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Infinitesimally Locked Self-Touching Linkages
with Applications to Locked Trees

Robert Connelly, Erik D. Demaine, and Günter Rote

Abstract. Recently there has been much interest in linkages (bar-and-joint
frameworks) that are locked or stuck in the sense that they cannot be moved
into some other configuration while preserving the bar lengths and not cross-
ing any bars. We propose a new algorithmic approach for analyzing whether
planar linkages are locked in many cases of interest. The idea is to exam-
ine self-touching or degenerate frameworks in which multiple edges converge
to geometrically overlapping configurations. We show how to study whether
such frameworks are locked using techniques from rigidity theory, in particu-
lar first-order rigidity and equilibrium stresses. Then we show how to relate
locked self-touching frameworks to locked frameworks that closely approxi-
mate the self-touching frameworks. Our motivation is that most existing
approaches to locked linkages are based on approximations to self-touching
frameworks. In particular, we show that a previously proposed locked tree in
the plane [BDD+02] can be easily proved locked using our techniques, instead
of the tedious arguments required by standard analysis. We also present a new
locked tree in the plane with only one degree-3 vertex and all other vertices
degree 1 or 2. This tree can also be easily proved locked with our methods,
and implies that the result about opening polygonal arcs and cycles [CDR02]
is the best possible.

1. Linkages

A linkage is a graph together with an assignment of lengths to edges; each edge
is called a rigid bar. We highlight three linkages of common study: a polygonal arc,
polygonal cycle, or polygonal tree is a linkage whose graph is a single path, cycle, or
tree, respectively. A configuration of a linkage in R

d is a mapping of the vertices to
points in R

d that satisfies the bar-length constraints. A configuration is (strongly)
simple if only incident bars intersect, and then only at the common endpoint. A
motion is a continuum of configurations, that is, a continuous function mapping
the time interval [0, 1] to configurations; often, each configuration is required to be
simple. The configuration space of a given subset of configurations (e.g., simple
configurations) is the space in which points correspond to configurations and paths
correspond to motions.

We focus here on planar linkages embedded in R
2. In this case, the linkage

also specifies the combinatorial planar embedding because this cannot change by
a motion that avoids crossings. It is known that the configuration space of simple
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Figure 1. Locked planar polygonal trees. Points in dotted circles
are closer than they appear.

planar configurations is not always connected for a polygonal tree, as exemplified
by the pinwheel tree in Figure 1(a) [BDD+02], and is always connected for a
polygonal arc, polygonal cycle (up to reflection), and disjoint union of nonnested
polygonal arcs and cycles [CDR02, Str00]. The key distinction is that arcs and
cycles have maximum degree 2, but a tree may have vertices of higher degree.
See [CDR02, Dem00, O’R98] for surveys of related results.

Two questions naturally arise from these results.
First, how many high-degree vertices are necessary, and how high must the

degrees be, to make a tree have a disconnected configuration space? For example,
the pinwheel tree in Figure 1(a) can be made to have a single degree-5 vertex, or
three degree-3 vertices [BDD+02]. We settle this question by proving that the
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Figure 2. A self-touching linkage with 14 vertices and 21 edges.
Numbers denote edge multiplicities.

maximum-degree-2 result [CDR02] is tight: a single degree-3 vertex can prevent
opening. See Figures 1(b) and 1(c) for the two-step construction.

Second, and more generally, how can we tell whether a linkage has a connected
configuration space? The best general algorithmic result for this problem is to
use the roadmap algorithm for general motion planning [Can87, Can88], which
runs in polynomial space but exponential time. We present a method for designing
examples that can be proved without much effort to have a disconnected configura-
tion space, and furthermore to be strongly locked in the sense that the tighter the
linkage is constructed, the less freedom it has to move. This result does not settle
the algorithmic decision problem, but solves many cases of interest. In particular,
we use this result in our solution to the first problem.

2. Self-Touching Linkages

Here we begin the exploration of the analogous linkage problems when bars
are allowed to touch, and even lie along each other, but not properly cross. (A
proper crossing is an intersection between the relative interiors of two nonparallel
segments.) Our notion of self-touching linkage is an idealization because vertices
and edges have no thickness. However, as we shall see, self-touching linkages can
be used as a tool for studying properties of (more realistic) simple configurations
of linkages.

When we draw a geometric configuration of a self-touching linkage, several
vertices and/or bars may coincide. (Such configurations are sometimes called weakly
simple.) Thus, in addition to the geometric embedding, we require topological
information to clarify the relationship between touching vertices and bars.

More precisely, a self-touching configuration is defined as follows. We start with
a plane straight-line graph P ; see Figure 2 for an example. Each segment (edge) is
marked with its multiplicity, that is, how many collinear bars lie along that segment.
In addition, for each vertex, we add a microscopic magnified view enclosed by a
circle. Terminal points on the boundary of the circle represent connections to the
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incident edges. Inside the circle, the terminals are connected by a plane graph, not
necessarily drawn with straight-line edges, subject to the following rules:

(1) Every terminal is incident to exactly one edge.
(2) Every nonterminal vertex is incident to at least one edge.
(3) There is at least one nonterminal vertex.
(4) An edge may connect two terminals directly only if the terminals connect

to two collinear segments that go in opposite directions.
(5) All other edges must connect a terminal to a nonterminal vertex. In

particular, no edge connects two nonterminal vertices.
This structure specifies the combinatorial linkage associated with the configu-

ration as follows. Its vertices are the nonterminal vertices in all circles. Its edges
are the connections between those vertices; a single edge is a sequence starting
and ending at a connection between a nonterminal and a terminal, and alternating
between one or more additional segments and zero or more connections between
terminals. We require in addition that the linkage has no duplicate edges.

Figure 1(d) shows the multiplicities for the tree of Figure 1(c). We will not
always use this representation in our figures; rather, we will use a schematic drawing
where parallel edges are slightly separated, and dotted circles surround vertices
that belong together in one point, as in Figure 1(c). This representation gives a
clearer drawing of the underlying graph, and is closely linked to the concept of a
δ-perturbation defined in Section 4 below.

3. Self-Touching Configuration Space

The configuration space is a space in which points correspond to self-touching
configurations of a linkage as defined in the previous section, and paths correspond
to motions of that linkage which keep edge lengths fixed and where no vertex or
edge crosses through another edge. Before we examine the configuration space
more carefully, note that a motion of a self-touching linkage can never change the
combinatorial embedding of the linkage as a plane graph, i.e., the cyclic counter-
clockwise sequence of edges around each vertex. (In addition, for graphs which
are not connected, the combinatorial embedding also specifies the faces (cycles of
edges) shared by several components.)

The geometry of a configuration can be naturally represented by a vector p =
(p1, . . . ,pn) ∈ R

2n, listing all coordinates for the n vertices in the linkage. It will
be convenient to define the distance between two configurations p and q as the
maximum Euclidean distance in the plane between corresponding points:

(3.1) ‖p− q‖ = max
1≤i≤n

‖pi − qi‖2.

Throughout the paper, r0 denotes the minimum edge length, and r1 > 0 is the
minimum nonzero distance between two vertices or between a vertex and an edge,
in a given configuration.

