
Degenerate Convex Hulls in High Dimensions

Without Extra Storage

G�unter Rote

Technische Universit�at Graz, Institut f�ur Mathematik
Steyrergasse 30, A-8010 Graz, Austria

electronic mail: rote@opt.math.tu-graz.ac.at

26:01

26:02

26:03

26:04

26:05

26:06

26:07

26:08

26:09

26:10

26:11

26:12

26:13

26:14

26:15

26:16

26:17

26:18

26:19

26:20

26:21

26:22

26:23

26:24

26:25

26:26

26:27

26:28

26:29

26:30

26:31

26:32

26:33

26:34

1 Introduction

We present an algorithm for enumerating the faces of
the convex hull of a given set P of n points in d dimen-
sions. The main features of the algorithm are that it
uses little extra storage and that it addresses degener-
acy explicitly.
It is based on an idea that was recently introduced

by Avis and Fukuda [1991] for their convex hull algo-
rithm: The idea is to take a pivoting rule from linear
programming and to \invert" the path that it takes to
the optimal solution in all possible ways, thereby visit-
ing all feasible bases in a depth-�rst search manner.
Theoretical considerations and computational tests

have established that the method takes a long time for
degenerate point sets. The reason is that, in the case of
degenerate polytopes, the number of feasible bases may
exceed the number of facets by far.
Therefore we propose a variation of the method that

takes degeneracies into account explicitly: Instead of
visiting all feasible bases, the algorithm visits all facets.
The manner of visiting facets is analogous to the con-
vex hull algorithm of Chand and Kapur [1970] as it is
described and analyzed in Swart [1985].
Section 2 gives an overview of the method in a quite

general way. Section 3 describes the method from a
di�erent point of view: as a seach of the face lattice.
Section 4 describes speci�c pivoting rules and section 5
gives some implementation details. Section 6 gives a
rough complexity analysis and proposes a hybrid algo-
rithm that saves time in nondegenerate cases, thus be-
coming even more competitive with Avis and Fukuda's
algorithm.

Motivation of the problem. Besides being one of the
most prominent problems in computational geometry,

0

An earlier version of this extended abstract appeared in the

Proceedings of the Eighth Annual Symposium on Computational

Geometry, Berlin, June 10{12, 1992, published by the Association

for Computing Machinery, 1992; pp. 26{32.

26:35

26:36

26:37

26:38

26:39

26:40

26:41

26:42

26:43

26:44

26:45

26:46

26:47

26:48

26:49

26:50

26:51

26:52

26:53

26:54

26:55

26:56

26:57

26:58

26:59

26:60

26:61

26:62

26:63

26:64

26:65

26:66

26:67

26:68

26:69

26:70

26:71

26:72

26:73

26:74

26:75

the convex hull has a number of important applications.

Optimization. The minimum of a concave function
over a polytope is achieved at a vertex. Many methods
for global optimization are based on enumerating the
vertices of a set of solutions that is described by linear
inequalities. This enumeration problem is dual to the
convex hull problem, and many algorithms have been
proposed for it in the area of Operations Research, see
Matheiss and Rubin [1980] or Chen, Hansen, and Jau-
mard [1991].

Mathematical research. In combinatorial opti-
mization one is interested in describing the facets of
polytopes whose vertices correspond to combinatorial
objects, because this opens the possibility to optimize
over these objects by linear programming and cutting
plane algorithms (\polyhedral combinatorics", see for
example Pulleyblank [1989]). Examples are the trav-
eling salesman polytope or the cut polytope. In addi-
tion to theoretical considerations that lead to classes
of facets, it is also useful to compute the facets explic-
itly for small problems (see e. g. Christof, J�unger and
Reinelt [1991]).

Certain highly regular graphs can be described as the
skeletons of regular polyhedra, see Brouwer, Cohen and
Neumaier [1989].

The polytopes that arise in these areas are highly de-

generate.

Why is it important to use little extra storage?

