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CONSTANT-WORK-SPACE ALGORITHMS FOR GEOMETRIC PROBLEMS∗

Tetsuo Asano,†Wolfgang Mulzer,‡Günter Rote,§ and Yajun Wang¶

Abstract. Constant-work-space algorithms may use only constantly many cells of storage
in addition to their input, which is provided as a read-only array. We show how to construct
several geometric structures efficiently in the constant-work-space model. Traditional algo-
rithms process the input into a suitable data structure (like a doubly-connected edge list)
that allows efficient traversal of the structure at hand. In the constant-work-space setting,
however, we cannot afford to do this. Instead, we provide operations that compute the
desired features on the fly by accessing the input with no extra space. The whole geomet-
ric structure can be obtained by using these operations to enumerate all the features. Of
course, we must pay for the space savings by slower running times. While the standard
data structure allows us to implement traversal operations in constant time, our schemes
typically take linear time to read the input data in each step.

We begin with two simple problems: triangulating a planar point set and finding
the trapezoidal decomposition of a simple polygon. In both cases adjacent features can
be enumerated in linear time per step, resulting in total quadratic running time to output
the whole structure. Actually, we show that the former result carries over to the Delaunay
triangulation, and hence the Voronoi diagram. This also means that we can compute
the largest empty circle of a planar point set in quadratic time and constant work-space.
As another application, we demonstrate how to enumerate the features of an Euclidean
minimum spanning tree (EMST) in quadratic time per step, so that the whole EMST can
be found in cubic time using constant work-space.

Finally, we describe how to compute a shortest geodesic path between two points in a
simple polygon. Although the shortest path problem in general graphs is NL-complete [18],
this constrained problem can be solved in quadratic time using only constant work-space.

1 Introduction

Problem Setting and Motivation. The recent past has seen an explosive growth in stor-
age capacity. With hard-drives surpassing the terabyte mark, programmers can exploit
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a virtually unlimited amount of work-storage for their programs. Alas, not infrequently
this leads to space-inefficient programs that use too much storage and become too slow if
sufficiently large memory is not available. Thus, we believe that space-efficient algorithms
deserve more attention.

Not only do such algorithms provide a counter-balance to the wastefulness of some
contemporary software, but they become indispensable for built-in or embedded software
in highly functional hardware, such as digital cameras and scanners. Sensor networks pro-
vide an excellent example: with flash memory becoming cheaper, even a large number of
inexpensive sensors can be equipped with huge-volume flash drives. While the data mea-
sured by the sensor must be stored onboard for processing and needs to be written, it is
preferable to write to the flash drive as little as possible, since this is a slow and expensive
operation and reduces the flash drive’s lifetime. Hence, we would like to process the data
while performing only read operations on the flash drive and using only higher level memory
for writing (e.g., CPU registers). We measure an algorithm’s space efficiency by the number
of work storage cells it uses. Ultimate space efficiency is achieved by a constant-work-space
algorithm, i.e., an algorithm that uses only a constant number of variables in addition to
the input storage. Such algorithms are also said to run in “log-space”, since the amount of
work-space is O(log n) bits for input size n [1].

Our Results. In this paper we present constant-work-space algorithms for several funda-
mental geometric problems, including constructing a triangulation for a planar point set;
finding the trapezoidal decomposition of a polygonal region; computing the Delaunay trian-
gulation, Voronoi diagram and Euclidean MST of a planar point set; and finding a geodesic
shortest path in a simple polygon.

Traditional algorithms for finding these structures proceed by constructing a suitable
data structure (typically a doubly-connected edge list, DCEL, or a similar structure [6,25])
that allows to traverse and manipulate the features of the structure in question. These
operations usually consist of finding the clockwise next edge for a given edge incident to
one of its endpoints; finding the triangles or trapezoids incident to a given edge; finding
the twin edge for a given edge; etc. With the DCEL at hand, these operations can be
carried out in constant time. In our setting, however, we do not have the space for such
a structure at our disposal. Instead, we establish a scheme for executing these operations
without referring to any data structures. Usually, each operation needs a single scan over
the input data, resulting in linear time per operation, and quadratic time overall.

We begin with algorithms for computing a triangulation of a planar point set and for
finding the decomposition of a simple polygon into trapezoids. Both are classic problems in
computational geometry, and they can be solved traditionally in time O(n log n) [6,25] and
O(n) [11], respectively. We give algorithms that enumerate all features of the triangulation
and the trapezoidation in quadratic time. It is easy but a bit tedious to adapt our algorithms
for such a scheme as described above, and we omit these details.

Instead, we showcase the details of such an algorithm for the Delaunay triangulation
of a planar n-point set. Several traditional O(n log n)-time algorithms for constructing
Delaunay triangulations are known [6]. As described above, we provide efficient algorithms
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for supporting the operations of a DCEL on the fly. Each operation takes a single scan
over the point set and hence needs linear time. Thus, we can enumerate all the features of
the Delaunay triangulation in quadratic time and with constant work-space. Using these
operations, we can also solve related problems in constant work-space, such as finding the
largest empty disc of n points in O(n2) time and enumerating the edges of the planar
Euclidean Minimum Spanning tree of n points in O(n3) time. It is now also easy to support
similar operations for the Voronoi diagram of a planar point set. For example, we can follow
the boundary of a given Voronoi region and find the clockwise next edge incident to a given
Voronoi vertex in linear time. Hence, we can draw the Voronoi diagram for a planar point
set in quadratic time.