A motion of a linkage with geometry p is specified by a continuous function
p(t), 0 ≤ t ≤ T for some T > 0, with p(0) = p. Geometrically, such a motion must
preserve the lengths of the bars:

(3.2) ‖pi(t) − pj(t)‖ = ‖pi − pj‖ for every bar {i, j}.
In addition, topologically, the relative positions of the parts of the linkage must
remain consistent. For example, a vertex that touches an edge from the left side
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Figure 3. Possible motions of vertex pk (filled circle) relative to
vertex pi (empty circle).

cannot suddenly move away to the right side of that edge. We shall now make
this notion precise, and show how the set of feasible motions can be described by
equations and inequalities, which are stable at least in some neighborhood of a given
self-touching configuration. This development will be somewhat technical, and the
reader who is satisfied with an intuitive understanding of self-touching linkages is
encouraged to skip the rest of this section on first reading. The lemmas below are
however important for the proofs in the rest of the paper.

3.1. Vertex-edge sidedness constraints. First of all, we must forbid a ver-
tex pk from going through the middle of an edge pipj : if pk lies close to the edge
but far enough from the endpoints pi and pj , then pk must remain on the same
side of the edge, at least in some neighborhood of the current configuration. After
possibly switching i and j, we can express this constraint by saying that the point
pk must remain on the left side of the directed line through pi and pj or on this
line. We denote this vertex-edge sidedness constraint by L(i, j; k). It can be written
using the determinant expression for the signed area of the triangle pipjpk:

(3.3) area(4pipjpk) ≥ 0.

Globally, we select all pairs of a vertex pk and an edge pipj where the distance
between pk and the edge is at most r0/2, but the distances ‖pk−pi‖ and ‖pk−pj‖
are both larger than r0/2. Then the side of the line pipj containing pk is uniquely
determined, and these inequalities must be fulfilled by feasible motions, as long as
no vertex moves r0/4 or more from its initial position.

3.2. Vertex-chain noncrossing constraints. When pk is close to an end-
point of an edge pipj , we must formulate the constraint more carefully. Suppose
that pk moves in the vicinity of pi. Vertex k lies in a wedge between two consecu-
tive edges around vertex i; see Figure 3. if pk is close enough to pi, this wedge is
either determined by the geometry, or, if pk = pi, by the combinatorial information
of the self-touching configuration.
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Figure 4. (a) The motion of pk relative to pipj . (b) The point
p̃k which is used to reparametrize the motion of pk, and the per-
mitted area for p̃k (shaded).

Call the two consecutive edges of the wedge {j, i} and {i, l}, so that vertex k
lies in the counterclockwise wedge j, i, l. Then pk is restricted to remain in this
wedge. As a special case, vertex i may be incident to only one edge, in which case
the two edges bounding the wedge are the same, i.e., j = l.

Let us first concentrate on the motion of k relative to the edge pipj . Vertex k
can move freely but when it lies on the edge we must know on which side it lies.
This cannot be distinguished on the basis of the coordinates alone. In order to
write algebraic conditions for the feasible motions, we represent pk in relative polar
coordinates r = ‖pk − pi‖ and the counterclockwise angle α between pipj and
pipk, 0 ≤ α ≤ 2π. See Figure 4. We now introduce a “shadow vertex” p̃k = p̃k,ij

with the same distance r but with polar angle α/2. This point is confined to the left
half-plane of the line through pi,pj , disambiguating the cases α = 0 and α = 2π.

The relation between p̃k and pk can be described by algebraic equations by
using the rotation matrix ( c −s

s c ) with c = cos(α/2) and s = sin(α/2):

p̃k − pi = r

(
c −s
s c

)
(pj − pi) · 1

‖pj − pi‖

pk − pi = r

(
c −s
s c

)2

(pj − pi) · 1
‖pj − pi‖

c2 + s2 = 1, r ≥ 0,

By noting that the sidedness constraint on p̃k translates to s ≥ 0 and by absorbing
the factors r and 1

‖pj−pi‖ into c and s we get the simpler parameterization

(3.4) pk − pi =
(

a −b
b a

)2

(pj − pi), a ∈ R, b ≥ 0,

using just two additional parameters a and b and eliminating p̃k altogether.
We can extend this formulation to include vertex l also and write

(3.5)




pl − pi =
(

ā −b̄
b̄ ā

)2

(pj − pi)

pk − pi =
(

a −b
b a

)2

(pj − pi)

a, ā ∈ R, b, b̄ ≥ 0, ab̄ ≤ āb

using parameters ā, b̄, a, b. The parameters ā and b̄ represent pl relative to the edge
pipj in the same way as a and b represent pk, and the last condition, ab̄ ≥ āb,
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essentially amounts to a : b ≤ ā : b̄, i.e., the counterclockwise angle pjpipk is
bounded by the angle pjpipl.

The above condition remains valid as long as pk does not cross the rays pipj

or pipl by going around pj or pl.
Globally, we look at each ordered pair of vertices i, k with ‖pi − pk‖ ≤ r0/2,

where r0 is the minimum edge length, and we write condition (3.5) with the four
new parameters aik, āik ∈ R and bik, b̄ik ≥ 0. We call these conditions the vertex-
chain noncrossing conditions. Together with the vertex-edge sidedness conditions
(3.3), these equations and inequalities are necessary and sufficient to describe the
motions for which no vertex moves through a chain of edges (either in the middle
of an edge or at a vertex), as long as no vertex moves r0/4 or more from its initial
position.

When i is incident to only one edge, or more generally, when all incident edges
point in the same direction, constraint (3.5) does not restrict the positions that pk

may reach, but does restrict the motions for getting there, preventing the point pk

from crossing these edges.

3.3. Edge-edge sidedness constraints. The constraints so far still do not
prevent an edge from moving through another edge when some endpoints of the
two edges coincide. If two edges pipj and pkpl share an endpoint pi = pl, as
in Figure 5(a), they might swap sides without any vertex going through an edge.
So we formulate an explicit sidedness condition to specify that one edge must lie
completely on the left side of the line through the other edge:

(3.6)
(
L(i, j; k) ∧ L(i, j; l)

) ∨ (L(k, l; i) ∧ L(k, l; j)
)

The correctness of this condition can be seen by considering the possibilities how
the lines through the two segments can intersect each other, see Figure 5(b–c). We
call these conditions the edge-edge sidedness conditions.

Again, condition (3.6) is only valid as long as the points are sufficiently close
to the critical configuration of Figure 5(a). So we write condition (3.6) for all
pairs of edges pipj and pkpl with ‖pi − pl‖ < r0/2 (after a suitable relabeling).
Then, as long as no vertex moves more than r0/4 from its initial position, these
conditions (3.6) are necessary and sufficient to prevent illegal movements of the
involved edges.