Most algorithms for computing convex hulls (see e. g.
Swart [1985] or Seidel [1991]) require to maintain a de-
scription of the whole convex hull, at least of all its
facets. Since the number of facets has an explosive
growth in higher dimensions, these algorithms soon ex-
ceed the capacity limits even of today's most powerful
computers. In this respect, the storage limit is much
more severe than the time limit, because it may not just
make a problem take longer, but it may actually make
it infeasible (see Christof, J�unger, and Reinelt [1991]
for an account of the e�orts that were undertaken to
preprocess a problem by hand and split it into subprob-
lems in order to make it tractable by computer.) In

Page 1

27:01

27:02

27:03

27:04

27:05

27:06

27:07

27:08

27:09

27:10

27:11

27:12

27:13

27:14

27:15

27:16

27:17

27:18

27:19

27:20

27:21

27:22

27:23

27:24

27:25

27:26

27:27

27:28

27:29

27:30

27:31

27:32

27:33

27:34

27:35

27:36

27:37

27:38

Figure 1: A cube with one trucated corner.

addition, through virtual storage and paging, the stor-
age requirement indirectly a�ects the running time of
the algorithm.

Therefore the method of Avis and Fukuda can be seen
as a major breakthrough, since it makes larger prob-
lems amenable to a computer solution for the �rst time.
The present algorithm is a further development of that
method.

Comparison with the algorithm of Avis and

Fukuda. The algorithm of Avis and Fukuda di�ers
from the present algorithm in one main point: it visits
feasible bases, and not facets. Geometrically, a feasi-

ble basis of a point set P can be de�ned as a (d � 1)-
dimensional simplex with vertices from P which is con-
tained in a facet of the convex hull of P . A facet which
is not a simplex contains many fasible bases, and it is
possible to go from a feasible basis to an adjacent fasi-
ble basis and remain on the same facet. (This is called
a degenerate pivot.) By an additional test the lexico-
graphically smallest basis of each facet can be identi�ed,
and thus it is possible to output each facet only once.

A point on the boundary of conv(P) which is not a
vertex increases the number of feasible bases but it is ig-
nored by the facet enumeration algorithm of the present
paper (except for the additional overhead in the factor
O(n) for the pivot steps). (However, points which are
not extreme can easily be removed beforehand by linear
programming.)

Some illustrative calculations. Consider the d-di-
mensional cube. It has 2d vertices and 2d facets. The
total number of faces is 3d. For example, the 4-cube
has 16 vertices and only 8 facets, but it has 464 feasi-
ble bases, and the algorithm of Avis and Fukuda visits
each of them. Perturbation of the vertices leads to a
triangulation of the facets, and this helps a little: By
perturbing the vertices of the 4-cube I generated a poly-
tope with 47 simplicial facets. (Of course, this number
depends on the perturbation.)

27:39

27:40

27:41

27:42

27:43

27:44

27:45

27:46

27:47

27:48

27:49

27:50

27:51

27:52

27:53

27:54

27:55

27:56

27:57

27:58

27:59

27:60

27:61

27:62

27:63

27:64

27:65

27:66

27:67

27:68

27:69

27:70

27:71

27:72

27:73

27:74

27:75

27:76

27:77

27:78

27:79

27:80

27:81

27:82

27:83

27:84

27:85

For the 5-cube, these numbers are even more striking:
32 vertices, 10 facets, and 30080 feasible bases. These
�gures have been obtained with the help of an imple-
mentation of di�erent versions of Avis and Fukuda's al-
gorithm.

Notation and de�nitions. We will assume without
loss of generality that the convex hull conv(P) of P is
full-dimensional, with dimension d, and that we put the
coordinate origin into the center of gravity of the points.
The facets of a d-polytope are its (d � 1)-dimensional
faces, and its (d� 2)-faces are called ridges.

2 Overview of the algorithm

We �rst specify an algorithm that starts from an arbi-
trary facet and moves to a (unique) adjacent facet, from
there again to an adjacent facet and so on until a certain
\target" facet is reached:

Algorithm: Pivot to the target facet

(�) while F is not the target facet do
(��) select a facet f of F ;

(� f is a ridge of the polytope. �)
pivot about f to the (unique) other

facet F 0 containing f ;
F := F 0;

end while.

It should be clear what pivoting means: A hyperplane
rotating about f has one degree of freedom. As a sup-
porting hyperplane (containing P on one side) it has
two extreme positions, corresponding to the two facets
F and F 0. We shall abbreviate the pivot step by a pro-
cedure call F 0 := pivot(F; f).