Finally, we address the problem of finding a shortest geodesic path between two
points in a simple polygon. We present an efficient algorithm using geometric properties
which runs in O(n2) time for a simple polygon with n vertices. This algorithm is much
simpler than our previous solution [4].

Our algorithms need more time than those in the standard computational model,
but when considering the product of the time and space requirements, we actually often
improve over the previous results: while existing algorithms for Delaunay triangulations and
Voronoi diagrams need O(n log n) time and linear space, resulting in a time-space product
of O(n2 log n), we obtain a time-space product of O(n2)×O(1) = O(n2).

Related Results. Constant-work-space algorithms have been studied in complexity theory
under a different name, “log-space” algorithms [1]. Notwithstanding, the authors prefer
the current name, since it is more intuitive. There have been several previous results on
log-space algorithms. One of the most important of these results is the selection algorithm
by Munro and Raman [24] which runs in O(n1+ε) time using work-space O(1/ε), for any
small constant ε > 0. In 2005, Reingold solved a long-standing open problem in complexity
theory by describing a deterministic log-space algorithm for finding a path between two given
vertices in an undirected graph [26]. Asano [2, 3] gives applications to image processing.
Furthermore, there is a large number of algorithms for traversing and enumerating the
vertices and facets of a given geometric structure (usually provided as a DCEL or a similar
structure) without using any mark bits or recursion stacks [5, 7–9,13,15–17,27].

A similar but more restricted computational model is used by Lenz [21] (see also [22,
Part II]). Chan and Chen [10] present algorithms that have read-only random access to the
input and are allowed only sublinear (but super-constant) space. They give a randomized
linear-time algorithm for finding the convex hull of n sorted points in the plane with O(nδ)
space, for any δ > 0. They also show how to perform linear programming in constant
dimension, using O(n) expected time and O(log n) cells of work space.

Throughout the paper, we assume that the input is in general position: no two
points have the same x- or y-coordinates; no three points are collinear; no four points are
cocircular; and all pairwise distances are distinct. For each of our algorithms, there should
be a straightforward yet tedious way to remove this assumption. However, we leave it as an
open problem to adapt generic methods for removing general position assumptions in the
constant-work-space model.
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Organization. This paper is organized as follows. After briefly describing our compu-
tational model in Section 2, we present a constant-work-space plane sweep algorithm for
finding a triangulation of a planar point set and for computing the trapezoidation of a pla-
nar polygon in Section 3. In Section 4, we describe a collection of operations to compute
the features by directly scanning the input. We present two example applications of such
operations, one for the Delaunay triangulation and one for the Voronoi diagram of a planar
point set. The operations are applied to computing the Euclidean Minimum Spanning tree.
In Section 5, we give a constant-work-space algorithm for finding a shortest geodesic path
between two points in a simple polygon. We conclude with some open problems.

2 Computational Model

In this section we describe our computational model. The input is stored in a read-only ar-
ray, where each cell contains a data word of O(log n) bits. Although the algorithm may not
permute the array elements or modify the content of an input cell, constant-time random
access to the data is possible. Furthermore, we assume that any basic arithmetic opera-
tion takes constant time. Additionally, a constant-work-space algorithm can use at most
some constant number of variables, each with O(log n) bits. Implicit storage consumption
required by recursive calls is also considered a part of the work-space.

As a simple example of a constant-work-space algorithm, consider the problem of
computing the convex hull of a planar point set. Here, an efficient such algorithm is already
known. It is the popular gift-wrapping method, also known as Jarvis’ march [12,19]. If h is
the number of points on the convex hull, then Jarvis’ march needs O(nh) time and constant
work-space to output all the edges of the convex hull.

3 Constant-Work-Space Plane Sweep

Plane sweep is one of the most widespread algorithmic techniques in computational geom-
etry. The idea is to reduce a two-dimensional problem to a sequence of one-dimensional
problems by imagining a line that moves across the plane and by maintaining the intersec-
tion of that line with the structure of interest. A number of geometric problems have been
solved using this paradigm [6, 12, 25]. Most of these solutions run in O(n log n) steps and
use a balanced search tree for maintaining the one-dimensional structure as it evolves over
time.

3.1 Triangulation of a Point Set

As a warm-up, we describe a constant-work-space algorithm that uses the plane sweep
paradigm in order to compute a triangulation of a planar n-point set S. A straightforward
cubic time algorithm adds edges incrementally: we start with a graph having n isolated
vertices (points). For every pair of points, if the line segment between the two points does
not properly intersect any existing edge (line segment), we add this edge to the graph. In
the constant-work-space setting, however, we cannot remember the existing edges, so this

JoCG 2(1), 46–68, 2011 49

http://jocg.org/


Journal of Computational Geometry jocg.org

simple approach will not work. Fortunately, plane sweep enables us to design a quadratic-
time algorithm with only constant work-space.

Algorithm 1: A constant-work-space algorithm for triangulating a planar point
set.

