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Abstract. We show that a 2-variable integer program de�ned by m

constraints involving coe�cients with at most s bits can be solved with
O(m+s logm) arithmetic operations or with O(m+logm log s)M(s) bit
operations, where M(s) is the time needed for s-bit integer multiplica-
tion.

1 Introduction

Integer linear programming is related to convex geometry as well as to algo-
rithmic number theory, in particular to the algorithmic geometry of numbers. It
is well known that some basic number theoretic problems, such as the greatest
common divisor or best approximations of rational numbers can be formulated
as integer linear programs in two variables. Thus it is not surprising that cur-
rent polynomial methods for integer programming in �xed dimension [7, 12] use
lattice reduction methods, related to the reduction which is part of the classical
Euclidean algorithm for integers, or the computation of the continued fraction
expansion of a rational number. Therefore, integer programming in �xed dimen-
sion has a strong �avor of algorithmic number theory, and the running times of
the algorithms also depend on the binary encoding length of the input.

In this paper, we want to study this relation more carefully for the case of
2-dimensional integer programming. The classical Euclidean algorithm for com-
puting the greatest common divisor (GCD) of two s-bit integers requires �(s)
arithmetic operations and �(s2) bit operations in the worst case. For example,
when it is applied to two consecutive Fibonacci numbers, it generates all the pre-
decessors in the Fibonacci sequence (see e.g. [10]). Schönhage's algorithm [17]
improves this complexity to O(M(s) log s) bit operations, where M(s) is the bit
complexity of s-bit integer multiplication. Thus the greatest common divisor of
two integers can be computed with a close to linear number of bit operations, if
one uses the fastest methods for integer multiplication [19]. The speedup tech-
nique by Schönhage has not yet been incorporated into current methods for two
variable integer programming. The best known algorithms for the integer pro-
gramming problem in two dimensions [4, 22, 6] use �(s) arithmetic operations
and 
(s2) bit operations when the number of constraints is �xed. This number
of steps is required because these algorithms construct the complete sequence of
convergents of certain rational numbers that are computed from the input.
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Our goal is to show that integer programming in two variables is not harder
than greatest common divisor computation. We achieve this goal for the case that
the number of constraints is �xed. As one allows an arbitrary number of con-
straints, the nature of the problem also becomes combinatorial. For this general
case we present an algorithm which requires O(logm) gcd-like computations,
where m is the number of constraints. This improves on the best previously
known algorithms.

Previous work. The 2-variable integer programming problem was extensively
studied by various authors. The polynomiality of the problem was settled by
Hirschberg and Wong [5] and Kannan [9] for special cases and by Scarf [15, 16]
for the general case before Lenstra [12] established the polynomiality of integer
programming in any �xed dimension. Since then, several algorithms for the 2-
variable problem have been suggested. We summarize them in the following
table, for problems with m constraints involving (integer) numbers with at most
s bits.

Method for integer programming arithmetic complexity bit complexity

Feit [4] O(m logm+ms) O(m logm+ms)M(s)

Zamanskij and Cherkasskij [22] O(m logm+ms) O(m logm+ms)M(s)

Kanamaru et al. [6] O(m logm+ s) O(m logm+ s)M(s)

Clarkson [2] (randomized)1 O(m+ s2 logm) O(m+ logm s2)M(s)

This paper (Theorem 4) O(m+ logm s) O(m+ logm log s)M(s)

Checking a point for feasibility �(m) �(m)M(s)

Shortest vector [18, 21], GCD [17] O(s) O(log s)M(s)

Thus our algorithm is better in the arithmetic model if the number of con-
straints is large, whereas the bit complexity of our algorithm is superior to the
previous methods in all cases.