To make the algorithm concrete we have to determine
the target facet in step (�) and specify the pivot selection
step (��). We will do this in section 4. For now we
assume that a procedure f := selectfacet(F) is available
for step (��). If the de�nition of the target facet and
of selectfacet �t together in such a way that that the
algorithm

(i) never visits a facet twice, and

(ii) always reaches the same target facet, regardless of
the starting facet,

then the algorithm implicitly de�nes a directed tree on
the set of facets, which is rooted at the target facet. By
carrying out a depth-�rst search on this tree, starting
at the root, it is now possible to visit every facet:

procedure search(F);
(� In the initial call, F is the target facet. �)
begin output facet F ;

Page 2

28:01

28:02

28:03

28:04

28:05

28:06

28:07

28:08

28:09

28:10

28:11

28:12

28:13

28:14

28:15

28:16

28:17

28:18

28:19

28:20

28:21

28:22

28:23

28:24

28:25

28:26

28:27

28:28

28:29

28:30

28:31

28:32

28:33

28:34

28:35

28:36

28:37

28:38

28:39

28:40

28:41

28:42

28:43

28:44

28:45

28:46

28:47

28:48

28:49

28:50

28:51

28:52

(y) for every facet f of F do

F 0 := pivot(F; f);
if F 0 is not the target facet

and selectfacet(F 0) = f

then search(F 0);
end for;

end procedure;

Note that line (y) requires an enumeration of facets
one dimension lower. Let us for the time being assume
that we have procedures f := �rstfacet(F) and f 0 :=
nextfacet(F; f) that do the job. With these procedures
we can rewrite search(F) as follows:

procedure search(F);
begin output facet F ;

f := �rstfacet(F);
repeat

F 0 := pivot(F; f);
if F 0 is not the target facet

and selectfacet(F 0) = f

then search(F 0);
f := nextfacet(F; f);

until f = nil;
end procedure;

In the following algorithm the recursion from the
depth-�rst search procedure is removed. The local vari-
ables F and f are removed because they need not be
remembered: After returning from search(F 0), the orig-
inal values of f and F can be recovered easily from F 0

because f = selectfacet(F 0) anf F = pivot(F 0; f).

Algorithm SEARCH:
Non-recursive search of all facets

F := the target facet;
1: output facet F ;

f := �rstfacet(F);
repeat

F 0 := pivot(F; f);
(�) if F 0 is not the target facet

and selectfacet(F 0) = f

then F := F 0; goto 1;
2: f := nextfacet(F; f);

until f = nil;
(� backtrack: �)
if F is the target facet then STOP;
F 0 := F ;
f := selectfacet(F 0);
F := pivot(F 0; f);
goto 2;

The test in line (�), whether F 0 is the target facet, can
be carried out by testing whether f = selextfacet(F). In
order to use algorithm SEARCH recursively for enumer-
ating facets of facets, we have to cast it into the form
of the procedures �rstfacet(F) and nextfacet(F; f):

28:53

28:54

28:55

28:56

28:57

28:58

28:59

28:60

28:61

28:62

28:63

28:64

28:65

28:66

28:67

28:68

28:69

28:70

28:71

28:72

28:73

28:74

28:75

28:76

28:77

28:78

28:79

28:80

28:81

28:82

28:83

28:84

28:85

28:86

28:87

28:88

28:89

28:90

28:91

28:92

28:93

28:94

28:95

28:96

28:97

28:98

28:99

28:100

28:101

28:102

28:103

procedure �rstfacet(F);
begin return the target facet of F ;
end procedure;

procedure nextfacet(F ; F);
(� This procedure carries out a portion of �)
(� program SEARCH between two successive �)
(� executions of \output facet". �)
begin f := �rstfacet(F);

repeat

F 0 := pivot(F; f);
(z) if F 0 is not the target facet

and selectfacet(F 0) = f

then return F 0;
2: f := nextfacet(F; f);

until f = nil;
if F is the target facet of F

then return nil;
f := selectfacet(F);
F := pivot(F; f);
goto 2;

end procedure;

When F has dimension 1, nextfacet(F ; F) is com-
puted directly.

There are no more output statements. Instead, they
are in a new top level procedure:

program enumerate facets;
begin F := the whole polytope;

F := �rstfacet(F);
repeat output facet F ;

F := nextfacet(F ; F);
until F = nil;

end program;

The algorithm is now still recursive in the dimension
of the faces. However, we see that the recursive proce-
dures need no local storage, except for their parameters.
Thus, an (implicit) stack of length d for the chain of
faces corresponding to the chain of recursive calls is the
only additional storage that is needed.