Input: A set S = {p1, . . . , pn} of n points.
Output: All the triangles in a triangulation of S.
Find the three leftmost points q1, q2, q3 in S.
Report the triangle 4(q1, q2, q3).
for i := 4 to n do

qi := the leftmost point in S to the right of qi−1.
u := qi−1.
repeat

e := the clockwise next hull edge (u, v) incident to u.
if e is visible from qi then

Report the triangle 4(qi, u, v) and set u := v.

until edge e is not visible from qi
u := qi−1.
repeat

e := the counterclockwise next hull edge (u, v) incident to u.
if e is visible from qi then

Report the triangle 4(qi, u, v) and set u := v.

until edge e is not visible from qi

The main idea is to sweep over the point set in non-decreasing order of x-coordinate,
applying the gift-wrapping algorithm for convex hulls in order to add the triangles for the
next point. Refer to Algorithm 1. The input consists of a list 〈p1, . . . , pn〉 of points in
the plane, given in no particular order. Our algorithm scans S in non-decreasing order
of x-coordinate. For each point qi in the sorted order, we compute a partial convex hull
for the points q1, . . . , qi−1 to the left of qi, using the gift-wrapping method. We start the
gift-wrapping from the point qi−1 just preceding qi in x-order, and we extend the convex
hull in both directions, upward and downward. Whenever we discover a new convex hull
edge e, we determine whether the edge is visible from qi or not, using the preceding convex
hull edge (see Figure 1). If e is visible from qi, we report the triangle spanned by qi and e
and proceed to the next hull edge. Otherwise, we stop the gift-wrapping in this direction.
Once the gift-wrapping is completed in both directions, we proceed to the next point in
x-order, qi+1.

Theorem 3.1. There exists an algorithm that outputs all triangles of a triangulation of S
in time O(n2) and using O(1) cells of work-space.

Proof. To prove correctness, we proceed by induction on the number of points n. If n = 3,
there is only one triangle to report. For n ≥ 4, let qn be the rightmost point in S. By
induction, Algorithm 1 correctly outputs a triangulation for S \ {qn}. This triangulation
lies inside the convex hull of S \ {qn}. By the time qn is considered, in the last iteration
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(a) (b)
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Figure 1: Triangulation of a point set via plane sweep: (a) the input and the i-th point qi
in the sorted order; (b) we compute the convex hull of the points to the left of qi and report
the triangles defined by qi and the hull edges visible from qi.

of the for-loop, the algorithm outputs all possible triangles that connect qn to the convex
hull of S \ {qn}, so none of these triangles can conflict with any of the previous triangles,
resulting in a correct triangulation of S.

Let us now analyze the running time. Clearly, finding the initial triangle4(q1, q2, q3)
takes O(n) steps. Next, we claim that if an iteration of the for-loop outputs k triangles,
then it takes O(kn) steps. First, finding qi given qi−1 takes linear time, by scanning the
whole input. Then each gift wrapping step takes O(n) time, and for each such step, except
the final ones, we output a triangle. Thus, since there are O(n) triangles in total, the
resulting running time is O(n2). Furthermore, inspecting the pseudocode, we see that the
algorithm uses only constant work-space.

In Section 4.1, we strengthen Theorem 3.1 by showing that the features of a Delaunay
triangulation can be enumerated in quadratic time and with constant work-space.

3.2 Trapezoidation of a Polygon

Now let P be a simple polygon with n vertices. The input is provided as a list of vertices,
given according to the counterclockwise order in which they appear along the boundary of
P , ∂P . The trapezoidal decomposition of P is obtained by drawing two vertical rays from
each vertex of P inside P , until they reach ∂P [6, Chapter 6]. This results in a collection
of disjoint trapezoids that cover the interior of P . We now show how plane sweep can be
used to compute these trapezoids in quadratic time with constant work-space. Refer to
Algorithm 2. We scan the n vertices from left to right. At each vertex qi, we check if there
is a trapezoid to the right of qi incident to qi. This happens precisely if at least one of
the two edges incident to qi has an endpoint to the right of qi. If the test is positive, we
first compute two polygon edges: eA just above qi and eB just below qi. This is done by
traversing all of P . Here, an edge e is above qi if it intersects the upward vertical ray from
qi, or, in case that e is incident to qi, if e has an endpoint to the right of qi and the interior
of the polygon lies below e. An edge e being below qi is defined analogously. Next, we
inspect all vertices of P to find the right side of the trapezoid: we start with the leftmost
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vertex among the two right endpoints of the edges eA and eB, and we update the right
vertex if we find a polygon vertex inside the current trapezoid. Figure 2 illustrates how the
algorithm proceeds.

eA

eB

qi

Figure 2: Computing the trapezoid to the right of the vertex qi: we first find the two
bounding edges eA and eB, and then we compute the right side by traversing the polygon.

Theorem 3.2. There exists an algorithm that outputs all trapezoids of a trapezoidal de-
composition of S in time O(n2) and using O(1) cells of work-space.

Proof. Correctness is immediate from the definition of a trapezoidal decomposition. For
the running time, we note that each iteration of the main for-loop can easily be performed
in linear time, since it involves two scans over all vertices of P . Again, the work-space
requirement is immediate from the pseudo-code.

Algorithm 2: A constant-work-space algorithm for the trapezoidal decomposi-
tion of a simple polygon.

