle of recursive algorithms. It has n
disks D1,D2, . . . ,Dn of increasing radii and three pegs P0, P1, P2, see Fig. 2. The goal is to move all disks from the
peg P0, where they initially rest, to another peg, subject to the following rules:

1. Only one disk may be moved at a time: the topmost disk from one peg can be moved on top of the disks of
another peg

2. A disk can never lie on top of a smaller disk.

2

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

Figure 2: The Tower of Hanoi with n = 6 (square) disks. When running the algorithm HANOI from Section 1.5, the configuration in this picture
occurs together with the bit string 110011. (The relation between the positions of the disks and this bit string is not straightforward, cf. [3, Section 3].)
The next disk to move is D1; it moves clockwise from peg P2 to P0, and the last bit is complemented. The successor in the Gray code is the string
110010. After that, D1 pauses for one step, while disk D3 moves clockwise from P1 to P2, and the third bit from the right is complemented, leading
to the string 110110.

For moving a tower of height n, one has to move disk Dn at some point. But before moving disk Dn from peg A to
B, one has to move the disks D1, . . . ,Dn−1, which lie on top of Dn, out of the way, onto the third peg. After moving Dn

to B, these disks have to be moved from the third peg to B. This reduces the problem for a tower of height n to two
towers of height n − 1, leading to the following recursive procedure.

procedure MOVE-TOWER(k, A, B). Moves the k smallest disks D1 . . .Dk from peg A to peg B
if k ≤ 0: return
auxiliary := 3 − A − B; Comment: auxiliary is the third peg, different from A and B.
MOVE-TOWER(k − 1, A, auxiliary)
move disk Dk from A to B
MOVE-TOWER(k − 1, auxiliary, B)

1.4. Connections between the Tower of Hanoi and Gray codes

The delta sequence of the Gray code is the sequence 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, . . . of bit positions that are updated.
(In contrast to the usual convention of numbering the bits starting from 0, we start at 1.) This sequence has an obvious
recursive structure which results from (1). It also describes the number of changed bits when incrementing a number
from j to j + 1 in binary counting. Moreover, it is easy to observe that the same sequence also describes the disks that
are moved by the recursive algorithm MOVE-TOWER above. It has thus been noted that the Gray code Gn can be
used to solve the well-known Tower of Hanoi puzzle, cf. Scorer, Grundy, and Smith [3, Section 5] or Gardner [4]. The
delta sequence does not specify the direction of movement, but this can be easily recovered, see Proposition 1 below.
Conversely, the Tower of Hanoi puzzle can be used to generate the Gray code Gn, see Buneman and Levy [5].

Several loopless ways to compute the next move for the Tower of Hanoi are known, and they lead directly to
loopless algorithms for the Gray code. We describe one such algorithm.

1.5. Loopless Tower of Hanoi and binary Gray code

From the recursive algorithm MOVE-TOWER, it is not hard to derive the following fact.

Proposition 1. If the tower should be moved from P0 to P1 and n is odd, or if the tower should be moved from
P0 to P2 and n is even, the moves of the odd-numbered disks always proceed in forward (“clockwise”) circular
direction: P0 → P1 → P2 → P0, and the even-numbered disks always proceed in the opposite circular direction:
P0 → P2 → P1 → P0.

3

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

In the other case, when the assumption does not hold, the directions are simply swapped. Since our goal is not to
move the tower to a specific target peg, but to generate the Gray code, we stick with the proposition as stated.

Algorithm HANOI. Loopless algorithm the Tower of Hanoi and for the binary Gray code.
Initialize: Put all disks on P0.
loop:

Move D1 clockwise.
Let Dk be the smaller of the topmost disks on the two pegs that don’t carry D1.
If there is no such disk, TERMINATE.
Move Dk clockwise if k is odd; otherwise, move it counterclockwise.

To obtain the Gray code, we simply set ak := 1 − ak whenever we move the disk Dk. See Fig. 2 for a snapshot of the
procedure. We would not need the clockwise/counterclockwise rule for Dk: Since we must not put Dk on top of D1,
there is anyway no choice of where to move it [5]. We have chosen the above formulation since it is better suited for
generalization (Section 7).

1.6. Overview

In this paper, we will generalize the connections between Gray codes and the Tower of Hanoi to Gray codes for
larger radixes (alphabet sizes). Section 4 is devoted to ternary Gray codes and their connections to the so-called
Towers of Bucharest. After defining Gray codes with general radixes in Section 5, we extend the ternary algorithm
from Section 4 to arbitrary odd radixes m in Section 6, and even to mixed (odd) radixes (Section 8). In Section 7, we
generalize the binary Gray code algorithm HANOI from above to arbitrary even m. Finally, in Section 10, we develop
loopless algorithms based on an entirely different idea of “working ahead” that is related to converting amortized
running-time bounds to worst-case bounds. The introductory Section 2 discusses the concept of loopless algorithms
in greater depth, and should dispel any hopes that the reader might have of finding something that would be of great
practical value. Section 3 mentions fast computer hardware operations as an alternative option for generating Gray
codes and sets our topic apart from such practices. In the brief remainder of the introduction, Section 1.7, we prepare
the readers’ minds for the primary “model of computation” that we will use. In the concluding section, Section 11, we
will reflect our results and how they were achieved, and we will indicate some open problems.

These results were presented at the 8th International Conference on Fun with Algorithms (FUN 2016) in La
Maddalena island off Sardinia in June 2016 [6]. The preprint [7] contains prototype simulations of all our algorithms in
the programming language Python.

1.7. Algorithms without computers

The algorithm HANOI does not run on a conventional computer but on a different piece of hardware (Fig. 2). We
will show more such examples. Of course, it is easy to translate these algorithms into “simulations” on the electronic
computers to which we are so accustomed. However, we encourage the readers to join us in thinking directly about
algorithms for this restricted world, namely, looking at stacks of disks on different pegs.

This relates to the CS-Unplugged1 project (Computer Science without a computer) in the context of educating
children about Computer Science, and it underlines the point that Computer Science, or Informatics, as it is more
appropriately called in other languages, is not the science of computers. “Computer Science is no more about computers
than astronomy is about telescopes” is a saying which often attributed to E. W. Dijkstra, but which apparently goes
back to Mike Fellows. In the case of astronomy, it must of course be conceded that telescopes, and more generally,
devices and procedures for physical measurements, are eminently relevant. Similarly, there is an important part of
Computer Science that deals with the design, the organization, and the use of computers. However, a core part of
Computer Science, in particular in theoretical computer science and the analysis of algorithms, is concerned with ideas
that are separate from the physical embodiment in electronic computers. One can even argue that a major effort of
Computer Science (programming languages, operating systems) consists in providing layers of abstraction that help to
avoid direct contact with computers.

1csunplugged.org

4

http://csunplugged.org

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

2. Loopless generation algorithms

The efficiency of enumeration algorithms can be judged by different criteria. Besides the overall runtime for
generating all solutions of a combinatorial problem, we may be interested in a finer analysis of the runtime. The
performance measures for combinatorial enumeration algorithms include [8]

a) the delay between successive solutions,
b) the setup time for generating the first solution,
c) the finishing time for determining that the last solution has been generated and no further solution exists,
d) and the memory requirement.