In the speci�c implementation described below, �rst-
facet and selectfacet are identical. This makes some
simpli�cations possible. For example, in line (z), F 0

can only be the target facet if f = selectfacet(F 0) =
�rstfacet(F 0) is the facet of F through which we have
just entered F . Thus we just skip over this statement if
we have entered the repeat-loop from the �rst statement
of the procedure (the \normal" entry into the loop), and
we can omit the check whether F 0 is the target vertex.

Also, by the nature of depth-�rst search, when the
algorithm has �nished to explore a face F , it returns to
the initial facet of F . This is the facet through which
the algorithm has entered F ; if the procedure nextfacet

Page 3

29:01

29:02

29:03

29:04

29:05

29:06

29:07

29:08

29:09

29:10

29:11

29:12

29:13

29:14

29:15

29:16

29:17

29:18

29:19

29:20

29:21

29:22

29:23

29:24

29:25

29:26

29:27

is modi�ed to give this facet, the algorithm can just
pivot back via this facet without calling selectfacet.

3 A di�erent viewpoint: Ex-

ploring the face lattice

The face lattice of a polytope is a directed graph whose
nodes correspond to the faces, including the empty face
; and the polytope conv(P) itself, and which has an arc
between two faces F and f if F is k-dimensional and f

is (k�1)-dimensional and f is contained in F . Figure 2
shows the face lattice of a cube with a trucated corner
(�gure 1).

;

conv(P)

f

F�
��+

F

Figure 2: The face lattice for the polytope in �gure 1.
The arcs are directed from top to bottom.

Our algorithm now starts at the top level and visits
every facet, every facet of every facet, and so on, recur-
sively descending into the lower levels. For each facet F
of a face F , one facet f of F is selected. Pivoting about
f (inside F) corresponds to �nding the fourth node on
the unique 4-cycle through the nodes F , F , and f in the
graph of the face lattice (see �gure 2, where the pivot is
indicated by the arrow). Under conditions (i) and (ii),
these pivots induce a tree on the facets of F , rooted at
the target facet of F .
The analysis of the algorithm in section 6 will again

refer to the face lattice.

4 The pivoting rule

The easiest way to get some order into the facets of a
polytope is an optimization criterion.
Recall that we assume that the origin is contained in

the interior of the polytope conv(P). For a given facet

29:28

29:29

29:30

29:31

29:32

29:33

29:34

29:35

29:36

29:37

29:38

29:39

29:40

29:41

29:42

29:43

29:44

29:45

29:46

29:47

29:48

29:49

29:50

29:51

29:52

29:53

F lying on a hyperplane h, let xd(F) = xd(h) be the
intercept of h, i. e., the intersection of h with the xd-
axis (see �gure 3), and set

z(F) := z(h) := 1=xd(h):

For a vertical hyperplane we de�ne z(h) = z(F) := 0.
In other terms, z(F) is the d-th coordinate of the vertex
corresponding to F in the polar polytope.

6

��������

PPPPq

x3

x1

x2

x3(F)r

F

h

Figure 3: The objective function.

The facet which maximizes z(F) is the facet where
the positive xd-axis pierces through the boundary of the
polytope. By considering also the other coordinate axes
in a lexicographic manner, we can assume that all facets
have distinct values z(F). In particular, the \optimal"
facet is unique, and we can de�ne it as our target facet.
In the sequel, we will take the objective function z with
this lexicographic meaning without mentioning it.

We have to show two things: Firstly, how to extend
the ordering of the facets induced by the function z to
facets of facets and to facets of arbitrary faces. Secondly,
we must de�ne the pivoting facet (procedure selectfacet)
and show that pivoting about this facet leads to the
target facet without getting caught in a cycle.

To order the facets f of a facet F lying on a hy-
perplane h we proceed as follows: we take the center
of gravity CF of the points of P lying in F , and we
push it slightly away from the origin (see �gure 4a).
conv(P [fCF g) will have a pyramid built on top of F ,