For comparison, we have also given the complexity of a few basic operations.
The greatest common divisor of two integers a and b can be calculated by the
special integer programming problemminf ax1+bx2 j ax1+bx2 � 1; x1; x2 2 Z g
in two variables with one constraint. Also, checking whether a given point is
feasible should be no more di�cult than �nding the optimum. So the sum of
the last two lines of the table is the goal that one might aim for (short of
trying to improve the complexity of integer multiplication or GCD itself). The
complexity of our algorithm has still an extra logm factor in connection with the
terms involving s, compared to the �target� of O(m+ s) and O(m+ log s)M(s),
respectively. However, we identify a nontrivial class of polygons, called lower
polygons, for which we achieve this complexity bound.

1 Clarkson claimed a complexity of O(m + logm s), because he mistakenly relied on
algorithms from the literature to optimize small integer programs, whereas they only
solve the integer programming feasibility problem.
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Outline of the parametric lattice width method. The key concept of
Lenstra's polynomial algorithm for integer programming in �xed dimension [12]
is the lattice width of a convex body. Let K � Rd be a convex body and � � Rd

be a lattice. The width of K along a direction c 2 Rd is the quantity wc(K) =
maxf cTx j x 2 K g � minf cTx j x 2 K g: The lattice width of K, w�(K), is
the minimum of its widths along nonzero vectors c of the dual lattice �� (see
Section 2.1 for de�nitions related to lattices). For the standard integer lattice
� = Zd, we denote wZd(K) by w(K) and call this number the width of K.2 Thus
if a convex body K has lattice width `, then its lattice points can be covered
by b`+ 1c parallel lattice hyperplanes. If K does not include any lattice points,
then K must be ��at� along a nonzero vector in the dual lattice. This fact is
known as Khinchin's �atness theorem (see [8]).

Theorem 1 (Flatness theorem). There exists a constant fd depending only
on the dimension d, such that each convex body K � Rd containing no lattice
points of � has lattice width at most fd.

Lenstra [12] applies this fact to the integer programming feasibility problem
as follows: Compute the lattice width ` of the given d-dimensional polyhedron
P . If ` > fd, then one is certain that P contains integer points. Otherwise all
lattice points in P are covered by at most fd+1 parallel hyperplanes. Each of the
intersections of these hyperplanes with P corresponds to a (d � 1)-dimensional
feasibility problem. These are solved recursively. The actual integer programming
optimization problem is reduced to the feasibility problem via binary search. This
brings an additional factor of s into the running time.

Our approach avoids this binary search by letting the objective function slide
into the polyhedron, until the lattice width of the truncated polyhedron equals
fd. The approach can roughly be described for d = 2 as follows. For solving the
integer program

maxf cTx j (x1; x2)T 2 P \Z2g (1)

over a polygon P , we determine the smallest ` 2 Z such that the width of the
truncated polyhedron P \ (cTx � `) is at most f2. The optimum of (1) can then
be found among the optima of the constant number of 1-dimensional integer
programs formed by hyperplanes of the corresponding �at direction. We shall
describe this parametric approach more precisely in Section 3. The core of the
algorithm, which allows us to solve the parametric problem in essentially one
single shortest vector computation, is presented in Section 4.3 (Proposition 4).

In the remaining part of the paper, we restrict our attention to the 2-di-
mensional case of integer programming. We believe that the �atness constant
of Theorem 1 in two dimensions is f2 = 1 +

p
4=3, but we have not found any

result of this sort in the literature.

2 This di�ers from the usual geometric notion of width, which is the minimum of wc

over all unit vectors c.
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Complexity models. We analyze our algorithms both in the arithmetic com-
plexity model and in the bit complexity model. The arithmetic model treats
arithmetic operations +;�; � and = as unit-cost operations. This is the most
common model in the analysis of algorithms and it is appropriate when the
numbers are not too large and �t into one machine word. In the bit complexity
model, every single bit-operation is counted. Addition and subtraction of s-bit
integers takes O(s) time. The current state of the art method for multiplica-
tion [19] shows that the bit complexity M(s) of multiplication and division is
O(s log s log log s), see [1, p. 279]. The di�erence between the two models can
be seen in the case of the gcd-computation, which is an inherent ingredient of
integer programming in small dimension: The best algorithm takes �(s) arith-
metic operations, which amounts to O(M(s)s) bit operations. However, a gcd
can be computed in O(M(s) log s) bit operations [17]. The bit complexity model
permits a more re�ned analysis of the asymptotic behavior of such algorithms.