The best conceivable algorithms have O(1) delay, O(n) setup time, and O(1) finishing time, where n is the size of the
generated solutions. For such algorithms, Ehrlich [9] coined the term loopless in 1973, and he pioneered loopless
enumeration algorithms for various combinatorial structures. All algorithms that we consider have the additional
property that they use only O(n) memory.

It is not necessary that a loopless algorithm should contain no loops in the program besides an outer loop that
iterates over the solutions. Since it is guaranteed that the number of operations between successive visits is bounded in
advance, any inner loops can be eliminated by unrolling them sufficiently often, hence making the algorithm loopless
in the literal sense of the word.

In order to go from one solution to the next in constant time, the difference between successive solutions must
necessarily be small. Therefore, loopless algorithms go hand in hand with Gray codes, where the difference between
successive elements is just a single entry.

The primary purpose for enumerating combinatorial objects is usually not to print or store a complete list, but to
investigate the objects one by one, to “visit” them by some procedure, which depends on the application. In our case,
the bit strings might represent all subsets of an n-element set, and we want to evaluate some objective function on each
set in order to find the best one. If the objective function can be easily updated when a single element is inserted or
removed, a Gray code is the sequence of choice.

Since the number of enumerated solutions is usually huge, the dominating algorithmic factor for the total running
time is the delay. However, a small worst-case delay, as required for a loopless algorithm, is unnecessary for such an
application. A bound on the average delay is good enough. There are of course areas where a worst-case bound for
individual steps is essential, for example when processing queries in interactive systems, in parallel computing, or in
real-time applications. These are areas where predictability is more important than overall speed. However, to put our
results into the proper perspective, we emphasize that we do not envision such scenarios for our algorithms. Moreover,
the effort for generating all bit strings is often negligible compared to the time that it takes to process each bit string,
and hence the speed of generation is of minor importance.

We conclude this discussion with a quote from Don Knuth, from the documentation of a loopless generation
program SPIDERS that he wrote2, which summarizes the point nicely.

The extra contortions that we need to go through in order to achieve looplessness are usually ill-advised,
because they actually cause the total execution time to be longer than it would be with a more straightfor-
ward algorithm. But hey, looplessness carries an academic cachet. So we might as well treat this task as a
challenging exercise that might help us to sharpen our algorithmic wits.

We will come back to these remarks in the concluding section 11.

3. Bitwise operations as a fast alternative

The arithmetic and logical operations on full-word operands that are supported on conventional computers provide a
fast alternative for computing the Gray code. For example, the j-th element of the Gray code can be computed directly
with the help of the bitwise exclusive-or operation as “ j XOR b j/2c” for j = 0, 1, . . . , 2n − 1, cf. [2, Eq. 7.2.1.1–(9),
p. 284]. In the notation of C or Python, this can be written with the shift operator >> as j^(j>>1). This technique can

2www-cs-faculty.stanford.edu/~knuth/programs.html (2001). He makes similar remark in [2, Answer to Ex. 7.2.1.2-19, p. 706].

5

http://www-cs-faculty.stanford.edu/~knuth/programs.html

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

even be extended to other radixes (Section 5), although we are not aware that this has been described anywhere. We
will not further consider such algorithms here.

Loopless algorithms gain an advantage when one wants to identify the bit k that is changed. For example, when the
Gray code models all subsets of an n-element set, the k-th element is inserted or removed, and one has to compute the
effect of this operation on the set. In our combinatorial algorithms, the index k is directly available. When the Gray
code is computed through bitwise operations, the XOR of two successive bit strings gives the binary representation
of 2k. From this, the index k can be recovered [2, p. 141–2]. However, the number of operations grows logarithmically
with the word size unless the hardware provides special instructions such as counting the number of 1-bits in a word
(sideways addition).

4. Ternary Gray codes and the Towers of Bucharest

A ternary Gray code enumerates the 3n n-tuples (an, . . . , a1) with ai ∈ {0, 1, 2}. Successive tuples differ in one entry,
and in this entry they differ by ±1.

The following simple variation of the Towers of Hanoi will yield a ternary Gray code (m = 3): We disallow the
direct movement of a disk between pegs P0 and P2: a disk can only be moved to an adjacent peg. We call this the
Towers of Bucharest.3 This version of the game was already considered in 1944 (not under this name) by Scorer,
Grundy, and Smith [3, Section 4(iii)] and has been thoroughly investigated, see Chapter 8 in the extensive monograph
about the Tower of Hanoi by Hinz, Klavžar, Milutinović, and Petr [11].

P0 P2

P1

(a)
P0 P2

P1

(b)

Figure 3: The state graphs of (a) the Tower of Hanoi and (b) the Tower of Bucharest with n = 5 disks

Figure 3 shows the state space of the Towers of Bucharest in comparison with the Towers of Hanoi. In accordance
with this figure, we can make the following easy observations:

Proposition 2. 1. In the Towers of Hanoi, there are three possible moves from any position, except when all disks
are on one peg: In these cases, there are only two possible moves.

2. In the Towers of Bucharest, there are two possible moves from any position, except when all disks are on peg P0
or P2: In those cases, there is only one possible move.

3It is an established custom to name variations of the Tower of Hanoi game after different cities, instead of using ordinary names such as
“three-in-a-row” [10]. The name “Towers of Bucharest” has been suggested by Günter M. Ziegler. Several legends rank themselves around the towers
of Bucharest, see [6, 7].

The original name of the “Tower of Hanoi” game has the word tower in singular. The plural “towers of Hanoi” have become popular in the
Computer Science literature [11, p. 46], probably because it is tempting to associate the three disk-carrying pegs with towers. The original name
continues to be prevalent in the mathematics literature. We honor both traditions by not sticking to a fixed usage.

6

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

Proof. 1. The disk D1 can be moved to any of the other pegs (two possible moves). In addition, the smaller of the
topmost disks on the other pegs (if those pegs aren’t both empty) can be moved to the other peg which is not
occupied by D1.

2. If the disk D1 is in the middle, it can be moved to any of the other pegs, but no other move is possible. If the disk
D1 is on P0 or P2, it has only one possible move, and the smaller of the topmost disks on the other pegs (if those
pegs aren’t empty) also has one possible move, similarly as above.

Both games have the same set of 3n states, corresponding to the possible ways of assigning each disk to one of the
pegs P0, P1, P2. The nodes in the corners marked P0, P1, P2 represent the states where all disks are on one peg. The
graph of the Towers of Hanoi in Figure 3a approaches the Sierpiński gasket. The optimal path of length 2n − 1 is the
straight path from P0 to the target point, P1 or P2. (The directions of the edges in this drawing of the state graph are not
directly related to the pegs that are involved in the exchange, and the relation between a state and its position on the
drawing is complicated.) By contrast, we see that the graph of the Towers of Bucharest in Figure 3b is a single path
through all nodes.