Page 4

30:01

30:02

30:03

30:04

30:05

30:06

30:07

30:08

30:09

30:10

30:11

30:12

30:13

30:14

30:15

30:16

30:17

30:18

30:19

30:20

30:21

30:22

30:23

30:24

30:25

30:26

30:27

30:28

30:29

30:30

30:31

30:32

30:33

30:34

30:35

30:36

30:37

30:38

30:39

30:40

30:41

30:42

30:43

30:44

30:45

30:46

30:47

30:48

30:49

30:50

30:51

with new facets corresponding to the facets of F (see �g-
ure 4b). We can now use the ordering of these new facets
with respect to z.
Of course, the movement ofCF is in�nitesimally small

and only conceptual. Computationally, when we look at
facets of a face f at some level of the recursion, we have a
sequence of points CF ; CF ; : : : ; Cf , that in conjunction
with any facet of f de�ne a hyperplane h. The derivative
of z(h) when Cf moves outwards on a ray through the
origin gives a ranking of the facets of f . (Any ray on
which Cf moves outwards will give the same ranking.)
Having de�ned the order of facets by an optimization

criterion, a natural choice for the pivoting facet is the
(optimal) target facet itself:

procedure selectfacet(F);
(� identical to �rstfacet �)
begin return the target facet of F , i. e.,

the optimal facet;
end procedure;

Lemma 1 Let f be the optimal facet of a facet F which

is not the target facet. Then z(F) increases when we

pivot about f .

Proof. Consider the change of z(h) as h rotates about
a ridge f to an adjacent facet. z(h) will increase for
some ridges and decrease for other ridges. Since F is
not optimal, there is a ridge for which z(h) increases.
For the optimal rigde, z(h) must therefore also increase.
To make this argument precise, observe two things:

The objective function of a ridge f , i. e., the rate of
change of z(h) as h rotates about f depends on the
speed of the rotation, in particular on the position of
the point CF , but the direction of the change (increasing
or decreasing) is independent of this. Secondly, for any
adjacent facet F 0, we have z(F 0) > z(F) if and only if
z(h) increases as h rotates about the common ridge of
F and F 0. �

From this lemma we conclude that a sequence of piv-
ots with the pivot rule of selecting always the optimal
ridge leads to a sequence of facets with strictly increas-
ing z-values that eventually terminates at the target
(optimal) facet. Thus the requirements (i) and (ii) from
the introduction are ful�lled.

Lemma 2 Let D denote the intersection of the xd-axis

with the hyperplane h in which a facet F is contained,

and let l denote the ray from CF towards D. Then the

optimal facet f of F is the facet where this ray intersects

the boundary of F .

Proof. Let f be a facet of F and consider the intersec-
tion d of the line l with the a�ne hull of f (see Figure 5
where the situation of �gure 4 is shown as it is seen
on the hyperplane h through the current facet F). Let

30:52

30:53

30:54

6

��������

PPPPq

x3

x1

x2

p3

?

r

h

CF

a)

6

��������

PPPPq

x3

x1

x2

p3

?r

h

CF

b)

Figure 4: The new vertex CF in the facet F , as it moves
outwards.

us rotate h about f and watch the intersections of h
with the ray through CF and with the xd-axis. The
speeds by which these two points move are related like

Page 5

31:01

31:02

31:03

31:04

31:05

31:06

31:07

31:08

31:09

31:10

31:11

31:12

31:13

31:14

31:15

31:16

31:17

31:18

31:19

31:20

31:21

31:22

31:23

31:24

31:25

31:26

31:27

31:28

31:29

31:30

31:31

�
�
�
�
��
hhhhhhhh

C
C
C
C
C((((

((((
(

6

r

r

r

D

d

CF

f

Figure 5: The situation in the hyperplane h of F .

const � CF d=dD, where the constant is independent of
f . Thus the biggest rate of change at the xd-axis for
a �xed small movement of CF is achieved when d is as
close to CF as possible. �

This lemma implies that the lower-dimensional enu-

meration problems, when we restrict our attention to
a certain face in the recursive procedure, can be han-

dled in the same way as the full-dimensional problem,
because the objective function is of the same type.

Note that the objective function for a given face de-
pends on the sequence of faces F ; F; f; : : : in the stack
of recursive calls through which that face was reached.
These parameters were not explicitly mentioned in the
description of the algorithm in section 2.

In the procedures selectfacet and �rstfacet we need
to compute the optimal facet of a given face. This
can be done by solving a linear program, for exam-
ple by the simplex algorithm, by the method of Sei-
del [1991] in O(d!n) time, or by the method of Welzl
and Sharir [1992]

in less than O(2dn) time.

In most calls of the procedure selectfacet we simply
have to check whether a given face f is the optimal facet
of some face F 0. This optimality check is actually a lin-
ear program one dimension lower than the computation
of the optimal facet from scratch.