2 Preliminaries

The symbols N and N+ denote the nonnegative and positive integers respectively.
The size of an integer a is the length of its binary encoding. The size of a vector,
a matrix, or a linear inequality is de�ned as the size of the largest entry or
coe�cient occurring in it. The standard triangle T 0 is the triangle with vertices
(0; 0), (1; 0) and (0; 1).

The general 2-variable integer programming problem is as follows: given an
integral matrix A 2 Zm�2 and integral vectors b 2 Zm and c 2 Z2, determine
maxf cTx j x 2 P (A; b) \ Z2g, where P = P (A; b) = fx 2 R2 j Ax � b g is the
polyhedron de�ned by A and b.

We can assume without loss of generality that P is bounded (see e.g. [20,
p. 237]). We can also restrict ourselves to problems where c is the vector (0; 1)T,
by means of an appropriate unimodular transformation. These operations (as
well as all the other reductions and transformations that will be applied in this
paper) increase the size of the involved numbers by at most a constant factor.
Therefore we de�ne the 2-variable integer programming problem as follows.

Problem 1 (2IP). Given an integral matrix A 2 Zm�2 and an integral vector
b 2 Zm de�ning a polygon P (A; b), determine maxfx2 j x 2 P (A; b) \ Z2 g.

2.1 The GCD, Best Approximations, and Lattices

The Euclidean algorithm for computing the greatest common divisor gcd(a0; a1)
of two integers a0; a1 > 0 computes the remainder sequence a0; a1; : : : ; ak 2 N+ ,
where ai; i � 2 is given by ai�2 = ai�1qi�1 + ai, qi 2 N; 0 < ai < ai�1, and ak
divides ak�1 exactly. Then ak = gcd(a0; a1). The extended Euclidean algorithm

keeps track of the unimodular matrices M (j) =
Qj

i=1

�
qi 1
1 0

�
; 0 � j � k � 1.

One has
�
a0
a1

�
= M (j)

� aj
aj+1

�
. The representation gcd(a0; a1) = ua0 + va1 with

two integers u; v with juj � a1 and jvj � a0 can be computed with the extended
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Euclidean algorithm with O(s) arithmetic operations or with O(M(s) log s) bit
operations [17]. More generally, given two integers a0; a1 > 0 and some integer
K with a0 > K > gcd(a0; a1), one can compute the elements ai and ai+1 of
the remainder sequence a0; a1; : : : ; ak such that ai � L > ai+1, together with
the matrix M (i) with O(M(s) log s) bit operations using the so-called half-gcd
approach [1, p. 308].

The fractions M
(i)
1;1=M

(i)
2;1 are called the convergents of � = a0=a1. A fraction

x=y; y � 1 is called a best approximation to �, if one has jy��xj < jy0��xj for
all other fractions x0=y0; 0 < y0 � y. A best approximation to � is a convergent
of �.

A 2-dimensional (rational) lattice � is a set of the form �(A) = fAx j
x 2 Z2g, where A 2 Q2�2 is a nonsingular rational matrix. The matrix A
is called a basis of �. One has �(A) = �(B) for B 2 Q2�2 if and only if
B = AU with some unimodular matrix U , i.e., U 2 Z2�2 and det(U) = �1.
Every lattice �(A) has a unique basis of the form