Input: A simple polygon P = p1p2 . . . pn with n vertices.
Output: All the trapezoids in a trapezoidation of P .
for i := 1 to n do

if i = 1 then
qi := the leftmost vertex of P .

else
qi := the leftmost vertex in P to the right of qi−1.

if there is a trapezoid to the right of qi incident to qi then
eA, eB :=⊥.
for j := 1 to n do

if pjpj+1 lies above qi and (eA =⊥ or pjpj+1 lies below eA) then
eA := pjpj+1.

if pjpj+1 lies below qi and (eB =⊥ or pjpj+1 lies above eB) then
eB := pjpj+1.

r := leftmost of the right endpoints of eA and eB.
for j := 1 to n do

if pj lies in the trapezoid defined by qi, eA, eB, and r then r := pj .

Report the trapezoid defined by qi, eA, eB, and r.
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4 Constant Work-space Operations for Delaunay triangulations and Voronoi diagrams

In this section, we present constant-work-space operations for the Delaunay triangulation
and the Voronoi diagrams of a planar point set. We support the usual operations of the
DCEL data structure (see, for example, [6]), with constant work-space. In particular,
the operations are implemented by a single scan over the input data. As an application,
we present a constant-work-space algorithm for enumerating the edges of the Euclidean
minimum spanning tree of a planar point set.

4.1 Operations for Delaunay Triangulations

One of the most popular structures in computational geometry is the Delaunay triangu-
lation [6, 25]. For a planar n-point set S, the Delaunay triangulation of S, DT(S), is a
triangulation of S with the empty circle property : for any triangle t in DT(S), the cir-
cumcircle of t contains no points of S in its interior. It is well known that DT(S) always
exists and that it is uniquely defined if no four points in S lie on a common circle. If
Θ(n) work-space is available, there are several algorithms to compute DT(S) in O(n log n)
time [6, 25].

Let us now list some well-known facts about DT(S) that will be used [6, Chapter 9].
For two points pi, pj in S, we call the line segment pipj a Delaunay edge if DT(S) contains
pipj as an edge.

Observation 4.1. Two points pi, pj ∈ S define a Delaunay edge if and only if there is a
point pk ∈ S \ {pi, pj} such that the circle through pi, pj, pk does not contain any other
point of S in its interior.

Observation 4.2. Let pi ∈ S, and let pj ∈ S \ {pi} be the point closest to pi. Then pipj is
a Delaunay edge.

Observation 4.3. Every edge of the convex hull of S is a Delaunay edge.

We support the following operations on the Delaunay triangulation:

• FirstDelaunayEdgeIncidentTo(p): returns the first Delaunay edge incident to a point
p ∈ S;

• ClockwiseNextDelaunayEdge(pq): returns the clockwise next Delaunay edge incident
to p following the Delaunay edge pq;

• CounterclockwiseNextDelaunayEdge(pq): returns the counterclockwise next Delaunay
edge incident to p following the Delaunay edge pq;

• AssociatedDelaunayTriangle(pq) : returns the Delaunay triangle associated with a
Delaunay edge pq (i.e., the Delaunay triangle incident to pq in clockwise direction
around p); and

• NextDelaunayEdgeOnBoundary(pq): returns the next Delaunay edge on the same
facet (Delaunay triangle in this case) of pq.
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FirstDelaunayEdgeIncidentTo(p) is implemented by finding the point q ∈ S that is
closest to p. The edge pq is guaranteed to be a Delaunay edge by Observation 4.2.

ClockwiseNextDelaunayEdge(pq) is implemented as follows. We distinguish two
cases depending on whether there exists a point r ∈ S to the right of the directed line
from p to q. If this is the case, then for each such point r, the triple (p, q, r) constitutes a
clockwise turn. The point among them that maximizes the signed area 4(p, q, r) defines
the Delaunay triangle associated with the edge pq (note that the signed area is negative if
the three vertices are ordered in clockwise order). This is a folklore fact whose proof we
omit. Thus, we can find such a point by a single scan over S.

On the other hand, if S contains no point to the right of pq (an edge of the convex
hull of S in this case), we have to find the next convex hull edge incident to p. This is also
rather easy. We only need to find the point r of S that maximizes the angle ∠qpr. Then,
the next edge is pr. See Figure 3.

Given an edge pq, we execute the two algorithms above simultaneously while check-
ing whether there is a point to the right of the line pq. When the scan is over, we know
whether the edge is on the convex hull or not and hence which output we need to take.
Thus, a single scan suffices.

CounterclockwiseNextDelaunayEdge(pq) is just symmetric.

The fourth operation, AssociatedDelaunayTriangle(pq) is easy since it suffices to
execute ClockwiseNextDelaunayEdge(pq). Then, we return the triangle 4(p, q, r).

Finally, NextDelaunayEdgeOnBoundary(pq) is also implemented using ClockwiseNextDe-
launayEdge(pq). Once we have the Delaunay triangle 4(p, q, r), we return the edge qr.

Lemma 4.4. There are constant-work-space algorithms implementing the five operations
above in O(n) steps. The algorithms each perform only a single scan over the points in S.

p

p

q

q
r

r

(a) (b)

Figure 3: The two cases for clockwise next Delaunay edges. (a) pq is a hull edge; (b) pq is
an internal edge.

Now the algorithm for computing the Delaunay triangulation DT(S) of a point set
S is as follows:

By reporting triangles only if i < j, k, we avoid duplicate outputs. Figure 4 illus-
trates the basic operation in our algorithm. We have thus proved the following theorem:
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Algorithm 3: A constant-work-space algorithm for computing the Delaunay
triangulation of a planar point set.