5 Implementation

The algorithm can most naturally be implemented in
the form of a simplex tableau, like the algorithm of Avis
and Fukuda [1991]. Essentially we consider the linear
program

31:32

31:33

31:34

31:35

31:36

31:37

31:38

31:39

31:40

31:41

31:42

31:43

31:44

31:45

31:46

31:47

31:48

31:49

31:50

31:51

31:52

31:53

31:54

31:55

31:56

31:57

31:58

31:59

31:60

31:61

31:62

31:63

31:64

31:65

31:66

31:67

31:68

31:69

31:70

31:71

31:72

31:73

31:74

31:75

31:76

31:77

31:78

31:79

31:80

31:81

31:82

31:83

lex max (xd; xd�1; : : : ; x1)

subject to
Pd

j=1 pijxj � 1; for i = 1; : : :n,

where pij are the coordinates of the n given points Pi.
The rows of the tableau correspond to the points of

P . We have d additional rows for the components of the
lexicographic objective function. At any time during
the algorithm, a set of d a�nely independent points (a
feasible basis) is selected, and the current solution is the
hyperplane spanned by these points. The points that lie
on the corresponding facet can be recognized as having
right-hand sides 0. The points determining the current
basis correspond to the columns of the tableau.
The operations described in section 4 can be carried

out easily: Adding a point CF corresponds to adding a
row which is the average of the rows corresponding to
the points on the face F , and putting this point into
the basis. (Actually, it is more sensible to let CF enter
the basis right away when we move to face F .) Push-
ing CF outwards means that we consider the column
corresponding to CF as an additional requirement on
feasiblility: A basis is now feasible only if the (origi-
nal) right-hand side together with the entry in the new
column is lexicographically non-negative. Adding more
points Cf will simply add more components to this lex-
icographic feasibility criterion. A face is thus implic-
itly determined by the sequence of points (columns)
CF ; CF ; : : : ; Cf . This means that the only space that is
required for the algorithm is the space for d additional
rows in the tableau.
The theorem in the next section bounds the number

of pivots of the algorithm. Any pivot operation takes
O(nd) steps. Of course, in practice we will restrict the
attention to the points that lie on the current face, and
the value n in the expression O(nd) is just the number
of those points.
A natural improvement is to use the revised simplex

algorithm, which operates on the original coordinates
of the points and restricts the operations that change
values to a (d� d)-submatrix.

6 Analysis

We have seen in section 3 that the algorithm essentially
carries out a depth-�rst search of the face lattice of
the polytope conv(P). Let Ak be the number of di-
rected paths in the face lattice (see �gure 2) which start
at the top level (the polytope itself) and end at a k-
dimensional face.
In the algorithm we carry out two types of pivots:

Those which are only tried and immediately revoked,
and the successful pivots which are actually performed.

Lemma 3 The number of pivot operations which are

tried at level d � k of the recursion is at most Ak�1.

The number of successful pivot operations at level d� k

of the recursion is less than 2Ak.

Page 6

32:01

32:02

32:03

32:04

32:05

32:06

32:07

32:08

32:09

32:10

32:11

32:12

32:13

32:14

32:15

32:16

32:17

32:18

32:19

32:20

32:21

32:22

32:23

32:24

32:25

32:26

32:27

32:28

32:29

32:30

32:31

32:32

32:33

32:34

32:35

32:36

32:37

32:38

32:39

32:40

32:41

32:42

32:43

32:44

32:45

32:46

32:47

32:48

32:49

32:50

32:51

Proof. For the proof we look at the initial recursive for-
mulation of procedure search(F): It walks through the
depth-�rst search tree of all facets of F , and the number
of walking steps (pivots) is less than twice the number
of vertices visited. This proves the second statement.
For each face that is searched, all its facets are tried as
pivots. The �rst statement follows. �

Theorem 1 The total number of pivots in the algo-

rithm is at most 3A, where A is the number of directed

paths in the face lattice starting at the top node. �

The number of linear programs that have to be
solved in the procedures �rstface and selectfacet is also
bounded by this number.