Let us see why this is true. By Proposition 2, this graph has maximum degree 2, and it follows that it must consist
of a path between P0 and P2 (the only degree-1 nodes), plus a number of disjoint cycles. However, it is known that
the path has length 3n − 1 and does therefore indeed go through all nodes [3, 11]. Since we will prove a more general
statement later (Theorem 3), we only sketch the argument here: Solving the problem recursively in an analogous way
to the procedure MOVE-TOWER, we reduce the problem of moving a tower of n disks from P0 to P2 (or vice versa) to
three problem instances with n − 1 disks, plus two movements of disk Dn, and the resulting recursion establishes that
3n − 1 moves are required.

The states of the Towers of Bucharest correspond in a natural way to the ternary n-tuples: The digit ai ∈ {0, 1, 2}
gives the position of disk Di. It follows now easily that the solution of the Towers of Bucharest yields a ternary Gray
code: Since we can move only one disk at a time, it means that we change only one digit at a time, and by the special
rules of the Towers of Bucharest, we change it by ±1. This connection has already been noted earlier; it is explicitly
mentioned in Graham, Knuth, and Patashnik [12, Exercises 1.2–1.3, p. 17, with answers on p. 483], or Guan [13,
Theorem 4]. In fact, the algorithm produces the ternary reflected Gray code, which we are about to define below in
Section 5; see also Theorem 3. Moreover, since there are only two possible moves, one just has to always choose the
move which does not undo the previous move, and this leads to a very easy loopless Gray code enumeration algorithm.

It is remarkable that ternary Gray codes can be generated on the same hardware as binary Gray codes (Fig. 2). In
the context of generating the ternary Gray code, the Gray code string can be directly read off the disks. For example,
the configuration in Fig. 2 represents the string 211102. When the algorithm arrives at this configuration, it is D1’s turn
to move, and the disk D1 will make two steps to the left, generating the strings 211101 and 211100, and pauses there
for one step, while disk D3 moves to the right, leading to the string 211200, and so on.

5. Gray codes with general radixes and with mixed radixes

An m-ary Gray code enumerates the n-tuples (an, . . . , a1) with 0 ≤ ai < m, changing a single digit at a time by ±1.
The reflected Gray code can be recursively described as follows: Let C1,C2, . . . ,Cmn be the Gray code for the strings
of length n. Then the strings of length n + 1 are generated in the order

C10,C11,C12, . . . ,C1(m − 2),C1(m − 1), C2(m − 1),C2(m − 2), . . . ,C22,C21,C20,
C30,C31,C32, . . . ,C3(m − 2),C3(m − 1), C4(m − 1),C4(m − 2), . . . ,C42,C41,C40,
C50,C51,C52, . . . ,C5(m − 2),C5(m − 1), . . .

(2)

This recursive definition differs from our first definition (1) for the special case of the binary Gray code, where we have
added the new digit at the front, but the two definitions are equivalent. The definition (2) with the appended digit is
more suited for deriving the algorithms that are to follow. We see that each digit alternates between an upward sweep
from 0 to m − 1 and a return sweep from m − 1 to 0.

The more general Gray code for mixed radixes (mn, . . . ,m1), where each digit has its own range 0 ≤ ai < mi, is
defined in an analogous way.

7

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

6. Generating the m-ary Gray code with odd m

For odd m, the ternary algorithm from Section 4 can be generalized. We need m pegs P0, . . . , Pm−1. The leftmost
peg P0 and the rightmost peg Pm−1 play a special role.

Algorithm ODD. Generation of the m-ary Gray code for odd m.
Initialize: Put all disks on P0.
loop:

Move D1 for m − 1 steps, from P0 to Pm−1 or vice versa.
Let Dk be the smallest of the topmost disks on the m − 1 pegs that don’t carry D1.
If there is no such disk, TERMINATE.
Move Dk by one step:

If Dk is on P0 or Pm−1, there is only one possible direction where to go.
Otherwise, the disk Dk continues in the same direction as in its last move.

In this algorithm and the algorithms that follow, it is understood that we visit a string of the Gray code at the start and
after each move of a disk. (Writing this explicitly would clutter the description of the algorithms.) As for the towers of
Bucharest, we can directly translate the position of a disk into a digit of the string. Figure 4 shows an example with
m = 5. This game with 5 pegs is called the Towers of Klagenfurt, after the birthplace of the senior author.4

Figure 4: The Towers of Klagenfurt. This configuration represents the string 321411 over the radix m = 5. The arrows of the disks indicate the
current direction of movement for Algorithm ODD. The next step moves the smallest disk D1 onto peg P0, changing the string to 321410. After that,
disk D2 moves from P1 to P2 and the next string is 321420. In the background, the two-headed Lindworm monster.

In this procedure, the movement of D1 is explicitly specified, whereas the movement of the other disks, whenever
D1 is at rest, is “figured out” by the algorithm. It is not immediately obvious that the algorithm does not violate the
rules by putting a larger disk on top of D1.

Theorem 3. Algorithm ODD generates the m-ary reflected Gray code defined in (2), and all moves that it performs
are valid.

Proof. It is clear from the algorithm that the last digit, which is controlled by the movement of D1, changes in
accordance with (2). We still have to show that when we discard the last digit and observe only the movement of the
disks D2, . . . ,Dn, the algorithm produces the Gray code for the strings of length n − 1. This is proved by induction.

By the rules of the algorithm, whenever D1 rests, the disk that moves is D2, unless D2 is covered by D1. Let us
now observe the motion pattern of D1 and D2 that results from this rule. We start with D1 on top of D2, say, on peg

4When the city of Klagenfurt was founded, it was surrounded by a swamp. The swamp was inhabited by a dinosaur, the so-called Lindworm. The
Lindworm would regularly come to the city and eat some citizens. Occasionally, she would devour one of the towers of the city. The coat of arms of
Klagenfurt shows the Lindworm dragon in front of the only remaining tower, see Figure 4. (Initially, there were five towers.) Over the centuries, the
swamp has been drained, and the Lindworm is practically extinct.

8

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

P0, with D1 about to start its sweep. Whenever D1 pauses for one step, D2 will make a step towards Pm−1. After D2
reaches Pm−1, it turns out that, because m is odd, D1 will make its next sweep from P0 to Pm−1, resting on top of D2.
Now, since D2 is covered, it will be one of the other disks D3,D4, . . . that will move. Then the same routine repeats in
the other direction.

If we now ignore D1 and look only at the motions of the other disks, the following pattern emerges: D2 makes
m− 1 steps from one end to the other, and then the smallest disk that is not covered by D2 makes its move, according to
the rules. This is precisely the same procedure as Algorithm ODD, with D2 taking the role of the explicitly controlled
disk. By induction, this algorithm correctly produces the Gray code for the strings of length n − 1, and it does not put a
larger disk on top of D2. Since the larger disks are moved only when D2 lies under D1, it follows that a larger disk is
never moved on top of D1 either.

One can actually apply one induction step of the proof in the opposite direction, introducing an additional “control
disk” D0 which does not have a digit associated with it. Its only role is to alternately cover P0 and Pm−1 and exclude
the covered peg from the selection of the disk Dk that should be moved. The algorithm becomes simpler because it
does not have to treat D1 separately from the other disks. We will apply this idea to the algorithm of Section 8 below,
and this will result in a very simple algorithm.