�
a b
0 c

� 2 Q2�2 , where c > 0
and a > b � 0, called the Hermite normal form, HNF of �. The Hermite normal
form can be computed with an extended-gcd computation and a constant number
of arithmetic operations. The dual lattice of �(A) is the lattice ��(A) = fx 2
R2 j xTv 2 Z; 8v 2 �(A) g. It is generated by (A�1)T. A shortest vector of �
(w.r.t. some given norm) is a nonzero vector of � with minimal norm. A shortest
vector of a 2-dimensional lattice �(A), where A has size at most s, can be
computed with O(s) arithmetic operations [11]. Asymptotically fast algorithms
with O(M(s) log s) bit operations have been developed by Schönhage [18] and
Yap [21], see also Eisenbrand [3] for an easier approach.

2.2 Homothetic Approximation

We say that a body P homothetically approximates another body Q with homo-
thety ratio � � 1, if P + t1 � Q � �P + t2 for some translation x 7! x+ t1 and
some homothety (scaling and translation) x 7! �x + t2.

This concept is important for two reasons: (i) The lattice width of Q is
determined by the lattice width of P up to a multiplicative error of at most �, i.e.,
w�(P ) � w�(Q) � �w�(P ). (ii) A general convex body Q can be approximated
by a simpler body P ; for example, any plane convex body can be approximated
by a triangle with homothety ratio 2.

In this way, one can compute an approximation to the width of a triangle.
Let a : x 7! Bx + t be some a�ne transformation. Clearly the width w(K) of
a convex body K is equal to the lattice width w�(B) of the transformed body
a(K). Thus we get the following lemma.

Lemma 1. Let T � R2 be a triangle which is mapped to the standard triangle
T 0 by the a�ne transformation x 7! Bx+ t. Let �v be a shortest vector of ��(B)
with respect to the `2-norm. Then

(1�
p
1=2) k�vk2 � w(T ) � 1=

p
2 k�vk2:
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Moreover, the integral vector v := BT�v is a good substitute for the minimum-
width direction:

w(T ) � wv(T ) � (
p
2 + 1) w(T ) ut

With linear programming, one can easily �nd a good approximating triangle
T � P for a given polygon P = P (A; b). For example, we can take the longest
horizontal segment ef contained in P . It is characterized by having two parallel
supporting lines through e and f which enclose P , and it can be computed as
a linear programming problem in three variables in O(m) steps, by Megiddo's
algorithm [13]. (Actually, one can readily adapt Megiddo's simple algorithm for
two-variable linear programming to this problem.) Together with a point g 2 P
which is farthest away from the line through e and f (this point can be found
by another linear programming problem), we obtain a triangle T = efg which
is a homothetic approximation of P with homothety ratio 3. Together with
the previous lemma, and the known algorithms for computing shortest lattice
vectors, we get the following lemma.

Lemma 2. Let P � R2 be a polygon de�ned by m constraints each of size s.
Then one can compute with O(m + s) arithmetic operations or with O(m +
log s)M(s) bit operations an integral direction v 2 Z2 with

wv(P ) = �(w(P )): ut

2.3 �Checking the Width�

We will several times use the following basic subroutine, which we call checking
the width.

For a given polygon P , we �rst compute its approximate lattice width by
Lemma 2, together with a direction v. This gives us an interval [K;�K] for the
lattice width of P . If K � f2 + 1, then we say that P is thick, and we know
that P contains an integral point. This is one possible outcome of the algorithm.
Otherwise, P is thin and we solve 2IP for P as follows. Enumerate the at most
�(f2 + 1) = O(1) lattice lines through P , solving a one-dimensional integer
program for each of them. We may �nd that P is empty, that is, it contains no
integral point, or otherwise �nd the optimum point in P . These are the other
two possible results of the algorithm, and this will always mean that no further
processing of P is required. It is easy to see that the following bounds hold.