For the example of d-cubes from the introduction,
each k-cube has 2k facets. The number A of paths
is therefore

�
2 � 4 � 6 � � � (2d)

�
+
�
4 � 6 � 8 � � � (2d)

�
+
�
6 �

8 � � � (2d)
�
+ � � �+ (2d). For the 5-cube this number is

6320, which compares favorably with the 30080 feasible
bases.
The best case for the facet enumeration algorithm

occurs when the facets are highly degenerate but the
lower-dimensional faces are simplicial. Consider a \sim-
plicial pyramid". It is built as the convex hull of a
(d � 1)-dimensional simplicial polytope with n vertices
together with an additional point outside the hyper-
plane containing the polytope. Avis and Fukuda's basis
enumeration method will �nd that it has O(

�
n
d

�
) feasi-

ble bases to visit, whereas the combinatorial complexity
of the present facet enumeration algorithm is at most
O(nb(d�1)=2c � d!). The term d! can be omitted if the
hybrid version described in the following subsection is
used.

6.1 A hybrid algorithm

The algorithm of Avis and Fukuda enumerates feasible
bases, i. e., simplices. For a simplex it is a trivial mat-
ter to enumerate its facets and hence its possible pivots.
Thus the basis enumeration algorithm has no need for
a recursion on the dimension. We can incorporate this
into our algorithm by stopping the recursion whenever
the current face is a simplex and enumerating its facets
directly. In this way, the algorithm will become sim-
ilar to the algorithm of Avis and Fukuda, except for
the di�erent pivoting strategy. This follows an idea of
Swart [1985], who introduced the abbreviated face lattice
as the combinatorial structure underlying this variation
of the algorithm.

7 Further Research

The facet enumeration algorithm in section 2 is pre-
sented in a very general way. The realization of �rstfacet
and selectfacet by an optimization criterion is just one
possibility. It would be nice if a simpler way of de�ning

32:52

32:53

32:54

32:55

32:56

32:57

32:58

32:59

32:60

32:61

32:62

32:63

32:64

32:65

32:66

32:67

32:68

32:69

32:70

32:71

32:72

32:73

32:74

32:75

32:76

32:77

32:78

32:79

32:80

32:81

32:82

32:83

32:84

32:85

32:86

32:87

32:88

32:89

32:90

32:91

32:92

32:93

32:94

32:95

32:96

32:97

32:98

32:99

32:100

32:101

32:102

32:103

32:104

target facets were found, for example by just consider-
ing the indices of the points lying on the facet in some
lexicographic way. This would eliminate the need to
solve a linear program at every step of the algorithm.
It is an open question whether selectfacet(F) can be

de�ned to depend only on F and not on the whole path
from the top level to F . Another question to investigate
is the connection between our algorithmand the simpler
method of perturbing the vertices, which is also a way
to deal with degeneracy.

8 References

David Avis and Komei Fukuda [1991]

A pivoting algorithm for convex hulls and vertex enu-
meration of arrangements and polyhedra, in: Proc.
7th Ann. Symp. Computat. Geometry, June 1991,
pp. 98{104; revised version to appear in Discrete and

Computational Geometry 8 (1992), 295{313.

Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neu-
maier [1989]

Distance-regular graphs, Springer-Verlag.

D. R. Chand and S. S. Kapur [1970]

An algorithm for convex polytopes, J. Assoc. Com-

put. Mach. 17, 78{86.

Pey-Chun Chen, Pierre Hansen, Brigitte Jaumard [1991]

On-line and o�-line vertex enumeration by adjacency
lists, Operations Research Letters 10, 403{409.

T. Christof, M. J�unger, and G. Reinelt [1991]

A complete description of the traveling salesman
polytope on 8 nodes, Operations Research Letters 10,
497{500.

T. H. Matheiss and D. S. Rubin [1980]

A Survey and Comparison of Methods for Finding All
Vertices of Convex Polyhedral Sets, Mathematics of

Operations Research 5, 167{185.

William R. Pulleyblank [1989]

Polyhedral combinatorics, in: Optimization, Hand-
books in Operations Research and Management Sci-
ence, vol. 1, eds. G. L. Nemhauser, A. H. G. Rinnooy
Kan, and M. J. Todd, North-Holland, pp. 371{446.

Raimund Seidel [1991]

Small-dimensional linear programming and convex
hulls made easy, Discrete and Computational Geom-

etry 6, 423{434.

M. Sharir and E. Welzl [1992]

A combinatorial bound for linear programming and
related problems, in: STACS 92, Proc. 9th Ann.

Symp. Theoretical Aspects of Computer Science,

Febr. 13{15, 1992, Cachan, France, eds. A. Finkel
et al., Lecture Notes in Computer Science 577,
Springer-Verlag, pp. 569{579.

G. Swart [1985]

Finding the convex hull facet by facet, J. Algorithms

6, 17{48.

Page 7