3.4. Local characterizations of the configuration space. We can now
verify that the above conditions are sufficient to characterize the feasible motions in
some neighborhood of a given configuration. The possibilities of one vertex crossing
through another chain of edges at the interior of an edge or at an interior vertex
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are excluded by conditions (3.3) and (3.5), respecitively. Condition (3.6) deals with
the remaining special case of two endpoints of two chains. We summarize this
discussion in a lemma:

Lemma 3.1. Let r0 be the minimum edge length of a self-touching linkage with
coordinate vector p∗. Consider a path p(t) ∈ R

2n, 0 ≤ t ≤ T with p(0) = p∗,
within the r0/4-neighborhood of p∗:

‖p(t) − p∗‖ < r0/4, for all 0 ≤ t ≤ T

This path represents a feasible motion in the configuration space of self-touching
linkages if and only if all bar lengths remain fixed (3.2) and all vertex-edge sided-
ness conditions (3.3), all vertex-chain noncrossing conditions (3.5), and all edge-
edge sidedness conditions (3.6) are satisfied, for all points p = p(t), 0 ≤ t ≤ T .
(For the vertex-chain noncrossing conditions (3.5), we must consider the motion
in the space p̂(t) ∈ R

2n+4m, for some m, which includes the additional parameters
āik, b̄ik, aik, bik.) �

Given that we have not formally defined the configuration space, one could
also use this lemma as a definition of the configuration space. It provides a local
coordinatization and algebraic description of the r0/4-neighborhood of any given
configuration, essentially covering the configuration space by balls of constant size
in which the structure of the configuration space is explicitly given.

The lemma also shows that, locally, the configuration space has the structure
of a semi-algebraic set, i.e., a set defined by a Boolean combination of polynomial
equations and inequalities.

A more local characterization is possible by considering only those constraints
that are active, i.e., coming from vertices that actually lie on an edge or another
vertex. A vertex-edge sidedness condition (3.3) is active when pk touches the
interior of the edge pipj but does not coincide with an endpoint pi or pj . (In
contrast to Lemma 3.1, we do not care about the distance ‖pk − pi‖ or ‖pk −
pj‖ when we define whether the constraint is active.) A vertex-chain noncrossing
condition (3.5) is active if pi = pk. Finally, an edge-edge sidedness condition (3.6)
is active if pi = pj and the two edges pipj and plpk are parallel and point in the
same direction. An inactive constraint does not restrict a motion that is so small
that the constraint cannot possibly become active. This threshold is determined by
the minimum nonzero distance r1 between two vertices or between a vertex and an
edge, in a given configuration. Unlike r0, this quantity may depend on the given
configuration. We have the following direct corollary of Lemma 3.1.

Lemma 3.2. Let r1 be the minimum positive distance between two vertices or
between a vertex and an edge in a given self-touching configuration. with coordinate
vector p∗. Consider a path p(t) ∈ R

2n, 0 ≤ t ≤ T and with p(0) = p∗, within the
r1/2-neighborhood of p∗. This path represents a feasible motion in the configuration
space of self-touching linkages if and only if all bar lengths remain fixed and all active
conditions (3.3), (3.5), and (3.6) are satisfied for all points p = p(t), 0 ≤ t ≤ T . �

The set of constraints in the lemma can be simplified for practical purposes, by
looking at the combination of several conditions which restrict the relative motion
of two vertices. We will make a few of these simplifications later in Section 6 when
we consider the infinitesimal motions of a given configuration.
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4. Locked Linkages

Locked configurations. There are two basic notions of being “locked”; the first
notion is the most commonly defined in previous work, but the second notion better
captures the intended essence of previous examples. (1) We call a self-touching
linkage locked if the configuration space has multiple connected components within
the class of embeddings with the same combinatorial planar embedding. (2) We call
a self-touching configuration locked within ε if no path in the configuration space
(motion) can get outside of a surrounding ball of radius ε. The second definition is
stronger for sufficiently small ε, provided that there are other configurations which
represent the same combinatorial embedding.

Rigid configurations. One instance of the second definition is the following: a
self-touching configuration is called rigid if it is locked within 0, that is, there is
no motion to a distinct self-touching configuration. This notion is not useful for
simple configurations of arcs, cycles, and trees, which are always flexible (not rigid).
One key feature of self-touching configurations of such linkages is that they can be
rigid; other examples of rigid configurations that arise throughout rigidity theory
are linkages that form a complex graph structure (consisting of multiple cycles).

Perturbations. To introduce a stronger notion of being locked, we give the
following definition. A δ-perturbation of a self-touching configuration is a reposi-
tioning of the vertices within disks of radius δ that remains consistent with the
combinatorial description defined in Section 2. More precisely, for δ < r1/2, a δ-
perturbation must satisfy all active constraints given in Lemma 3.2. A key aspect
of a perturbation is that it allows the bar lengths to change slightly (each by at
most 2δ).

Conjecture 4.1. For every self-touching configuration and for every δ > 0,
there is a δ-perturbation that is a simple configuration.

From the definition we can easily obtain a representation where every edge is
represented by a polygonal arc, but it seems difficult to simultaneously straighten
these arcs.

Strongly locked configurations. Now, a self-touching configuration is strongly
locked if, for every ε > 0, there is a δ > 0 such that every δ-perturbation is locked
within ε. In particular, all sufficiently small simple perturbations are locked. Thus,
assuming Conjecture 4.1, the definition of strongly locked configurations provides a
connection between the less-intuitive notion of self-touching configurations and the
more commonly studied notion of simple configurations. Typically, in particular
for the examples considered here, the self-touching configuration arises naturally
from a simple configuration, so we need not rely on Conjecture 4.1.

Our goal is to connect strongly locked configurations to notions in rigidity
theory which are described in the next section.

5. Rigidity Background

The notions of rigidity, infinitesimal rigidity, and equilibrium stresses are well-
understood for bar frameworks, configurations of linkages whose bars are permitted
to cross each other, and even tensegrity frameworks which contain struts and cables
that can change their length only monotonically; see [CDR02, AR78, AR79,
Con80, Con82, Con93, CW96, CW93, CW82, CW94, GSS93, RW81,
Whi84a, Whi84b, Whi87, Whi88, Whi92]. This section gives a brief summary
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of the relevant material, so that we can generalize it to self-touching configurations
of linkages whose bars cannot cross.

Rigidity. A motion of a tensegrity framework p is a continuous function p(t),
0 ≤ t ≤ T for some T > 0, with p(0) = p, that preserves the bar lengths according
to equation (3.2). A motion is trivial if it is a rigid motion (translation and/or
rotation). A tensegrity framework p is rigid if it has no nontrivial motion. This
definition is a variation of the definition of rigidity for self-touching linkages given
in the previous section.

Infinitesimal rigidity. A tensegrity framework is infinitesimally rigid if it has
no infinitesimal motion, that is, assignment of velocity vectors vi to vertices pi

that preserves bar lengths to the first order:

(5.1) (pi − pj) · (vi − vj) = 0 for every bar {i, j}.
Not every infinitesimal motion can be extended to a motion. Thus, rigidity does
not imply infinitesimal rigidity, but the converse implication holds, since a suitable
motion can be converted into an infinitesimal motion by taking the derivative at
time 0:

Lemma 5.1. [CW96, RW81] If a tensegrity framework is infinitesimally rigid,
then it is rigid.

We will generalize this result to self-touching linkages in the next section.
Struts. In addition to bars, a framework may have some edges marked as struts.

The definitions above change as follows in the presence of struts. A motion can
never decrease the length of a strut, but may now increase the length of a strut.
An infinitesimal motion cannot decrease the length of a strut to the first order:

(5.2) (pi − pj) · (vi − vj) ≥ 0 for every strut {i, j}.
In addition to struts, tensegrity frameworks may also contain cables, whose change
of length is restricted in the opposite direction. We will not use cables in this paper.
Lemma 5.1 holds in the presence of struts and cables as well.