Lemma 3. Checking the width takes O(m+ s) arithmetic operations or O(m+
log s)M(s) bit operations. ut

3 The Approximate Parametric Lattice Width (APLW)
Problem

As in the case of Lenstra's algorithm, the lattice width is approximated via ho-
mothetic approximations and a shortest vector computation. This brings in some
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error which complicates the parametric lattice width method described in the
introduction. The following problem, called approximate parametric lattice width
problem, APLW for short, is an attempt to live up to the involved approximation
error. If P is a polygon, we denote by P` the truncated polygon P` = P \(x2 � `).

Problem 2 (APLW). This problem is parameterized by an approximation ratio
 � 1. The input is a number K 2 N and a polygon P � R2 with w(P ) � K.
The task is to �nd some ` 2 Z such that the width of the truncated polygon P`
satis�es

K � w(P`) �  K:

Integer programming can be reduced to the APLW problem:

Proposition 1. Suppose that the APLW problem with any �xed approximation
ratio  can be solved in A(m; s) bit operations or in eA(m; s) arithmetic operations
for a polygon P , described by m constraints of size at most s. Then 2IP can be
solved in T (m; s) bit operations or in eT (m; s) arithmetic operations, with

T (m; s) = O(A(m; s) + (m+ log s) M(s));eT (m; s) = O( eA(m; s) +m+ s):

Proof. First we check the width of P . If P is thin we are done with the claimed
time bounds (see Lemma 3). Otherwise solve APLW for K = f2+1, yielding an
integer ` 2 Z such that f2+1 � w(P`) �  (f2+1). Then the polytope P` = P \
(x2 � `) must contain an integer point. Therefore the optimum of 2IP over P is
the optimum of 2IP over P`. Compute an integral direction v with wv(P`) = O(1)
by Lemma 2. As in the case of checking the width, the optimum can then be
found among the corresponding constant number of univariate integer programs.

ut

4 Solving the Integer Program

An upper polygon P has a horizontal line segment ef as an edge and a pair of
parallel lines through the points e and f enclosing P , and it lies above ef . A lower
polygon is de�ned analogously, see Fig. 1. We now describe e�cient algorithms
for APLW for upper triangles and lower polygons. This enables us to solve 2IP
for polygons with a �xed number of constraints. Polygons described by a �xed
number of constraints are the base case of our prune-and-search algorithm for
general 2IP.

4.1 Solving APLW for Upper Triangles

Let T be an upper triangle. By translating T , we can assume that the top
vertex is at the origin, and hence T is described by inequalities of the form
Ax � 0; x2 � L, where L < 0. All the truncated triangles T` = T \ (x2 � `)
for 0 > ` � L are scaled copies of T , and the width of T` scales accordingly:
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w(T`) = j`j w(T�1). Therefore we simply have to compute an approximation to
the width of T by Lemma 1 and choose the scaling factor j`j accordingly so that
K � w(T`) � K holds. Hence we have the following fact.

Proposition 2. APLW can be solved with O(s) arithmetic operations or with
O(M(s) log s) bit operations for an upper triangle which is described by con-
straints of size at most s.

4.2 Solving APLW for Lower Polygons

Since the width is invariant under translation, we can assume that the left vertex
e of the upper edge ef is at the origin. We want to �nd an ` 2 Z with K �
w(P`) �  K for some constant  � 1.

0 = e f

g

(x2 = `)

(x2 = L)

P

T

T`

g`

Fig. 1. The approximation of P`

Let g = (g1; g2) 2 P be a vertex of P with smallest second component g2 = L.
Let g` be the point of intersection between the line segment eg and the line
x2 = `, for 0 > ` � L and denote the triangle 0fg` by T` (see Fig. 1).