7. Generating the m-ary Gray code with even m

For even m, we generalize Algorithm HANOI, which solves the case m = 2. We use m + 1 pegs P0, . . . , Pm, which
we arrange in a cyclic clockwise order. We stipulate that disks Di with odd i move only clockwise, and disks with even
i move only counterclockwise.

Algorithm EVEN. Generation of the m-ary Gray code for even m.
Initialize: Put all disks on P0.
loop:

Move D1 for m − 1 steps, in clockwise direction.
Let Dk be the smallest of the topmost disks on the m pegs that don’t carry D1.
If there is no such disk, TERMINATE.
Move Dk by one step, in the direction determined by the parity of k.

The Gray code is determined by changing the digit ak whenever disk Dk is moved. The digit ak runs through the
cyclic sequence 0, 1, 2, . . . ,m − 2,m − 1,m − 2, . . . , 2, 1, 0, 1, 2, Thus it changes always by dk = ±1, but we have
to remember whether it is on the increasing or the decreasing part of the cycle. The position of disk Di is no longer
directly correlated with the digit ai; thus the digits ai have to be maintained separately, in addition to the disks on the
pegs.

More precisely, we initialize all digits ai to 0 and all directions di to +1 at the beginning. Every movement of a disk
Dk in the above program is replaced by the following procedure:

procedure MOVE(k).
if k is even:

Move Dk one step in counterclockwise direction
else:

Move Dk one step in clockwise direction
ak := ak + dk

if ak = 0 or ak = mk − 1: dk := −dk

visit the n-tuple (an, . . . , a1)

As in the binary case, it is far from straightforward to relate the disk configuration to the Gray code. For example, the
configuration in Figure 4, interpreted in the context of algorithm EVEN for m = 4, appears when the string is 211030.
The arrows shown on the disks play no role for this algorithm. Disk D1 has just made three clockwise steps and is
going to rest for one step. The next step moves D3 clockwise (since 3 is odd) from P4 to P0, and the string is changed
to 211130. After that, D1 resumes its clockwise motion, and the string changes to 211131.

9

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

2

2

2

1 1

21
P0

P4

P3 P2

P1
1

1

P0

P4

P3 P2

P12
2

1

P0

P4

P3 P2

P1

1
1

P0

P4

P3 P2

P1

2

2

P0

P4

P3 P2

P1

1

1

P0

P4

P3 P2

P1

2
2

P0

P4

P3 P2

P11

21

P0

P4

P3 P2

P1

Figure 5: One period of movement of the two smallest disks D1 and D2 when Algorithm EVEN generates all tuples over an alphabet of size m = 4
using m + 1 = 5 pegs.

Theorem 4. Algorithm EVEN generates the m-ary reflected Gray code defined in (2).

Proof. This follows along the same lines as Theorem 3. When we look at the pattern of motion of D1 and D2, we
observe again that D2 makes m − 1 steps until it is covered by D1, see Fig. 5: After the first move of D2, the clockwise
cyclic distance from D1 to D2 is 1, and with each move of D2, this distance increases by 1. Thus, after m − 1 moves,
the distance becomes m − 1, and D1 will land on top of D2 with its next sweep.

Except for m = 3 and m = 2, Algorithms ODD and EVEN do not generate a shortest sequence of moves to the
target configuration, even if moves are allowed only between adjacent pegs (or cyclically adjacent pegs, in a direction
depending on the disk parity). For example, for m = 4 and n = 2, Fig. 5 shows the complete program of 15 moves that
generate the 42 = 16 codewords. However, it is easy to get from the first position to the last position in a total of 5
moves: 2 clockwise moves of D1 interspersed with 3 counterclockwise moves of D2. In fact, one can get from any
position to any other position in at most 12 moves that respect the directions.

We could not come up with some natural constraints under which our algorithms give a shortest solution. (Of
course, algorithm ODD always generates a longest sequence of moves without repetitions.)

8. The Towers of Bucharest++

In Algorithm ODD, the intermediate pegs P1, . . . , Pm−2 will always be available for selecting the smallest disk Dk

to be moved. Thus, one can coalesce these pegs into one peg, keeping only the two extreme pegs P0 and Pm−1 separate.
With three pegs, we can use the same hardware as the Tower of Bucharest, but we have to record the value of the digits,
since they are no longer expressed by the position. A simple method is to provide the disks with marks that indicate the
value as well as the direction of movement, which we have to remember anyway. Each disk cycles through 2m − 2
values, potentially augmented with direction information:

0, 1↑, 2↑, . . . , (m − 2)↑, m − 1, (m − 2)↓, . . . 2↓, 1↓, 0, 1↑, . . . (3)

We can encode this information like a dial with 2m − 2 equally spaced directions, as shown in Fig. 6a. A disk whose
mark shows 0 is always on the left peg P0. A disk whose mark shows m − 1 is always on the right peg P2. Otherwise, it
is on the middle peg P1. When we say we turn a disk, this means that we turn it clockwise to the next dial position, and
if necessary, move it to the appropriate peg.

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

0

1 ↑

2 ↑

3 ↑

4

3 ↓

2 ↓

1 ↓

P0 P1 P2

(a) (b)

Figure 6: (a) The upgraded disk of the Towers of Bucharest++ for m = 5, and the meaning of its positions. (b) The situation of Figure 4, compressed
to 3 pegs. The smallest disk D1 is about to turn and move from P1 to P0. After that, we will turn D2 on P1 without moving it.

Algorithm ODD-COMPRESSED. Generation of the m-ary Gray code for odd m.
Initialize: Put all disks on P0, and turn them to show 0.
loop:

Turn disk D1 m − 1 times until it arrives at one of the extreme pegs P0 or P2.
Let Dk be the smaller of the topmost disks on the two pegs not covered by D1.
If there is no such disk, TERMINATE.
Turn Dk once.

The digits ai can be read off from the dial positions. Correctness follows by comparison with Algorithm ODD:

Proposition 5. Algorithm ODD-COMPRESSED performs the same steps as Algorithm ODD, except that the contents
of the intermediate pegs P1, . . . , Pm−2 of Algorithm ODD are merged into the middle peg P1 in Algorithm ODD-
COMPRESSED.

Proof. We can prove this by induction on the number of steps. The statement holds in the beginning. The motions
of the explicitly controlled disk D1 are in direct correspondence between the two algorithms. Let us now look at the
choice of the moving disk Dk. This choice happens when D1 is on one of the extreme pegs. In both algorithms, the
chosen disk is the smallest disk not covered by D1, and thus the two algorithms chose the same disk Dk. The dials
have been designed in such a way that turning a disk and moving it according to the dial position precisely models the
motion of the corresponding disk in Algorithm ODD. Thus, Algorithm ODD-COMPRESSED, like Algorithm ODD,
will not move the disk Dk on top of D1. It will also not move Dk on top of a different smaller disk, since Dk is the
smallest disk not covered by D1. Thus, the disks are in the proper order on each peg, after the move. It follows that the
disks on the middle peg must be the merged disks from the intermediate pegs of Algorithm ODD.