Input: A set S of n points, {p1, . . . , pn}.
Output: All triangles in the Delaunay triangulation of S.
for each point pi ∈ S do

pipj = FirstDelaunayEdgeIncidentTo(pi).
// Find the point pj ∈ S that is nearest to pi.
j0 := j.
repeat

pipk := ClockwiseNextDelaunayEdge(pipj).
if i < j and i < k then Report the triangle 4(pi, pj , pk).
j := k.

until j = j0.

pi

pj

pi
pj

Figure 4: Going around an internal point pi starting from its closest point pj (left) and
around an extreme point (right). Delaunay and Voronoi edges are drawn as dotted and
solid lines, respectively.

Theorem 4.5. Let S be a planar n-point set. There is an algorithm that reports every
triangle in DT(S) exactly once in O(n2) time using constant work-space.

4.2 Operations for Voronoi Diagrams

Given a planar point set S, the Voronoi diagram of S is a partition of the plane into Voronoi
regions, such that each Voronoi region contains all the points in the plane that have the
same nearest neighbor in S. The Voronoi regions are convex polygonal regions, bounded by
Voronoi edges and Voronoi vertices. Since Delaunay triangulations and Voronoi diagrams
are dual to each other [6,25], it is rather easy to adapt the algorithms from Section 4.1 for
Voronoi diagrams.

Lemma 4.6. There are constant-work-space algorithms implementing the following four
operations in linear time:

• FirstVoronoiVertexAssociatedWith(p): returns the first Voronoi vertex on the bound-
ary of the Voronoi region associated with the point p ∈ S;
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• ClockwiseNextVoronoiEdge(e = (u, v), u = (p, q, r), v = (p, q, s)): returns the next
Voronoi edge incident to u, following e in the clockwise direction;

• CounterClockwiseNextVoronoiEdge(e = (u, v), u = (p, q, r), v = (p, q, s)): symmetric
to the above;

• NextVoronoiEdgeOnBoudary(e = (u, v), u = (p, q, r), v = (p, q, s)): returns the Voronoi
edge following e along the boundary of its Voronoi region.

If we represent a Voronoi vertex by the triple that defines the corresponding empty
circle and a Voronoi edge by a pair of triples for its two endpoints, it is easy to see that
the operations in Lemma 4.6 can be implemented immediately by using operations on the
Delaunay triangulation. As can be seen from Section 4.1, every operation needs just a single
scan over the input S.

4.3 Euclidean Minimum Spanning Trees

As an application of Algorithm 3, consider the problem of constructing the Euclidean min-
imum spanning tree (EMST) of a planar point set S. It is well-known that the EMST
is a subgraph of the Delaunay triangulation [6]. Furthermore, a Delaunay edge uv is not
contained in the EMST if and only if DT(S) contains a path between u and v consisting
of Delaunay edges of length less than d(u, v). This follows from the so-called bottleneck
shortest path property of minimum spanning trees, which says that the minimum spanning
tree of a graph G connects any two vertices u, v in G with a path that minimizes the maxi-
mum edge length for any path between u and v (since otherwise we could obtain a cheaper
spanning tree by exchanging an edge) [14].

Thus, consider the following situation: we are given an edge pq of DT(S) and we
want to determine whether pq appears in the Euclidean MST. By the above observation,
for this it suffices to determine whether p and q are connected in the subgraph G′ of DT(S)
that contains all Delaunay edges of length less than d(p, q). To solve this problem, we could
use Reingold’s constant-work-space algorithm for st-connectivity in undirected graphs [26].
However, this algorithm is quite involved and has a comparatively large running time, so
we present an alternative quadratic-time solution that exploits the planar structure of the
Delaunay triangulation. Our algorithm is based on the following observation: let G′ be the
subgraph defined above, and let f be the face of G′ containing pq. If p and q are connected
in G′, then there exists a path from p to q along the boundary of f . Thus, we can check
the existence of such a path by using the function ClockwiseNextDelaunayEdge(uv) from
Section 4.1 to follow f ’s boundary.

This is implemented in the function CheckMSTEdge. The function walks along the
boundary of f , using two edges (uA, vA) and (uB, vB). Initially, both edges are set to (p, q).
In a loop, we advance the edges along the boundary, using the function Advance. This
function calls ClockwiseNextDelaunayEdge to find the next edge that is shorter than pq,
and then follows this edge. The walk along the boundary of f continues until we reach the
vertex q, in which case pq cannot be an MST edge, or until we detect a cycle, meaning that p
and q are not connected in G′. The cycle is detected by using the standard technique called
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“baby-step, giant-step”: the edge (uB, vB) is advanced twice as fast as the edge (uA, vA). If
there is a cycle, (uB, vB) must overtake (uA, vA) after some time. If not, uB reaches q first.

Function CheckMSTEdge(p, q) for checking whether the Delaunay edge (p, q)
appears in the EMST.