Equilibrium stress. A classic duality result connects infinitesimally rigidity to
“equilibrium stresses.” A stress ω assigns a real number ω{i,j} to each bar {i, j} and
a nonpositive real number ω{i,j} ≤ 0 to each strut {i, j}. Intuitively, if the stress
is negative, then the bar or strut pulls on its endpoints by a force proportional to
the stress; and if the stress is positive, then the bar pushes against the two ends by
the same amount. A stress is in equilibrium if these forces add up to zero:

(5.3)
∑

j

ω{i,j}(pj − pi) = 0, for every vertex i.

Infinitesimal rigidity is closely related to equilibrium stress:

Lemma 5.2. [RW81] If a tensegrity framework is infinitesimally rigid, then it
has an equilibrium stress that is nonzero on all struts and cables.

The converse of this lemma holds under an additional assumption:

Lemma 5.3. [RW81, Theorem 5.2] If a tensegrity framework has an equilib-
rium stress that is nonzero on all cables and struts, and the framework becomes
infinitesimally rigid when each strut and cable is replaced by a bar, then the origi-
nal framework is infinitesimally rigid.
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Figure 6. Sliding zero-length strut (small double arrow) and
proportional distribution of stress F (single arrows). Bold edges
denote bars.

Connection to linear programming. A useful feature of infinitesimal motions
is that the bar constraints (5.1) and strut constraints (5.2) are linear equations
and inequalities, where p is known and v is unknown, and hence can be solved
via linear programming. If the linear program can be solved only by trivial (rigid)
motions, then the configuration is infinitesimally rigid, and the dual linear program
provides an equilibrium stress. (The stresses ω are precisely the dual variables.)
This connection to linear programming is a property we will strive for in our setting.

6. Infinitesimal Motions for Self-Touching Linkages

For simple configurations of linkages whose bars are not permitted to cross,
the noncrossing constraint automatically holds for a sufficiently short interval of
time, so the notions of rigidity and infinitesimal rigidity remain unchanged. For
self-touching configurations, however, the noncrossing constraint introduces addi-
tional restrictions at the very beginning of motion. Indeed, this property is the key
advantage of self-touching configurations, and is what brings locked configurations
into the realm of rigidity theory.

The generalizations of motions and thus rigidity is straightforward: motions
correspond to paths in the configuration space which has the additional restrictions
described in Section 3. For infinitesimal motions, we need to determine the first-
order noncrossing constraints. We will look at the active constraints specified in
Lemma 3.2 and translate them into constraints on the velocities vi. They will turn
out to be polyhedral (piecewise linear) constraints, but unfortunately, they are not
always convex.

6.1. Vertices lying on an edge.
Sidedness constraint. The simplest type of constraint arises when a vertex pk

hits the relative interior of a bar pipj , but not one of the bar’s endpoints pi or pj .
See Figure 6. In the combinatorial description defined in Section 2, this situation
arises when there is a terminal-terminal connection in the magnified view. This
situation causes a vertex-edge sidedness constraint (3.3) which we have denoted by
L(i, j; k): pk must remain on the left side of the line through pi and pj .

(6.1) area(4pi(t),pj(t),pk(t)) ≥ 0.

For infinitesimal motions, we take the derivative at time t = 0, noting that the
expression is initially zero, and we get the following necessary condition:

(6.2) (pi − pj)⊥ · vk + (pj − pk)⊥ · vi + (pk − pi)⊥ · vj ≥ 0,
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where
(
x
y

)⊥ =
(−y

x

)
denotes a counterclockwise rotation by 90◦.

Because the three vectors (pj −pi)⊥, (pi −pk)⊥, and (pk − pj)⊥ are parallel,
we can also denote this constraint differently, using the representation of pk as a
convex combination of pi and pj , pk = αpi + (1 − α)pj with 0 < α < 1:

(6.3) vk · b ≥ (1 − α)vi · b + αvj · b where b = (pj − pi)⊥

We denote these constraints by L′(i, j; k) and regard them as linear inequalities in
the unknowns v. The notation L′ reminds us that these constraints were obtained
as a “derivative” of the constraints L(i, j; k).

6.2. Coincident vertices. Consider two vertices i and k that coincide geo-
metrically; refer to Figure 3. We begin by considering the constraints on k, and
later return to the constraints on i. As discussed in Section 3.2, vertex k lies in
a wedge between two consecutive edges around vertex i. Call the edges {j, i} and
{i, l}, so that vertex k lies in the counterclockwise wedge j, i, l. Let ϕ denote the
angle of the wedge. As a special case, vertex i may be incident to only one edge,
in which case the two edges bounding the wedge are the same, i.e., j = l, and
ϕ = 360◦.

By the vertex-chain noncrossing condition (3.5), the relative first-order move-
ment vk−vi of pk with respect to pi, is restricted to the angular wedge between the
two edges pipj and plpi. For ϕ ≤ 180◦, we have a convex cone, which is described
by the conjunction that pk must remain to the left of the line pipj and to the left
of the line plpi (Figure 3(a)):

L′(i, j; k) ∧ L′(l, i; k).

For a reflex angle ϕ > 180◦, we have a nonconvex cone which is described by the
disjunction that pk must remain to the left of the line pipj or to the left of the
line plpi (Figure 3b). We introduce a special notation for this condition

M ′(i, j, l; k) ⇐⇒ L′(i, j; k) ∨ L′(l, i; k).

Note that it is not necessary to introduce the additional parameters ā, b̄, a, b; we
can remain in the original space R

2n.
The vertex j is restricted by a wedge defined by two consecutive edges around k

in the same way, giving rise to further conditions of the above form.
The infinitesimal versions of the edge-edge sidedness conditions (3.6) can be

derived in the same way, giving rise to the single linear constraint L′(i, j; l); see
Figure 7(c). (The remaining conditions of (3.6) follow from the vertex-edge sided-
ness constraints.)

6.3. Infinitesimal rigidity. For the feasible directions of motion, we have
given by a set M of necessary constraints of the form L′(i, j; k) and M ′(i, j, l; k).
For such a set M of constraints, we denote by PM the set of infinitesimal motions v
that satisfy those constraints and the length preservation equations (5.1). This set
is a polyhedral cone. The linkage p is infinitesimally rigid if PM contains only
trivial infinitesimal motions. We have the following generalization of Lemma 5.1:

Lemma 6.1. If a self-touching configuration is infinitesimally rigid, then it is
rigid.
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Proof. The proof can be given along the lines of a proof used in the context of
“second-order rigidity” [CW96, Theorem 4.3.1] to show that second-order rigidity
implies rigidity. We only sketch the main idea of the proof here. In a neighborhood
of a self-touching configuration p, a motion is confined within a semi-algebraic
set defined by the equations and inequalities given in Lemma 3.1. Any point in
a semi-algebraic set has a neighborhood with an analytic parameterization; see
e.g. [Mil68]. Thus, if p is not rigid, we obtain a short analytic motion p(t) with
p(0) = p. The tangent direction v at p (the first nonvanishing coefficient of the
power-series expansion of p(t) at t = 0) is then an infinitesimal motion of p. �

6.4. Reduction to convex cones. Unfortunately, because of the nonconvex
constraints M ′(i, j, l; k), PM is in general not convex. In showing that PM contains
only rigid motions (and thus the framework is infinitesimally rigid), we would like
to apply linear programming and the duality theory of convex cones.