When this algorithm is combined with the imaginary control disk D0 that was mentioned at the end of Section 6,
we arrive at the following simple main loop of the algorithm:

while pegs P0 and P1 are not both empty:
turn the smallest disk on P0 and P1
turn the smallest disk on P1 and P2

The algorithms tests for termination in the while-condition after every even number of steps. This is sufficient, because
we know that the total number of strings is odd, and hence that the total number of transition steps is even.

This is perhaps the easiest-to-describe of all our algorithms, but of course, some of the complexity is hidden
in the mechanics of the turning operation. A program that implements this algorithm on a computer is given in [7,
Appendix A.3]. The algorithm can even be generalized to mixed-radix Gray codes for some radix sequence (mn, . . . ,m1),
provided that all mi are odd.

11

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

9. Computer simulation

All our algorithms can be easily simulated in software on an electronic computer.5 A stack will do for each peg. If
there are k pegs, the algorithm takes O(k) time to compute the next move and accordingly produce the next element
of the Gray code sequence. Thus, if the radix m is regarded as a constant, then, since k = m in Algorithm ODD and
k = m + 1 in Algorithm EVEN, these algorithms can pass as loopless algorithms. If k is large, Algorithm ODD can be
replaced by ODD-COMPRESSED, which has only 3 pegs, independent of m.

To make a truly loopless algorithm out of Algorithm EVEN even for large k, at the expense of an increased overhead,
we can use the following easy fact, which follows directly from the algorithm statement.

Lemma 1. In the algorithms EVEN, ODD, and ODD-COMPRESSED, when a disk Dk is moved, all smaller disks
D1, . . . ,Dk−1 are on one peg.

To get a loopless implementation, the set of disks on a peg is maintained as a sequence of maximal inter-
vals of successive integers, instead of storing them as a stack in the usual way. For example, instead of the list
[1, 2, 3, 6, 8, 9, 12, 16, 17, 18, 19], we store the list of pairs [(1, 3), (6, 6), (8, 9), (12, 12), (16, 19)]. Then, whenever D1 is
at rest, the disk Dk to be moved can be determined in constant time as the smallest missing disk on the peg containing
D1. In the example, it would be disk D4.

10. Working ahead

While we are at the topic of Gray codes, we might as well mention another approach for loopless generation
of Gray codes, which results from a general technique for converting amortized bounds into worst-case bounds
(de-amortization). We will discuss the ideas behind this transformation in Section 10.1. In contrast to the previous
sections, this approach has no connections to the Towers of Hanoi or similar motion-planning games. These algorithms
are definitely not recommended when looplessness is not important, since the overall running time will be higher due
to the overhead of an additional buffer.

We will introduce this method for the most general task: mixed-radix Gray code generation. We start from the
observation that was already mentioned in connection with the delta sequence in Section 1.4:

Proposition 6. Consider the enumeration of the n-tuples (bn, . . . , b1) with 0 ≤ bi < mi in lexicographic order. If,
between two successive tuples of the sequence, the j rightmost digits are changed, then, in the corresponding transition
in the Gray code, the j-th digit from the right is changed.

We can thus find the position j that has to be changed in the Gray code by lexicographically incrementing n-tuples
(bn, . . . , b1) in a straightforward way:

Algorithm DELTA. Generation of the delta sequence for the Gray code.
Initialize: (bn, . . . , b2, b1) := (0, . . . , 0, 0)
Q := an empty list
loop:

i := 1
while bi = mi − 1:

bi := 0
i := i + 1
if i = n + 1: TERMINATE

bi := bi + 1
Q.append(i)

5Nowadays, most households will more readily have access to a computer than to a tower of Hanoi.

12

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

The delta sequence is stored in the list Q. It is an easy exercise, at least in the binary case, to show that the total
number of changed digits when counting from 0 to j is less than 2 j, see the bound (4) in the proof of Lemma 2 below.
Correspondingly, the average or amortized number of loop iterations (“steps”) for producing an entry of Q is less
than 2. We use this fact to coordinate the production of entries Q by Algorithm DELTA with their consumption in the
Gray code generation, turning Q into a buffer of bounded capacity. We first make a small cosmetic modification and
move the reset operation “i := 1” to the end of the loop. The changes are marked by arrows:

Algorithm DELTA′. Generation of the delta sequence for the Gray code.
Initialize: (bn, . . . , b2, b1) := (0, . . . , 0, 0)
Q := an empty list

→ i := 1
loop:

while bi = mi − 1:
bi := 0
i := i + 1
if i = n + 1: TERMINATE

bi := bi + 1
Q.append(i)

→ i := 1

After this transformation, it is easier to extract one iteration of the loop/while loop into a procedure STEP, as shown in
the following loopless algorithm:

procedure STEP.
if bi = mi − 1:

bi := 0
i := i + 1

else:
if Q is not filled to capacity:

bi := bi + 1
Q.append(i)
i := 1

Algorithm WORK-AHEAD. Generation of the Gray code.
(an, . . . , a2, a1) := (0, . . . , 0, 0)
(dn, . . . , d2, d1) := (1, . . . , 1, 1)
(bn+1, bn, . . . , b2, b1) := (0, 0, . . . , 0, 0); mn+1 := 2
Q := a queue of capacity B := d n

2 e, initially empty
i := 1
loop:

visit the n-tuple (an, . . . , a2, a1)
STEP
STEP
remove k from Q
if k = n + 1: TERMINATE
ak := ak + dk

if ak = 0 or ak = mk − 1: dk := −dk

To produce one value of the delta sequence, between one and two STEPs are needed on average. Thus, the Gray
code algorithm WORK-AHEAD on the right couples two production STEPs with one consumption step, which takes
out an entry k of Q and carries out the update ak := ak ± 1. Every digit ak must cycle up and down through its values in
the sequence (3), and thus, we have to remember the direction dk = ±1 in which it moves, just like in Algorithm ODD.

As an additional change, we have taken the termination test i = n + 1 out of the procedure STEP and moved it to the
side of the consumer. This means that the value i = n + 1 will still be processed in procedure STEP, and accordingly,
we had to extend the n-tuple b into an (n + 1)-tuple, setting mn+1 arbitrarily to 2.

The buffer Q has bounded size B := d n
2 e. When Q would overflow, the procedure STEP does nothing, and repeated

calls of STEP will try to insert the same value into Q. Thus, apart from the termination test, a repeated execution of
STEP will faithfully carry out Algorithm DELTA.

To show that the algorithm is correct, we have to ensure two things:

a) The queue Q is never empty when the algorithm retrieves an element from it. This is proved below in Lemma 2.
b) The clean way to terminate the algorithm would be to stop inserting elements into Q as soon as i = n + 1 is produced

in STEP, as in Algorithm DELTA. Instead, termination is triggered when the value k = n+1 is removed from Q. Due

13

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

to this delayed termination test, it is possible that more iterations of STEP than needed are carried out. Lemma 3
will show that the number of these extra iterations is at most 1, and that they can therefore cause no harm.

For the binary Gray code (mi = 2 for all i = 1, . . . , n), the algorithm can be simplified. With a slightly larger
buffer Q of size B′ := max{d n+1

2 e, 2}, the test whether Q is filled to capacity can be omitted, see Lemma 4 below. The
reason is that the average number of production STEPs per item approaches 2 in the limit, and accordingly, the queue
automatically does not grow beyond the minimum necessary size. The directions dk are of course also superfluous, in
the binary case: The last two lines of the loop can be replaced by the statement ak := 1 − ak.