Function CheckMSTEdge(p, q)
(uA, vA), (uB, vB) := (p, q).
repeat

(uB, vB) := Advance(uB, vB).
if uB = q then return FALSE.
if (uA, vA) = (uB, vB) then return TRUE. (uB, vB) := Advance(uB, vB).
if uB = q then return FALSE.
if (uA, vA) = (uB, vB) then return TRUE. (uA, vA) := Advance(uA, vA).

until FALSE
Function Advance(u, v)
u,w := ClockwiseNextDelaunayEdge(uv).
if d(u,w) < d(p, q) then

// Proceed to w.
return (w, u).

else
// Skip edge (u,w) and look for next clockwise edge.
return (u,w).

Lemma 4.7. The function CheckMSTEdge(p, q) determines whether the Delaunay edge pq
is an edge of the Euclidean minimum spanning tree for S in time O(n2) using constant
work-space.

Proof. There are two cases to consider. If there is a path in the subgraph of the Delaunay
triangulation defined by those edges shorter than pq which interconnects p and q, the path
forms a face together with the edge pq. The first edge incident to p on the boundary is
given by the clockwise next Delaunay edge of pq. Then, following the boundary we must
reach q, which is detected by the algorithm.

On the other hand, if there is no such path between p and q, then at some point
such a path does not extend, which causes a cycle of edges.

Furthermore, CheckMSTEdge(p, q) visits a subset of edges (u, v) of the Delaunay
triangulation, where each edge is visited constantly often. Each visit requires a call to
ClockwiseNextDelaunayEdge(uv), which takes O(n) time, by Lemma 4.4. Thus, the total
running time is O(n2). The space requirement is immediate.

With the function CheckMSTEdge at hand, we can output all edges of the Euclidean
MST for S through a straightforward adaptation of Algorithm 3.

Theorem 4.8. Given a set S of n points in the plane, there exists an algorithm that outputs
all edges of the Euclidean minimum spanning tree for S in O(n3) time using only constant
work-space.
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Algorithm 4: A constant-work-space algorithm for computing the Euclidean
minimum spanning tree of a planar point set.

Input: A set S of n points, {p1, . . . , pn}.
Output: All edges in the Euclidean MST of S.
for each point pi ∈ S do

Find a point pj ∈ S \ {pi} that is nearest to pi.
j0 := j.
repeat

if i < j and CheckMSTEdge(pi, pj) then Report pipj .
pk := ClockwiseNextDelaunayEdge(pipj).
j :=k.

until j = j0.

Proof. Correctness follows from Observation 4.2 and Lemmas 4.4 and 4.7. For the running
time, note that it takes total time O(n2) to find the nearest neighbor for every point in
S, and since there are O(n) edges in DT(S), the total time for all invocations of Clock-
wiseNextDelaunayEdge and CheckMSTEdge is O(n2 + n3) = O(n3), by Lemmas 4.4 and
4.7. The space requirement is immediate.

Figure 5 illustrates the steps of our algorithm The edge pq in the top of the figure is
not included in the EMST, since p and q are connected by a path of Delaunay edges shorter
than pq. Figure 5(c) shows how such a path is found by walking along the face boundary.
On the other hand, the bottom part of the figure shows the other case in which the walk
results in a cycle.

5 Computing a Shortest Path in a Simple Polygon

As a final problem, we consider the geodesic shortest path problem for simple polygons.
The general problem of finding a shortest path between two given vertices in a weighted
graph is a classic of algorithm design, and countless solutions exist, such as the well-known
algorithms by Dijkstra and Bellman-Ford [12]. In the constant-work-space model, however,
no algorithm for the general shortest path problem is known, and it is unlikely that such
an algorithm does exist, since the problem turns out to be NL-complete [18].1

However, in this section we will see that a special case of the shortest path problem
can be solved in quadratic time with constant work-space: the geodesic shortest path prob-
lem within a simple polygon. Here, we are given a simple polygon P with n vertices and
two points s and t in the interior of P , and we are looking for the shortest path from s to
t that lies within P . This problem can be solved in linear time with Θ(n) work-space [20].

1NL is the class of all decision problems that can be solved by a non-deterministic constant-work-space
algorithm. A problem in NL is NL-complete if all problems in NL can be reduced to it by a deterministic
constant-work-space reduction. It is widely conjectured that NL 6= L, and that NL-complete problems
cannot be solved by a deterministic constant-work-space algorithm [1].
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Figure 5: Checking whether a Delaunay edge belongs to the minimum spanning tree. (a) a
Delaunay triangulation and a minimum spanning tree (bold lines) with two specified points
p and q. (b) The Delaunay edges shorter than the edge pq. (c) We traverse the subgraph
until we find a path between p and q. (d) A different point pair (p, q). (e) The Delaunay
edges shorter than pq. (f) We traverse the subgraph until we find a loop.

We now describe our algorithm. We assume that P is given as a counterclockwise
sequence of vertices in a read-only array and that the two points s and t lie inside P . Due
to our general position assumption, no three vertices lie on a line. The shortest path from
s to t can be represented as a sequence 〈s = v0, v1, . . . , vm = t〉, where v1, . . ., vm−1 are
vertices of P , and the algorithm will output these vertices in order.