Lemma 4. The triangle T` is a homothetic approximation to the truncated lower
polygon P` with homothety ratio 2. ut

Thus we can solve APLW for P by �nding the largest ` 2 Z; 0 � ` � L such
that w(T`) � K. For any 2� 2 matrix A and a number p, we use the notation

Ap :=

�
1 0
0 p

�
A
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for the matrix whose second row is multiplied by p. If the matrix B maps the
triangle T�1 to the standard triangle T

0, then B1=j`j maps T` to T
0. By Lemma 4

and Lemma 1 we have the relation

(1�
p
1=2) kvk2 � w(P`) �

p
2 kvk2;

where v is a shortest vector of ��(B1=j`j) w.r.t. the `2-norm.
We can thus solve APLW by determining the smallest p 2 N such that the

length of a shortest vector v of ��(B1=p) w.r.t. the `2-norm satis�es the relation

kvk2 � (1�
p
1=2)�1 K. Since one has kvk1 � kvk2 �

p
2kvk1 we can as well

search for the smallest p such that

kvk1 � (1�
p
1=2)�1K;

where v is a shortest vector of ��(B1=p) w.r.t. the `1-norm. Observe that one
has ��(B1=p) = �(((B�1)T)p). This shows that we can translate APLW into
the following problem which we call the parametric shortest vector problem. The
parameter is the factor p with which the second coordinate of the lattice is
multiplied and we want to �nd the largest value of p such that the norm of the
shortest vector does not exceed a given bound.

Problem 3 (PSV). Given a nonsingular matrix A 2 Q2�2 and a constant K 2
N+ , �nd the largest p 2 N+ such that kvk1 � K, where v is a shortest vector
of �(Ap) w.r.t. the `1-norm.

The following statement is proved in [3]. It shows that a shortest vector of
a 2-dimensional integral lattice can be found among the best approximations a
rational number computed from the Hermite normal form of the lattice.

Proposition 3. Let � � Z2 be given by its Hermite normal form
�
a b
0 c

� 2 Z2�2.

A shortest vector of � with respect to the `1-norm is either
�
a
0

�
or

�
b
c

�
, or

it is of the form
�
�xa+yb

yc

�
; x 2 N; y 2 N+ where the fraction x=y is a best

approximation to the number b=a.

By the relation between best approximations and the remainder sequence of
the Euclidean algorithm we can now e�ciently solve PSV.

Proposition 4. PSV can be solved with O(s) arithmetic operations or with
O(M(s) log s) bit operations for matrices A and integers K of size s.

Proof. Assume without loss of generality that A is an integral matrix. Let
�
a b
0 c

�
be the HNF of A, the HNF of �(Ap) is then the matrix

�
a b
0 pc

�
. Either

�
a
0

�
or�

b
pc

�
is a shortest vector (these cases can be treated easily), or there exists a

shortest vector
�
�xa+yb

pyc

�
such that x=y is a best approximation of b=a, thus a

convergent of b=a.
Since we want to maximize p we have to �nd the convergent x=y of b=a

with minimal y � 1 which satis�es j�xa+ ybj � K. This convergent yields the
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candidate with which we can achieve a best scaling factor p. The best scaling
factor is then simply p = bK=(yc)c.

The required convergent x=y can be determined by exploiting the relation be-
tween convergents and the Euclidean algorithm. Let a0; a1; : : : ; ak be the remain-
der sequence of b = a0 and a = a1. Multiplying the equation

�
a0
a1

�
= M (i)

� ai
ai+1

�
by the inverse of the unimodular matrix M (i) gives the following equation for

the i-th convergent x=y = M
(i)
1;1=M

(i)
2;1:

�(�xa+ yb) = �(�M (i)
1;1a1 +M

(i)
2;1a0) = ai+1

Since subsequent convergents have strictly increasing denominators, we are look-
ing for the �rst index i with ai+1 � K. This index is determined by the conditions
ai > K and ai+1 � K. As mentioned in Section 2.1, the corresponding conver-

gent x=y = M
(i)
1;1=M

(i)
2;1 can be computed with O(M(s) log(s)) bit operations, or

with O(s) arithmetic operations. ut
Theorem 2. APLW for lower polygons de�ned by m constraints of size at most
s can be solved with O(m + s) arithmetic operations or with O(m + log s)M(s)
bit operations.