10.1. Working ahead, or delaying the output

The scheduling of operations is a recurring theme in the design of algorithms: Should I clean up immediately after
making a mess, or should I wait until I look for something? One end of the spectrum are lazy data structures and, on a
more fundamental level, lazy functional programming languages like Haskell: In contrast to the classical method of
strict evaluation, which evaluates all arguments of a function before executing the body of the function, the evaluation
of arguments is delayed until they are needed. Laziness allows to save unnecessary work in some cases. Laziness
in data structures leads, in the case of the celebrated Fibonacci heaps, to the best known amortized performance for
priority queue operations.

The other extreme is real-time (or looplessness), where special care is taken to spread the work evenly between
the operations. The approach that we have taken in this section is to start with a straightforward algorithm with a
good amortized runtime and de-amortize it: “Since amortized data structures are often simpler than worst-case data
structures, it is sometimes easier to design an amortized data structure, and then convert it to a worst-case data structure,
than to design a worst-case data structure from scratch” [14, Section 7, p. 84]. Kosaraju and Mihai [15] give a survey
of de-amortization techniques. As an early example, they mention real-time simulations between different models of
Turing machines.

A textbook example of amortized data structures are resizable arrays. The classical technique for implementing
arrays whose size may grow is “doubling”: When the array overflows its current size, we allocate a storage block that is
twice as large. The array must be copied to the new location, and this takes linear time. But this burst of activity occurs
sufficiently rarely so that the amortized complexity for extending an array by one element is constant. To convert this
into a worst-case bound, one has to distribute the copying operation over the subsequent insertion operations. For
a while, an old and a new copy of the array must be maintained simultaneously. In this case, when comparing the
timing with the simple amortized algorithm, one would rather say that the real-time algorithm is working behind. This
procedure is an instance of global rebuilding (see Overmars [16, Chapter V]), a de-amortization technique that applies
to more general data structures under appropriate conditions.

In a similar vein, Guibas, McCreight, Plass, and Janet R. Roberts [17] have obtained worst-case bounds of O(log k)
for updating a sorted linear list at distance k from the beginning. Their algorithm works ahead to hedge against sudden
bursts of activity.

Another example, which is less well known, are functional queues. In a purely functional language, one cannot
perform assignments, and thus, it is not possible to join two linked lists together in constant time. The native list
structure in such languages is a stack. A queue can be simulated by two stacks, reversing the “arrival stack” onto
the “departure stack” whenever the latter becomes empty. This achieves constant amortized runtime for the queue
operations. It is not straightforward to design real-time queues that achieve constant time in the worst case, see Hood
and Melville [18] and Okasaki [14, 19].

For our task of combinatorial generation, the setting is much simpler, because we need not process requests of an
unpredictable “user” in an on-line setting. We can plan everything in advance. We work ahead in the sense that the
algorithm performs work that is not necessary for producing the current output. However, in this context it would be
equally justified to say that we just delay the output.

Although the main idea of working ahead is straightforward, our loopless generation algorithms that are based on
this idea require a nontrivial analysis of the buffer size. If we let the buffer grow without restrictions, we would need
exponential space, except in the binary case (see Lemma 4). With a bounded buffer, we have to make sure that the
opportunities for carrying out STEPs that are waisted due to a full buffer do not harm the success of the operation
(Lemma 2).

14

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

We have recently applied the same technique to derive new loopless enumeration algorithms for permutations
[20], using functional programming techniques. Since permutations of n elements can be related to mixed-radix Gray
codes with radices (mn−1, . . . ,m1) = (2, 3, 4, . . . , n − 1, n), our analysis can be applied. We are aware of only two
previous instances where the idea of working ahead has been used in the area of combinatorial enumeration. The
first is an algorithm of Wettstein for enumerating non-crossing perfect matchings of a planar point set. The idea is
described in the preprint [21, Section 6], where it is credited to Emo Welzl; in the conference version [22], it is only
mentioned. Wettstein combines the work-ahead idea with a rearrangement of the output sequence. In this way, he
achieves polynomial delay between successive solutions, and in particular, before the first solution, despite having to
build a network with exponential space in a preprocessing phase. Here we are at a different level of complexity, asking
about polynomial time, whereas looplessness is about constant runtime.

The second instance is in a context similar to ours: generating a Gray code of all bitstrings of length 2n + 1 that
contain n or n + 1 ones. A recent algorithm of Mütze and Nummenpalo [23] can do this with O(1) average runtime
per bitstring. Even the existence of such a Gray code had been a long-standing open problem, and this algorithm is
much more involved than our simple Gray code examples. The possibility to make the algorithm loopless by buffering
the output is mentioned in the introduction of [23] in the remarks after Theorem 3. The algorithm strictly alternates
between Θ(n) generation steps that take constant time and single steps that take O(n) time. Thus, the organization of
the buffer that is required for achieving looplessness would be straightforward.

10.2. An alternative STEP procedure
As an alternative to the organization of Algorithm WORK-AHEAD, we can incorporate the termination test into

the STEP procedure:

procedure STEP′:
if i = n + 1: TERMINATE
if bi = mi − 1:

bi := 0
i := i + 1

else:
if Q is not filled to capacity:

bi := bi + 1
Q.append(i)
i := 1

With this modified procedure STEP′, the termination test in the main part of Algorithm WORK-AHEAD can of
course be omitted. We also need not extend the arrays b and m to n + 1 elements. The algorithm still works correctly
because there are no unused entries in the queue when STEP′ signals termination. Let us prove this:

The termination signal is sent instead of producing the value i = n + 1. Generating this signal takes n + 1 iterations
of STEP′. In this time, no new values are added to the queue. Let us assume that the production of n + 1 was started
during iteration j0, and the buffer was filled with B0 ≤ B entries at that time. The first of these entries is consumed
at the end of iteration j0, and all B0 entries of the buffer have been used up at the beginning of iteration j0 + B0. By
this time, at most 2B0 ≤ 2B ≤ n + 1 iterations of STEP′ were carried out and contributed to the production of the
termination signal. It follows that when STEP′ discovers that i = n + 1, no unused entries are in the stack, and it is safe
to terminate the program.

It is important not to “speed up” the program by moving the termination test into the if-branch after the statement
i := i + 1. Also, we must use exactly the prescribed buffer size for Q. Therefore, this variation is incompatible with the
simplification for the binary case mentioned above (p. 14).

10.3. Analysis and correctness proofs for the work-ahead algorithms
Let us first analyze the running time for each iteration of Algorithm DELTA. We can explicitly express the elements

of the delta sequence in terms of the ruler function ρ. The ruler function ρ with respect to a sequence of radixes
m1, . . . ,mn is defined as follows:

ρ(j) := 1 + max{ i : 0 ≤ i ≤ n, m1m2 . . .mi divides j }

15

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

The delta sequence is nothing but the sequence ρ(1), ρ(2), . . ., and the j-th value that is entered into Q is ρ(j). For
computing this value, Algorithm DELTA needs ρ(j) iterations, and accordingly, Algorithm WORK-AHEAD needs ρ(j)
STEPs.