There are two options to reduce the problem to convex cones. First, we may
take the convex relaxation by simply ignoring all disjunctive constraints of the form
M ′(i, j, l; k):

PM ⊆ PM′ ,

where M′ ⊆ M contains only the constraints of the form L′(i, j; k). If we succeed
in showing that this relaxed cone PM′ contains only the rigid motions, then so does
the original cone and we are done.

Second, we can represent the cone as a union of convex cones, by picking
one L inequality from each disjunction M of inequalities, and trying all possible
combinations. If we have s disjunctions, we obtain 2s convex cones:

PM = PM1 ∪ PM2 ∪ PM3 ∪ · · · ∪ PM2s

Each of these cones is convex, so we can check the existence of nontrivial solutions
in each of these cones by linear programming or by the techniques discussed in
Section 7.

We summarize the two approaches in a small lemma. We let GM denote the
tensegrity framework corresponding to the set of constraints M.

Lemma 6.2. (1) If GM′(p) is infinitesimally rigid, then so is GM(p).
(2) GM(p) is infinitesimally rigid if and only if all frameworks GM1(p), . . . ,

GM2s (p) are infinitesimally rigid. �

Any combination of the two approaches, like in a branch-and-bound tree, is
also possible.

In some instances, like in Figure 1(a), we do not have a vertex in a reflex
wedge as in Figure 3b, and PM is already a convex cone. But even in other cases,
some simplifications are possible. If we look at two coincident vertices j and k,
we can combine j’s constraints and k’s constraints, and instead of two disjunctions
of the form M ′(i, j, l; k) we get only one disjunction of two linear inequalities, or
even convex constraints, as follows. When the two relevant angles at pi and pk

are both reflex, the direction of movement vk − vi is constrained by two extreme
directions which correspond to the two extreme directions of a line separating the
two chains through pi and pk locally (Figures 7(a) and 7(b)). This constraint
can be represented as a logical disjunction of two linear constraints of the form
L′(i, j; k), but not necessarily in the pattern given by M ′(i, j, l; k) above. There is
one special case when two reflex angles meet but they nevertheless produce a single
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(a) Two meeting reflex vertices: range

of separating lines.
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(b) Two meeting reflex vertices: possi-

ble motions of pk relative to pi.
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(d) A convex vertex meeting

a reflex vertex.

Figure 7. Cases of constraint interplay between touching ver-
tices pi and pk. The shaded area in (b), (c), and (d) indicates the
range of possible motions of pk relative to pi.

inequality: when the two chains have two edges pointing in the same direction
(Figure 7(c)). This is in fact just the infinitesimal version of the edge-edge sidedness
conditions (3.6). Finally, when one chain lies inside a convex angle of the other
chain, we get a convex wedge which is representable as a conjunction of two linear
constraints (Figure 7(d)).

It suffices to constrain only those pairs of touching vertices that are combi-
natorially adjacent, that is, not obscured from each other by connections in the
magnified view. This also eliminates a number of nonconvex constraints.

7. Stresses for Self-Touching Linkages

In this section we assume that we have no constraints of the form M ′(i, j, l; k),
and discuss how the sidedness constraints L′(i, j; k) can be treated in using the
notion of stresses.
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Figure 8. A construction replacing a sliding zero-length strut

Sliding zero-length struts. The constraint L′(i, j; k) can be viewed as a sliding
zero-length strut with one end at pk and the other end sliding along the bar pipj

to match the orthogonal projection of pk onto the bar.
Modeling by tensegrity frameworks. We can also model these conditions by an

auxiliary vertex pl and a “classic” strut; see Figure 8. Choose a point pl on the line
through pk perpendicular to pipj , on the opposite side of where pk is constrained
to lie. Connect pl to pk by a strut and to pi and pj by bars. Then keeping pi and
pj fixed, the point pk is prevented from entering the circle around pl through pk.
This condition is (locally) weaker than the original sidedness constraint L′(i, j; k).
In terms of directions (infinitesimal motions), however, it is equivalent. Thus we
have the following statement:

Lemma 7.1. (1) The augmented bar-and-strut framework is infinitesimally rigid
if and only if the original self-touching linkage is infinitesimally rigid.

(2) If the augmented bar-and-strut framework is rigid then the original self-
touching linkage is rigid. �

We do not know whether equivalence holds for rigidity, too.
Stress. The proper generalization of stresses for frameworks with sidedness con-

straints may be derived in two ways. First, they are the dual variables corresponding
to the infinitesimal sidedness constraints L′(i, j; k); secondly, we may consult the
stress in the augmented framework with the auxiliary network. Both approaches
lead to the same intuitive result, as shown in Figure 6. A stress of F = ωk,ij ≤ 0
on a sliding strut induces a force of magnitude −F on pk perpendicular and to the
left of bar pipj , and the opposite force is distributed proportionally to pi and pj

based on their relative proximity to pk. More precisely, pi feels a force of −αF
perpendicular and to the right of bar pipj , and pj feels a force of −(1 − α)F per-
pendicular to the right of bar pipj . In an equilibrium stress, the sum of these forces
at each vertex must leave the vertex stationary as in (5.3).

Connections between infinitesimal rigidity and equilibrium stress. Lemmas 5.2
and 5.3 can be directly applied to the tensegrity frameworks derived above with
the auxiliary vertices. They can also be translated into the notions of sliding zero-
length struts. We need to define a sliding zero-length bar : such a bar restricts pk

to remain on (the left side of) the bar pipj , but leaves pk free to slide along the
bar.

Lemma 7.2. A self-touching configuration is infinitesimally rigid if and only if
the following two conditions hold :
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(1) the configuration becomes infinitesimally rigid when each sliding zero-
length strut is replaced by a sliding zero-length bar, and

(2) the self-touching framework has a stress that is negative on every sliding
zero-length strut. �

8. Connection Between Rigid and Locked

The relevance of the generalized rigidity theory developed in the previous sec-
tion is the following connection between rigid and locked linkages:

Theorem 8.1. If a self-touching configuration is rigid, then it is strongly locked.

In fact, we will show this result even when the δ-perturbations are permitted
to satisfy the bar and noncrossing constraints approximately, up to tolerance 2δ.
This result is an extension of a result about “sloppy rigidity” [Con82, Theorem 1]
stating essentially the same result (in different words) for tensegrity frameworks.
Our proof follows the same outline. A different proof, working on the stronger
assumption of infinitesimal rigidity, is given in the appendix. That proof, however,
has the advantage of providing explicit bounds on δ in terms of ε.

Proof. The proof is based on a topological argument about closed sets of
configurations and their neighborhoods.

Lemma 8.2. Let Aδ ⊆ R
m (δ ≥ 0) be a family of closed sets with Aδ ⊆ Aδ′ for

0 ≤ δ < δ′ and ⋂
δ>0

Aδ = A0.

For p ∈ Aδ we denote by Bδ(p) the set of points which are reachable by a curve
in Aδ starting at p. Let p∗ ∈ A0, suppose that the set B0 := B0(p∗) is compact,
and there is a positive lower bound on the distance between B0 and any point in
A0 − B0.