Throughout the algorithm, we maintain a polygon vertex p as our current starting
point, as well as two points q1 and q2 on the boundary of P , ∂P , such that the line segments
pq1 and pq2 lie inside P (possibly touching the boundary) and such that pq2 is counterclock-
wise from pq1. Note that pq1 and pq2 could be edges. This defines a region P ′ ⊆ P that
is cut off by pq1 and pq2, as shown in Figure 6. The algorithm proceeds by advancing the

s

t

P

q1

q2
P ′

p

Figure 6: A current starting point p and two supporting line segments pq1 and pq2. Together,
they define a subpolygon P ′ which contains the target t.
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triple (p, q1, q2) while maintaining the following invariant:

Invariant 5.1. (i) The geodesic shortest path from s to t passes through p.
(ii) t lies in the subpolygon P ′.

The triple (p, q1, q2) is advanced by a function MakeStep(p, q1, q2), such that in
(almost) every step the subpolygon P ′ becomes smaller.

MakeStep distinguishes three cases.

Case 1: q1 is a concave vertex of P ′, that is, p, q1, succ(q1) is a clockwise turn, where
succ(q) is the successive vertex of q on ∂P . Refer to Figure 7. In this case we extend the

s

t

P

q1

q2
P ′

p

q′

Figure 7: Case 1: the vertex q1 is concave.

ray pq1 until it hits ∂P ′ at q′. The segment q1q
′ splits P ′ into two parts. We check which

one contains t and update (p, q1, q2) accordingly. If the path needs to turn at p, we also
output p. Note that we can check in constant time which subpolygon contains t, assuming
we precomputed the index of the edge e just above the target t. Indeed, using this edge
index, we look up the coordinates of the endpoints of e in constant time. Then we determine
whether the vertical line segment from t to e intersects q1q

′. If yes, we immediately know
which subpolygon contains t. Otherwise, we can determine this polygon using vertex indices,
because t must be in the same subpolygon as e.

Case 2: q2 is a concave vertex of P ′, that is, p, q2,pred(q2) constitutes a counterclockwise
turn, where pred(q) is the predecessor of q on ∂P . This case is handled symmetrically to
Case 1.

Case 3: The polygon P ′ makes a convex turn at both q1 and q2. In particular, q1 and/or
q2 could lie in the interior of edges of P . Refer to Figure 8. Let succ(q1) and pred(q2) be the
neighboring vertices of q1 and q2 in P ′. At least one of the rays p succ(q1) and p pred(q2) lies
within the wedge defined by q1pq2; otherwise the edges q1 succ(q1) and q2 pred(q2) would
intersect. Suppose this is p succ(q1). We draw the ray from p toward the point succ(q1)
until it hits ∂P at some point q′ (q′ could be succ(q1)). As in the previous two cases, q1q

′

splits P ′ into two parts. We check which one contains t as before, and then update (p, q1, q2)
accordingly. If the ray ppred(q2) lies inside the wedge q1pq2, we proceed symmetrically.

Lemma 5.2. MakeStep maintains Invariant 5.1 and takes O(n) time and constant work-
space.
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Function MakeStep(p, q1, q2) for advancing the triple (p, q1, q2) while maintain-
ing Invariant 5.1.

Function MakeStep(p, q1, q2)
begin

if q1 is a concave vertex of P ′ then
Traverse P to find the point q′ where the ray pq1 first meets ∂P .
if t lies in the subpolygon from q′ to q1 then

Output p.
return (q1, succ(q1), q

′).
else

return (p, q′, q2).

else if q2 is a concave vertex of P ′ then
Traverse P to find the point q′ where the ray pq2 first meets ∂P .
if t lies in the subpolygon from q2 to q′ then

Output p.
return (q2, q

′,pred(q2)).
else

return (p, q1, q
′).

else
if the ray p succ(q1) lies in the wedge q1pq2 then

Traverse P to find the first intersection q′ of the ray p succ(q1) with
∂P .
if t lies in the subpolygon from q′ to q1 then

return (p, q1, q
′).

else
return (p, q′, q2).

else
Traverse P to find the first intersection q′ of the ray p pred(q2) with
∂P .
if t lies in the subpolygon from q2 to q′ then

return (p, q′, q2).
else

return (p, q1, q
′).

end
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p

q1

q′1

q′2

Figure 8: Case 3: both q1 and q2 are convex. Then, one of (q1, succ(q1)) and (q2, pred(q2))
lies between pq1 and pq2.

Proof. All the steps in MakeStep can be performed in time O(n) and constant work-space,
as can be seen by inspecting the pseudo-code. It is also clear from the case analysis that
Invariant 5.1 is maintained.

With the function MakeStep in place, it is now easy to implement the geodesic
shortest path algorithm (Algorithm 5). In order to initialize the tripe (p, q1, q2), Algorithm 5
needs to locate the point s within P . For this, we invoke Algorithm 2 to find the trapezoid
T0 that contains s, and initialize (p, q1, q2) accordingly. The vertex p is set to s, and q1, q2
are set depending on the structure of T0 and which of the at most four subpolygons defined
by T0 contains t; see Figure 9. We also use Algorithm 2 to identify the segment et on ∂P
right above t, which is later used to determine which subpolygon contains t. Now we just
need to invoke MakeStep repeatedly until we reach a polygon vertex that can see t directly.

s

t s

t s
t

q1

q2
q1 q1

q2

q2
(a) (b) (c)

T0
T0

T0

Figure 9: Three different situations for the initial 3-tuple (p, q1, q2) with p = s: the trapezoid
containing s can have (a) four, (b) three, or (c) a single neighbor.