Lemma 2. In Algorithm WORK-AHEAD, the buffer Q never becomes empty.

Proof. We number the iterations of the main loop as j = 1, 2, . . . ,m1m2 . . .mn. In the last iteration, the algorithm
terminates.

Let us show that the queue Q is not empty in iteration j. We distinguish two cases.

a) Up to and including iteration j, two repetitions of STEP were always completed.
b) Some repetitions of STEP had no effect because the buffer Q was full.

In case (a), production of all values ρ(i) for i = 1, . . . , j requires

S (j) :=
j∑

i=1

ρ(i)

calls to STEP. To show that these calls are completed by the time when ρ(j) is needed, we have to show

S (j) ≤ 2 j. (4)

In case (b), let j0 be the last iteration when an execution of STEP was skipped. This means that the queue Q was
filled to capacity B just before removing the value k = ρ(j0), and it contained the values ρ(j0), ρ(j0 +1), . . . , ρ(j0 +B−1).
Since then, STEP was called 2(j − j0) times, and ρ(j) is ready when it is needed, provided that

1 +

j∑
i= j0+B+1

ρ(i) ≤ 2(j − j0)

whenever j ≥ j0 + B. The left-hand side of this inequality is the number of necessary STEPs for computing the values
up to ρ(j). Computing ρ(j0 + B) takes just one more STEP, since the STEP that would have stored this value in Q was
abandoned in iteration j0. Setting j′ = j0 + B, we can express the inequality equivalently as

S (j) − S (j′) ≤ 2(j − j′ + B) − 1 for j′ ≤ j (5)

Now that we have worked out the inequalities (4–5) that we need, let us prove them. We can write an explicit
formula for S (j):

S (j) = j +

⌊
j

m1

⌋
+

⌊
j

m1m2

⌋
+ · · · +

⌊
j

m1m2 . . .mn

⌋
Since all mi ≥ 2, we get S (j) ≤ j + j/2 + j/4 + j/8 + · · · + j/2n < 2 j, proving (4). For the other bound (5), we apply
the relation bxc − bx′c < x − x′ + 1 to the difference between corresponding terms of S (j) and S (j′), and we get

S (j) − S (j′) < (j − j′) + (j − j′) · (1
2 + 1

4 + 1
8 + · · · + 1

2n) + n < 2(j − j′) + n.

Since the left-hand side is an integer, we obtain S (j) − S (j′) ≤ 2(j − j′) + n − 1, and this implies (5) because the buffer
size B := d n

2 e satisfies 2B ≥ n.

In Algorithm WORK-AHEAD, the STEPs should generate entries ρ(1), ρ(2), . . . of Q up to ρ(N), where N :=
m1m2 . . .mn. The production of the STEPs may overshoot their target N, but the following lemma shows that is
overshoots the target by at most one. Since the algorithm has already made provisions to generate ρ(N) = n + 1 by
extending the arrays b and m from size n to size n + 1, this one extra entry does not cause any harm. We could even
tolerate the generation of delta-values up to ρ(2N − 1).

Lemma 3. In Algorithm WORK-AHEAD, the last entry that is added to Q is ρ(N) or ρ(N + 1).

16

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Proof. The production of ρ(N) = n + 1 takes n + 1 ≥ 2B STEPs. It follows that the buffer Q is empty when ρ(N) = n + 1
is inserted, regardless of whether the production of ρ(N) is started in the first or second STEP of an iteration.

If the production of ρ(N) = n + 1 is completed in the second STEP of an iteration, it is thus immediately consumed,
which leads to termination. If ρ(N) is completed in the first STEP of an iteration, the second STEP will produce the
value ρ(N + 1) = 1, but then the algorithm will terminate as well.

Finally, we prove the simplification of the algorithm for the binary case.

Lemma 4. In the binary version of Algorithm WORK-AHEAD, i.e., when mi = 2 for all i = 1, . . . , n, the buffer Q
automatically never gets more than B′ := max{d n+1

2 e, 2} entries, even if the test in STEP whether the buffer is full is
omitted.

Proof. Let us assume for contradiction that the buffer becomes overfull in iteration j, 1 ≤ j ≤ 2n. This means that,
before k = ρ(j) is removed from Q, the 2 j STEP operations have produced more than j − 1 + B′ values. But this is
impossible, since, as we will show, the production of the first j1 = j + B′ values takes strictly more than 2 j STEPs. In
terms of formulas, this is the following inequality:

S (j1) = j1 +

⌊ j1
2

⌋
+

⌊ j1
22

⌋
+ · · · +

⌊ j1
2n

⌋
> 2 j

To show this inequality, we first consider the case j1 < 2n. We apply the inequality bxc > x − 1 to each term and obtain
S (j1) > 2 j1 − j1/2n − n, and since j1/2n < 1 and S (j1) is an integer, we get

S (j1) ≥ 2 j1 − n = 2 j + 2B′ − n > 2 j.

Let us now look at the other case see at what time the first entries ρ(j1) with j1 ≥ 2n are entered into Q. When j1 = 2n,
no round-off takes place in the formula for S (j1), and we have S (2n) = 2 · 2n − 1. This shows that the production of
ρ(2n) is completed in the first STEP of iteration 2n. In the second STEP of this iteration, ρ(2n + 1) = 1 is added to Q.
Thus, when ρ(2n) is about to be retrieved, the buffer contains 2 ≤ B′ elements. Then the algorithm terminates, and no
more elements are produced.

11. Conclusion

We have shown that the consideration of games can give inspiration for new loopless algorithms for electronic
computers. Our approach of modeling the Gray code in terms of a motion-planning game has lead to loopless algorithms
for Gray codes in a rather straightforward way. We did not have to go through “contortions” (cf. the quote in the end of
Section 2, p. 5).

Loopless algorithms for enumerating Gray codes were already known, cf. [2, 7.2.1.1.H], and thus we did not
achieve new results in terms of improved asymptotic running time. In particular, we do not claim superiority of these
algorithms over the existing algorithms. Such a comparison would depend on the hardware and on other factors. All
we can say is that these algorithms enrich the arsenal of available algorithms for loopless generation. Still, it might be
an interesting exercise to program these algorithms for Knuth’s model computer MMIX6 and analyze their performance.

The approach of Section 10 was very different. It used a de-amortizing technique for data structures, and applied
it to loopless generation algorithms. The amortized analysis that goes with this technique was straightforward
(inequality (4)), and the resulting algorithms are simple. The analysis of the required buffer size was, however, more
intricate.

11.1. Open questions

With our approach, we were able to get a mixed-radix Gray code only when all radixes mi are odd. It remains to
find a model that would work for different even radixes or even for radixes of mixed parity.