Then for every ε > 0 there exists a δ > 0 with the following property: ‖p−p∗‖ <
δ implies that Bδ(p) is contained in an ε-neighborhood of B0.

The last statement simply means that dmin(q, B0) ≤ ε for all p ∈ Bδ(p), where
dmin(q, X) denotes the distance from q to the closest point in the set X .

The easy proof of the lemma is given at the end. Let p∗ be a rigid self-touching
configuration. We apply the lemma to the sets Aδ of configurations p that are
defined by relaxing the length constraints for the bars:

(8.1) ‖p∗
i − p∗

j‖ − 2δ ≤ ‖pi − pj‖ ≤ ‖p∗
i − p∗

j‖ + 2δ for every bar {i, j}.
In addition, p must satisfy the sidedness and noncrossing conditions of Lemma 3.1.
Then the set Aδ, viewed as a subset of the enlarged space R

2n+4m which contains
all parameters ā, b̄, a, b, contains all δ-perturbations p of p∗. By Lemma 3.1, the
sidedness and noncrossing constraints are valid as long as p does not deviate by
more than r0/2 from p∗.

The assumption that p∗ is rigid means that B0 contains precisely the config-
urations that are rigid motions of p∗. To achieve compactness of B0 we fix the
position of one vertex. This can be done without changing the problem. The set
A0, being a semi-algebraic set, is locally arcwise connected, and therefore B0 is the
component of A0 containing p∗, and there is a positive lower bound on the distance
between B0 and A0 − B0. Thus, the assumptions of the lemma are fulfilled.
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The set Bδ(p) contains those configurations that are reachable by a weakly
simple motion from p. The allowed curves in Bδ(p) are even more relaxed, because
the bar lengths ‖pi −pj‖ can vary freely within the interval ‖p∗

i −p∗
j‖± 2δ during

the “motion”.
If we start a motion in any δ-perturbation p of p∗, we must remain inside

Bδ(p), as long as dmin(p, B0) < r0/2. Let us choose any ε with 0 < ε < r0/2. Then
the lemma implies that a δ > 0 exists such that starting in p with ‖p − p∗‖ < δ
we must always remain ε-close to p∗, up to some rigid motion. This means that
G(p∗) is strongly locked. �

Proof of the lemma. We prove the lemma by contradiction. Let ε1 > 0 be
a number smaller than the minimum distance between B0 and A0 − B0. Suppose
to the contrary that, for some fixed ε with 0 < ε < ε1 and for all δ with 0 < δ < ε,
there is a point p with ‖p − p∗‖ < δ and a point q̄ ∈ Bδ(p) with dmin(q̄, B0) > ε.
We denote by H<, H=, and H> the set of points x for which dmin(x, B0) is less
than, equal to, or bigger than ε. We have q̄ ∈ H>, and because dmin(p, B0) ≤
‖p − p∗‖ ≤ δ < ε, we have p ∈ H<. Because p and q̄ are connected in Bδ(p) we
can find another point q ∈ Bδ(p) ∩ H=,

Consider an infinite sequence δ1, δ2, . . . with 0 < δi < ε converging to 0, and
consider the corresponding sequence of points pi and qi with ‖pi − p∗‖ < δi,
qi ∈ Bδi(pi) ⊆ Aδi , and qi ∈ H=. Because the qi lie in the compact set H=,
there is an infinite subsequence converging to a limit configuration q∗ ∈ A0 ∩ H=,
a contradiction. �

9. Proving a Linkage to be Strongly Locked

Using the tools above, we can follow the following outline for proving that a
particular linkage is strongly locked:

(1) Model the linkage as a small perturbation of a self-touching linkage with
slightly different edge lengths.

(2) Check that the self-touching linkage is infinitesimally rigid. When the
constraints are convex, or using the techniques in Section 6.4, this can be
done by linear programming.

(3) If the answer to the second step is “yes,” then the self-touching linkage is
strongly locked, and hence sufficiently close perturbations of the original
linkage are locked within an arbitrarily small ε.

The key advantage of this approach is that all but the first step is algorithmic.
We also find that the first step typically matches the intuition of previously proposed
examples and hence applies; the examples in the next section justify this statement.

A limitation of the approach is that the test is conservative: an infinitesimally
flexible linkage may still be strongly locked, and even if the self-touching linkage is
not strongly locked, the original linkage may still be locked. In particular, the com-
plexity of deciding whether a particular linkage is locked remains open. However,
we find this conservative test to suffice in many examples, to which we now turn.

To make the examples more explicit, we expand the second step into two steps
which turn out to be easy to execute by hand, although they are slightly more
conservative:
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Figure 9. One sector of the self-touching tree from Figure 1(a).
The vertices of focus form the chain OABC; also shown are the
analog A′′ of A for the clockwise adjacent wedge, and the analogs
B′, C′ of B and C for the counterclockwise adjacent wedge. Thick
edges denote bars, and thin edges denote sliding zero-length struts.

(2) Check whether the self-touching linkage is infinitesimally rigid:
(a) Check that the bar version of the self-touching linkage is infinitesi-

mally rigid.
This step is normally quite easy because the sliding zero-length bars
restrict motions severely, often creating rigid triangles.

(b) Prove that the self-touching linkage has an equilibrium stress that is
nonzero on all struts (or verify via linear programming).
Such a stress can sometimes be constructed very easily. For exam-
ple, one can superimpose stresses on simple structures like complete
graphs on four vertices, where the stress is unique up to a scalar
multiple. Or one can construct the stress incrementally: at a ver-
tex of degree 3, the stress is unique up to a scalar multiple. One
can start at such a vertex and establish equilibrium as one proceeds
through a sequence of vertices. In the examples below, this procedure
can be carried out without any computational effort, by just paying
attention to the sign pattern.

If both parts succeed, then by Lemma 7.2 the self-touching linkage is infinitesimally
rigid, and hence by Theorem 8.1 it is strongly locked.

Along the way, we may need to deal with touching vertices as described in
Section 6.4.

10. Locked Trees

10.1. Original tree.
Step 1 : Model as a self-touching linkage. Our approach applies directly to the

pinwheel tree in Figure 1(a), or more precisely the self-touching version of the tree,
because the ends of the arms touch the center vertex in a convex angle, and those
are the only touching pairs of vertices. We focus on one sector of the pinwheel, as
shown in Figure 9, and extend the stress to the whole tree by symmetry.

Step 2(a): Bar version is infinitesimally rigid. In the bar version of the self-
touching tree, C is constrained to slide along both OA and OA′′, and hence C
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Figure 10. Possible sign patterns for an equilibrium stress at a
degree-3 vertex when no two of the edges are collinear.

is pinned against O. The velocity vector vC must be parallel to both OA and
OA′′, and hence must be 0. Thus OABC forms a rigid triangle. We get eight
rigid triangles which are connected at the common vertex O. Because B can only
slide along OA′′, the triangle OAB is effectively glued to the next triangle OA′′B′′,
with whom it shares the vertex O. So all triangles are glued together in a cyclic
sequence, and the bar version is infinitesimally rigid.

Step 2(b): Existence of equilibrium stress. To construct the stress with the
desired signs, it is helpful to imagine little springs at the struts and to think how
their forces would be transmitted.