Theorem 5.3. Let P be a simple polygon with n vertices, and let s and t be two points
within P . Then a geodesic shortest path from s to t within P can be found in O(n2) time
using only constant work-space.

Proof. By Theorem 3.2, the initialization phase takes O(n2) time and constant work-space.
Furthermore, the check at the end of the repeat-until loop can be performed in time O(n)
and constant work-space. Thus, by Lemma 5.2, Algorithm 5 needs constant work-space,
and the total running time is O(n2 + kn), where k is the number of calls to MakeStep. To
see that k = O(n), we observe that every other call to MakeStep decreases the size of P ′

by one. This can be seen by an inspection of the case analysis for MakeStep. Cases 1 and
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Algorithm 5: A constant-work-space algorithm for finding a geodesic shortest
path within a simple polygon.

Input: A simple polygon P = p1p2 . . . pn with n vertices; two points s and t
inside P .

Output: A sequence s = v0v1 . . . vm−1vm = t of the vertices of a shortest path
from s to t in the interior of P .

Invoke Algorithm 2 to enumerate a trapezoidal decomposition of P .
for each trapezoid T returned by Algorithm 2 do

if s ∈ T then
if t ∈ T then

Output s, t.
return

else
T0 := T .

if t ∈ T then
et := upper segment of T .

Determine which subpolygon defined by T0 contains t and initialize q1, q2
accordingly.
p := s.
repeat

(p, q1, q2) := MakeStep(p, q2, q2).
until the line segment pt does not intersect ∂P .
Output t.
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2 decrease the size of P ′ directly. The same also holds for the second subcase of Case 3.
Only in the first subcase of Case 3 (when t lies inside the subpolygon from q′ to q1, or in
the subpolygon from q2 to q′) might the size of P ′ not decrease. However, if this happens,
the second subcase of Case 3 must apply in the next iteration, and we will make progress.

The correctness of the algorithm is immediate from Lemma 5.2.

In order to perform some preliminary experiments with our shortest path algorithm,
we created a prototype implementation. The program consists of about 700 lines of C code,
including comments. We used LEDA [23] for drawing polygons and shortest paths to
visualize the algorithm, see Figure 10 for an example. Furthermore, we did experiments on
hand-crafted input polygons on a laptop with an Intel Core2 Duo CPU with 1.20GHz and
2.93 GB of RAM. We used three input polygons of different sizes, and we ran the algorithm
to find shortest paths between several pairs of points inside the polygons. The results are
summarized in Table 1. As can be seen, the running time depends quite significantly on the
choice of endpoints for the shortest path. Furthermore, our implementation incurs some
overhead for the visualization through LEDA. However, it can be discerned that in the
worst case the running time grows superlinearly in the size of the input.

file name test1 test2 test3

polygon size 41 194 427

9 / 0.000 13 / 0.047 13 / 0.031

12 / 0.016 16 / 0.015 30 / 0.031

16 / 0.016 22 / 0.052 44 / 0.062

20 / 0.015 34 / 0.016 45 / 0.047

25 / 0.016 37 / 0.031 52 / 0.079

46 / 0.031 61 / 0.078

47 / 0.047 71 / 0.125

54 / 0.047 88 / 0.141

57 / 0.047 92 / 0.141

Table 1: Experimental results. The largest polygon (test3) has 427 vertices. Entries in the
table are pairs of number of iterations to find the shortest path (= number of iterations of
the repeat. . .until-loop in Algorithm 5) and CPU time (seconds), for several choices of
endpoints s and t.

6 Concluding Remarks

We have presented constant-work-space algorithms for several geometric problems. A num-
ber of geometric problems are still open in the constant-work-space model:

(1) Given a set of n points in the plane, find the smallest enclosing circle. We can design an
O(n2)-time constant-work-space algorithm using the farthest-point Voronoi diagram.
Is there any subquadratic-time algorithm?
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Figure 10: Shortest path in a simple polygon. The bold lines show the shortest path, and
the diagonals represent the corresponding line segments pq1 and pq2.

JoCG 2(1), 46–68, 2011 65

http://jocg.org/


Journal of Computational Geometry jocg.org

(2) Given a simple polygon and a query point q in its interior, compute the visibility
polygon from q in subquadratic time.

(3) Given a set of points in the plane, find a largest empty circle with its center lying in
the convex hull of the point set in subquadratic time. We can compute it by using
our constant-work-space operations for Delaunay triangulations in quadratic time.

Another interesting direction is to investigate time-space trade-offs: how much work-
space is needed to find a shortest path in a simple polygon in linear time?

So far, there are no powerful techniques for proving lower bounds with constant
work-space. For the problem of approximating the median with (small) constant storage,
Lenz [21] and [22, Part II] gave lower bounds in a more restricted data access model. More
generally, an Ω(n log n) lower bound is known for the element uniqueness problem in a
standard computational model. Is there any higher lower bound? As far as the authors
know, no subquadratic-time algorithm for the element uniqueness is known in the constant-
work-space model.

Our algorithms extend to Delaunay triangulations in three dimensions, allowing to
report all Delaunay edges, triangles, or tetrahedra, as well as all Voronoi vertices, edges,
or faces, in polynomial time. The Euclidean minimum spanning tree can be constructed
in 3-space if we use the powerful technique of Reingold [26], but it looks hard to extend
Algorithm 4 to 3-space.
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