6www-cs-faculty.stanford.edu/~knuth/mmix.html

17

http://www-cs-faculty.stanford.edu/~knuth/mmix.html

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

Another motion-planning game which is related to the binary Gray code is the Chinese rings puzzle, see Gardner [4],
Knuth [2, pp. 285–286], or Scorer, Grundy, and Smith [3, Section 1]. Knuth [2, Solution to Ex. 7.2.1.1–(10), p. 679]
gives a brief survey of the early literature, mentioning references that date back as far as the 16th century. The goal is
to detach a series of interlocked rings from a bar. Like the Towers of Bucharest, the Chinese rings allow at most two
possible moves in every state. Each move removes or replaces a single ring. By simulating the Chinese rings directly,
one can therefore obtain another loopless algorithm for the binary Gray code, see Misra [24], Knuth [2, Solution to Ex.
7.2.1.1–(12b), p. 680]. However, this algorithm does not seem to extend to other radixes. Scorer et al. [3, Section 5]
analyzed a generalization of the Chinese rings. We did not investigate whether it leads to interesting Gray codes.

[1] J. R. Bitner, G. Ehrlich, E. M. Reingold, Efficient Generation of the Binary Reflected Gray Code and Its Applications, Commun. ACM 19 (9)
(1976) 517–521, ISSN 0001-0782, doi:\let\@tempa\bibinfo@X@doi10.1145/360336.360343.

[2] D. E. Knuth, Combinatorial Algorithms, Part 1, vol. 4A of The Art of Computer Programming, Addison-Wesley, 2011.
[3] R. S. Scorer, P. M. Grundy, C. A. B. Smith, Some binary games, The Mathematical Gazette 28 (280) (1944) 96–103, ISSN 00255572, URL

http://www.jstor.org/stable/3606393.
[4] M. Gardner, The curious properties of the Gray code and how it can be used to solve puzzles, Sci. American 227 (1972) 106–109.
[5] P. Buneman, L. Levy, The Towers of Hanoi problem, Information Processing Letters 10 (4–5) (1980) 243–244.
[6] F. Herter, G. Rote, Loopless Gray code enumeration and the Tower of Bucharest, in: E. D. Demaine, F. Grandoni (Eds.), Proceedings of the 8th

International Conference on Fun with Algorithms (FUN 2016), vol. 49 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 19:1–19:19, doi:\let\@tempa\bibinfo@X@doi10.4230/LIPIcs.FUN.2016.19, 2016.

[7] F. Herter, G. Rote, Loopless Gray Code Enumeration and the Tower of Bucharest, preprint arXiv:1604.06707 [cs.DM], 2016.
[8] D. S. Johnson, M. Yannakakis, C. H. Papadimitriou, On generating all maximal independent sets, Information Processing Letters 27 (3) (1988)

119–123, ISSN 0020-0190, doi:\let\@tempa\bibinfo@X@doi10.1016/0020-0190(88)90065-8.
[9] G. Ehrlich, Loopless Algorithms for Generating Permutations, Combinations, and Other Combinatorial Configurations, J. Assoc. Comput.

Mach. 20 (3) (1973) 500–513, ISSN 0004-5411, doi:\let\@tempa\bibinfo@X@doi10.1145/321765.321781.
[10] A. Sapir, The towers of Hanoi with forbidden moves, The Computer Journal 47 (1) (2004) 20–24.
[11] A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, The Tower of Hanoi — Myths and Maths, Birkhäuser, 2013.
[12] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989.
[13] D.-J. Guan, Generalized Gray Codes with Applications, Proc. Natl. Sci. Council, Republic of China (A) 22 (6) (1998) 841–848.
[14] C. Okasaki, Purely Functional Data Structures, Cambridge University Press, 1998.
[15] S. R. Kosaraju, M. Pop, De-amortization of algorithms (preliminary version), in: W.-L. Hsu, M.-Y. Kao (Eds.), Computing and Combinatorics:

4th Annual International Conference, COCOON’98, Taipei, Taiwan, R.o.C., August 12–14, 1998, Proceedings, vol. 1449 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, Heidelberg, ISBN 978-3-540-68535-7, 4–14, doi:\let\@tempa\bibinfo@X@doi10.1007/

3-540-68535-9 4, invited presentation, 1998.
[16] M. H. Overmars, The Design of Dynamic Data Structures, vol. 158 of Lecture Notes in Computer Science, Springer-Verlag, 1983.
[17] L. J. Guibas, E. M. McCreight, M. F. Plass, J. R. Roberts, A New Representation for Linear Lists, in: Proceedings of the Ninth Annual ACM

Symposium on Theory of Computing, STOC ’77, ACM, New York, NY, USA, 49–60, doi:\let\@tempa\bibinfo@X@doi10.1145/800105.
803395, 1977.

[18] R. Hood, R. Melville, Real-time queue operations in pure LISP, Information Processing Letters 13 (2) (1981) 50–54, ISSN 0020-0190,
doi:\let\@tempa\bibinfo@X@doi10.1016/0020-0190(81)90030-2.

[19] C. Okasaki, Simple and efficient purely functional queues and deques, J. Functional Programming 5 (4) (1995) 583–592.
[20] G. Rote, Loopless generation of permutations by adjacent transpositions, in preparation, 2017.
[21] M. Wettstein, Counting and enumerating crossing-free geometric graphs, preprint arXiv:1604.05350 [cs.CG], 2016.
[22] M. Wettstein, Counting and enumerating crossing-free geometric graphs, in: Proceedings of the Thirtieth Annual Symposium on Computational

Geometry, SOCG’14, ACM, New York, NY, USA, ISBN 978-1-4503-2594-3, 1:1–1:10, doi:\let\@tempa\bibinfo@X@doi10.1145/2582112.
2582145, 2014.

[23] T. Mütze, J. Nummenpalo, A constant-time algorithm for middle levels Gray codes, preprint arXiv:1606.06172 [cs.DM], 2016.
[24] J. Misra, Remark on Algorithm 246, ACM Trans. Math. Software 1 (3) (1975) 285.

18

\let \@tempa 10.1145/360336.360343
http://www.jstor.org/stable/3606393
\let \@tempa 10.4230/LIPIcs.FUN.2016.19
http://arxiv.org/abs/1604.06707
\let \@tempa 10.1016/0020-0190(88)90065-8
\let \@tempa 10.1145/321765.321781
\let \@tempa 10.1007/3-540-68535-9_4
\let \@tempa 10.1007/3-540-68535-9_4
\let \@tempa 10.1145/800105.803395
\let \@tempa 10.1145/800105.803395
\let \@tempa 10.1016/0020-0190(81)90030-2
http://arxiv.org/abs/1604.05350
\let \@tempa 10.1145/2582112.2582145
\let \@tempa 10.1145/2582112.2582145
http://arxiv.org/abs/1606.06172

	Introduction: The binary reflected Gray code and the Tower of Hanoi
	The Gray code
	Loopless algorithms
	The Tower of Hanoi
	Connections between the Tower of Hanoi and Gray codes
	Loopless Tower of Hanoi and binary Gray code
	Overview
	Algorithms without computers

	Loopless generation algorithms
	Bitwise operations as a fast alternative
	Ternary Gray codes and the Towers of Bucharest
	Gray codes with general radixes and with mixed radixes
	Generating the m-ary Gray code with odd m
	Generating the m-ary Gray code with even m
	The Towers of Bucharest++
	Computer simulation
	Working ahead
	Working ahead, or delaying the output
	An alternative STEP procedure
	Analysis and correctness proofs for the work-ahead algorithms

	Conclusion
	Open questions