We construct the stress incrementally: A vertex with three incident stresses (not
all parallel) has a unique equilibrium solution for those stresses, up to multiplication
by a constant. The possible sign patterns at such a vertex are shown in Figure 10.
Vertex C is of type (a), so all three signs are equal. We start by giving the three
edges incident to C a negative stress: ωC,OA < 0, ωC,OA′′ < 0, and ωCB < 0. We
balance the force from CB at B by two (uniquely determined) stresses ωB,OA′′ < 0,
and ωBA < 0. We repeat these stresses symmetrically for all sections around the
wheel. By symmetry, this will establish equilibrium at O. We now still have
unresolved forces at A and the analogous vertices A′, A′′, . . .. The direction of the
force at A must be parallel to OA because otherwise all the forces would generate a
nonzero rotational moment around O. This is impossible, because individual forces
generated by the stresses ωij and ωk,ij are torque-free. Thus the forces at A (and
A′, . . .) can be canceled by stresses ωOA > 0, without destroying equilibrium at O.
This stress is negative on all struts.

Step 3: Finale. By Lemma 7.2, the self-touching linkage is infinitesimally rigid,
so by Lemma 6.1 it is also rigid, so by Theorem 8.1 it is also strongly locked. Hence,
if the original tree in Figure 1(a) is drawn sufficiently tight, then it is locked within
some small ε.

Given the setup from the previous sections, this proof is simpler than the
original proof that this tree is locked [BDD+02].

10.2. New tree.
Step 1: Model as self-touching linkage. To apply the approach to the tree in

Figure 1(c) in a similarly easy way, we drop some of the struts; see Figure 11. If
we can show that the linkage with fewer struts is infinitesimally rigid, the original
linkage must also be infinitesimally rigid. Again, we exploit symmetry and focus
on one portion of the linkage.

Step 2(a): Bar version is infinitesimally rigid. C is constrained to slide along
both OA and OA′′, and hence C is stuck at O. The same argument holds for G and
G′′. The sliding struts between B and D, and between D and F ′′, perpendicular to
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Figure 11. One arm of the tree in Figure 1(c). The vertices of
focus form the chain OABCDEFG; also shown are the analogs
F ′′, G′′ of F, G for the clockwise adjacent wedge, and the analogs
C′, D′ of C, D for the counterclockwise adjacent wedge. Thick
edges denote bars, and thin edges denote sliding zero-length struts.
Only the struts which are used to prove rigidity are shown.

CD now hold B, D and F ′′ together. Thus OABDC forms a rigid triangle, with
O = A and B = D. If we regard this triangle as fixed, the bar DE constrains the
infinitesimal motion of E to directions perpendicular to DE, whereas the sliding
strut which keeps A on EF restrains the relative motion of A and E to directions
parallel to EF . This prevents any relative motion of E with respect to A, making
the triangle OAEFG rigid too. So we get a rigid structure of six triangles glued
together around O in a cyclic fashion.

Step 2(b): Existence of equilibrium stress. We will construct a stress which is
negative on all struts. For simplicity, we write ωBD for the stress between B and
D in the direction perpendicular to OB. This stress can be interpreted as ωB,CD,
as suggested by the figure, or as ωD,BC ; it does not matter which. Similarly, we
will use ωDF ′′ and ωD′F .

We start with an equilibrium at F by giving the three incident edges a negative
stress: ωFG < 0, ωEF < 0, and ωD′F < 0. The negative force at G can be canceled
by negative stresses ωG,OA < 0 and ωG,OA′ < 0. Now E has two more edges
besides EF ; we create equilibrium at E by setting ωA,EF < 0 and ωDE > 0. (To
see the correct sign pattern, one must draw the sliding strut with stress ωA,EF < 0
attached to E and not to A as in the figure.)

All of this is of course done symmetrically in the three arms of the tree. So
the vertex D already has a stress ωDF ′′ < 0 which is determined, in addition to
ωDE > 0 which we just fixed. The resulting force induces a unique solution for
ωBD and ωCD. We can find this solution in two steps. First we ignore ωDF ′′ and
get an equilibrium with ωDE > 0, ω0

BD < 0, and ωCD > 0. Now ωDF ′′ < 0 can be
canceled by further decreasing ωBD to its final value ω1

BD < ω0
BD < 0. We extend

ω1
BD < 0 to an equilibrium at B by setting ωBC < 0 and ωAB < 0. The situation

in B is almost the same as in D when we first constructed the equilibrium in B
with the initial value ω0

BD: the three edges point in parallel directions and have
the same lengths. The difference is that ωBD points in the opposite direction when
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seen from B, and |ω1
BD| > |ω0

BD|. It follows for the corresponding parallel edges
CD and BC that |ωBC | > |ωCD|.

Therefore, in C, the negative stress ωBC prevails over the positive stress ωCD,
resulting in a negative total force in C from the direction of B and D: ωBC +ωCD <
0. This force is canceled by negative stresses ωC,OA < 0 and ωC,OA′′ < 0.

We can now conclude as for the simple tree. By symmetry, O must be in
equilibrium, and the three remaining forces in A, A′, and A′′ must be parallel to
OA, OA′, and OA′′, respectively, so they can be canceled by appropriate stresses
on those edges.

Step 3: Finale. By Lemma 7.2, the self-touching linkage is infinitesimally rigid,
so by Lemma 6.1 it is also rigid, so by Theorem 8.1 it is also strongly locked. Hence,
if the original tree in Figure 1(c) is drawn sufficiently tight, then it is locked within
an arbitrarily small ε. In the appendix we show that any δ-perturbation of the tree
is locked within 0.0001, for δ = 3 × 10−8.

11. Conclusion

To study when linkages are locked, we developed the notion of a self-touching
linkage which captures instantaneous crossing constraints. We then generalized
rigidity theory to capture such noncrossing constraints, the difficulty being that in
some cases the constraints are nonconvex. We proved that rigidity in this setting
implies that the linkage is strongly locked, meaning that small enough perturbations
of the linkage can barely move, as little as desired. In particular, this brings results
about self-touching linkages into the commonly studied realm of strictly simple,
nontouching linkages.

Our theory can be used to prove a variety of linkages to be strongly locked.
In particular, we showed two examples here: the tree from [BDD+02], and a new
tree with a single degree-3 vertex.
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Appendix A. Constructive Proof of Theorem 8.1

Here we prove another version of Theorem 8.1. We have to make the stronger
assumption of infinitesimal rigidity, but the proof gives a way to compute δ in
terms of ε.



INFINITESIMALLY LOCKED SELF-TOUCHING LINKAGES 23

H23:01

H23:02

H23:03

H23:04

H23:05

H23:06

H23:07

H23:08

H23:09

H23:10

H23:11

H23:12

H23:13

H23:14

H23:15

H23:16

H23:17

H23:18

H23:19

H23:20

H23:21

H23:22

H23:23

H23:24

H23:25

H23:26

H23:27

H23:28

H23:29

H23:30

H23:31

H23:32

H23:33

H23:34

H23:35

H23:36

H23:37

H23:38

Theorem A.1. If a self-touching linkage is infinitesimally rigid, then it is
strongly locked.

Proof. Let p∗ = (p∗
1, . . . ,p

∗
n) be an infinitesimally rigid self-touching linkage.