Proof. After one has found the point g which minimizes fx2 j x 2 Pg with
Megiddo's algorithm for linear programming [13, 14] one has to solve PSV for
the matrix B which maps T�1 to the standard triangle. The time bound thus
follows from Proposition 4. ut

4.3 An E�cient Algorithm for 2IP with a Fixed Number of
Constraints

Theorem 3. A 2IP problem de�ned by a constant number of constraints of size
at most s can be solved with O(s) arithmetic operations or with O(M(s) log s)
bit operations.

Proof. We compute the underlying polygon, triangulate it, and cut each triangle
into an upper and a lower triangle. We get a constant number of 2IP's on upper
and lower triangles, de�ned by inequalities of size O(s). The complexity follows
thus from Proposition 1, Proposition 2, and Theorem 2. ut

4.4 Solving 2IP for Upper Polygons

It follows from Sect. 4.2 that 2IP over lower polygons can be solved with O(m+s)
basic operations or with O((m + log s)M(s)) bit operations. Any polygon can
be dissected into an upper and a lower part (by solving a linear programming
problem); thus we are left with solving 2IP for upper polygons. Unfortunately,
we cannot solve APLW for upper polygons directly. Instead, we use Megiddo's
prune-and-search technique [13] to reduce the polygon to a polygon with a con-
stant number of sides, to which the method from Theorem 3 in the previous



Fast 2-Variable Integer Programming 11

11:01

11:02

11:03

11:04

11:05

11:06

11:07

11:08

11:09

11:10

11:11

11:12

11:13

11:14

11:15

11:16

11:17

11:18

11:19

11:20

11:21

11:22

11:23

11:24

11:25

11:26

11:27

11:28

11:29

11:30

11:31

11:32

11:33

11:34

11:35

11:36

11:37

11:38

11:39

11:40

11:41

11:42

11:43

section is then applied. This procedure works for general polygons and not only
for upper polygons.

Our algorithm changes the polygon P by discarding constraints and by in-
troducing bounds l � x2 � u such that the solution to 2IP remains invariant.
Initially we check the width of P . If P is thin, we are done. Otherwise, we start
with l = �1 and u = 1. We gradually narrow down the interval [l; u] and
at the same time remove constraints that can be ignored without changing the
optimum.

One iteration proceeds as follows: Ignoring the constraints of the form l �
x2 � u, the m constraints de�ning P can be classi�ed into left and right con-
straints, depending on whether the feasible side lies to their right or left, respec-
tively. We arbitrarily partition all left constraints into pairs and compute the
intersection points of their corresponding lines, and similarly for the right con-
straints. We get roughly m=2 intersection points, and we compute the median �
of their x2-coordinates. Now we check the width of P�. If P� is thick, we replace
l by �. In addition, for each of the m=4 intersection points below �, there is one
constraint among the two constraints de�ning it which is redundant in the new
range � � x2 � u. Removing these constraints reduces the number of constraints
by a factor of 3

4 .
If P� is thin and contains integer points, we are done. If P� is empty, we

replace u by �. We remove constraints as above, but we now consider the inter-
section points above �.

In this way, after O(logm) iterations, we have either solved the problem, or
we have reduced it to a polygon with at most four constraints, which can be
solved by Theorem 3.

Each iteration involves one operation of checking the width, plus O(m) arith-
metic operations for computing intersections and their median. Since the number
m of constraints is geometrically decreasing in successive steps, we get a total of
O(m+logm s) arithmetic operations and O(m+logm log s)M(s) bit operations.
The additional complexity for dealing with the �nal quadrilateral is dominated
by this. This gives rise to our main result.

Theorem 4. The two-variable integer programming problem with m constraints
of size at most s can be solved in O(m + logm s) arithmetic operations or in
O(m+ logm log s)M(s) bit operations.
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