We select an edge, say p1p2, and fix its position by setting v1 = v2 = 0. Infini-
tesimal rigidity means that the system M has only the trivial solution. We apply
Lemma 6.2(2) and get a family of linear systems M1,M2, . . ., all of which have
only the trivial solution. Each system Mg has the form

v1 = v2 = 0(A.1)

vj · (p∗
j − p∗

i ) − vi · (p∗
j − p∗

i ) = 0(A.2)

−vk · (p∗
j − p∗

i )
⊥ + αvi · (p∗

j − p∗
i )

⊥ + (1 − α)vj · (p∗
j − p∗

i )
⊥ ≤ 0(A.3)

(for all bars i, j and certain triples i, j, k, and certain α = αijk, 0 ≤ α ≤ 1)

Lemma A.2. Assume 0 ≤ δ ≤ ε ≤ r1/2, where r1 is the minimum positive
distance between two vertices or between a vertex and an edge in a given configura-
tion p∗. Let p1 be a δ-perturbation of p∗:

‖p1 − p∗‖ ≤ δ,

and consider a path p(t) ∈ R
2n, 0 ≤ t ≤ T , in the configuration space with p(0) =

p1, with
‖p(t) − p∗‖ < ε, for all 0 ≤ t ≤ T

Then, for all p = p(t), there is a system Mg in which the equations and inequalities
(A.2–A.3) hold for pi − p∗

i instead of vi, with a fudge factor C1δ + C2ε
2, where

C2 = 4 and C1 depends only on p∗. More precisely,

−[2‖p∗
j − p∗

i ‖ · δ + 4ε2] ≤ `ij ≤ 2‖p∗
j − p∗

i ‖ · δ(A.4)

with `ij := (pj − p∗
j ) · (p∗

j − p∗
i ) − (pi − p∗

i ) · (p∗
j − p∗

i ),

and

(A.5) − (pk − p∗
k) · (p∗

j − p∗
i )

⊥

+ α(pi − p∗
i ) · (p∗

j − p∗
i )

⊥ + (1 − α)(pj − p∗
j ) · (p∗

j − p∗
i )

⊥ ≤ 4ε2.

Proof. The idea of the proof is as follows: By Lemma 3.2, p(t) must fulfill a set
of noncrossing and sidedness conditions. When we write these sidedness condition
for p, we get almost (A.5), except that we take the inner product with (p∗

j − p∗
i )

⊥

instead of (pj −pi)⊥. For small ε, these two directions are almost parallel, and the
difference is O(ε2). For the length-preserving condition there is an additional term
of O(δ) because the length of the bar can change by up to 2δ.

To prove (A.4), we have to bound the difference ∆ between

(pj − pi) · (p∗
j − p∗

i ) = ‖pj − pi‖ · ‖p∗
j − p∗

i ‖ · cosϕ

and
(p∗

j − p∗
i ) · (p∗

j − p∗
i ) = ‖p∗

j − p∗
i ‖ · ‖p∗

j − p∗
i ‖,

where ϕ is the angle between pj − pi and p∗
j − p∗

i .

∆ = ‖p∗
j − p∗

i ‖ ·
(‖pj − pi‖ · cosϕ − ‖p∗

j − p∗
i ‖
)
.
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For bounding the right-hand side, we know that ‖pj − pi‖ is bounded between
‖p∗

j − p∗
i ‖ ± 2δ, and

1 ≥ cosϕ ≥

√√√√1 −
(

2ε

‖p∗
j − p∗

i ‖

)2

≥ 1 − 4ε2

‖p∗
j − p∗

i ‖2
.

Plugging this in gives the desired relation.
Proof of (A.5): We have

p∗
k = αp∗

i + (1 − α)p∗
j

The corresponding point
p̄k := αpi + (1 − α)pj

lies on the line segment pipj and inside the ε-circle around pk.
We have

−p∗
k · (p∗

j − p∗
i )

⊥ + αp∗
i · (p∗

j − p∗
i )

⊥ + (1 − α)p∗
j · (p∗

j − p∗
i )

⊥ = 0

and

−p̄k · (p∗
j − p∗

i )
⊥ + αpi · (p∗

j − p∗
i )

⊥ + (1 − α)pj · (p∗
j − p∗

i )
⊥ = 0.

The difference between these two terms is almost what we want in (A.5), except
that we have to replace p̄k by pk. The point pk lies also inside the ε-circle around
pk and above the line segment pipj . So

(pk − p̄k) · (p∗
j − p∗

i )
⊥ ≥ −2ε · ‖p∗

j − p∗
i ‖ sinϕ,

where ϕ is the angle between pj − pi and p∗
j − p∗

i . We have

sin ϕ ≤ ε√
(‖p∗

j − p∗
i ‖/2)2 − ε2

≤ ε

‖p∗
j − p∗

i ‖/2
,

and this gives
(pk − p̄k) · (p∗

j − p∗
i )

⊥ ≥ −4ε2. �

Lemma A.3. Assume that the system Av ≤ 0 has only the solution v = 0.
Then for any γ ≥ 0, every solution of Av ≤ γ (componentwise) has ‖v‖ ≤ C3γ, for
some constant C3 depending only on A.

Proof. The polyhedron Av ≤ 1 is bounded, and C3 is the distance of its
farthest vertex from the origin. �

Finally we prove that p∗ is locked within ε. Let C3 be a constant for Lemma A.3
such that ‖v‖ ≤ C3γ holds, for the coefficient matrices A of the systems (A.1–A.3)
of all systems Mg. Assume that p1 and p = p(t) are as in Lemma A.2 with
ε := 1/(3C2C3) and δ := 1/(9C1C2C

2
3 ) = ε

3C1C3
. By choosing a larger constant C3

if necessary we can assure that δ and ε satisfy the assumptions of Lemma A.2, and
by choosing a larger constant C2 we can ensure that ε is smaller than any given
desired value.

Then we know that v = p− p∗ fulfills Av ≤ γ with

γ = C1δ + C2ε
2 =

2
9
· 1
C2C2

3

and, by Lemma A.3, this implies ‖pi − p∗
i ‖ ≤ C3γ = 2

9 · 1
C2C3

= 2
3ε.
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It follows that p cannot possibly reach any position with
2
3ε < max

i
‖pi − p∗

i ‖ ≤ ε.

Thus each point pi is confined within a disk of radius 2
3ε around p∗

i . �
To compute the value of δ for a given ε, we have to know the constants C1,

C2, C3, and r1. We have C2 = 4 and C1 = 2Dmax, where Dmax is the length of
the longest bar. These are geometric quantities of the configuration. The constant
C3 is harder to compute. We can approximate it by computing the axes-parallel
bounding box of the polytope Av ≤ 1, solving O(n) linear programming problems.
The size of this polytope measures how “rigid” the linkage is, in terms of sensitivity
to tolerances in the edge lengths. Edges that are almost parallel where they meet
will in general lead to a large polytope.

If we draw the tree in Figure 1(c) symmetrically and put OA = 1 and OB = 1/3
(in the notation of Figure 11b), we get C1 = 2 and C3 ≤ 634, using the norm (3.1).
By plugging these values into the formulas, one obtains that any δ-perturbation
of the tree is locked within ε, for δ = 3 × 10−8 and ε = 0.0001. One can slightly
improve these formulas by balancing δ and ε in the derivation. A direct, but tedious
proof reveals that the tree is locked for δ = 0.00005, but unlocked for δ = 0.001.
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