
Revised version, February 1991, appeared in Information Processing Letters 38 (1991), 123{127

COMPUTING THE MINIMUMHAUSDORFF DISTANCE BETWEEN

TWO POINT SETS ON A LINE UNDER TRANSLATION

G�unter Rote
Technische Universit�at Graz, Institut f�ur Mathematik, Steirergasse 30, A-8010 Graz, Austria.

E-mail: rote@ftug.dnet.tu-graz.ac.at

Given two sets of points on a line, we want to translate one of them so that their Hausdor�

distance (the maximum of the distances from a point in any of the sets to the nearest point

in the other set) is as small as possible. We present an optimal O(n logn) algorithm for this

problem.

Keywords: computational geometry, Hausdor� distance, pattern recognition, pattern match-

ing.

1 Introduction

The Hausdor� distance between two given sets of numbers A = fa1; a2; : : : ; ang and B =

fb1; b2; : : : ; bmg is de�ned as

d(A;B) = max
n
max
a2A

min
b2B

jb� aj; max
b2B

min
a2A

ja� bj
o
:

In other words, the Hausdor� distance between A and B is the smallest value d such that

every point of A has a point of B within distance d and every point of B has a point of A

within distance d. The Hausdor� distance can also be de�ned for point sets in two or more

dimensions, where ja� bj must be replaced by the Euclidean distance between a and b (or

any other appropriate distance function).

In applications like computer vision or pattern recognition, the set A might represent

an \image" taken by a camera and B might represent a \template" against which A should

be matched. Usually the relative position of the image A is not �xed with respect to the

coordinate system in which the template is given: we may translate A so that it becomes

aligned with B and matches B as well as possible.

In this paper, we solve the one-dimensional version of the problem for two point sets

on a line (see �gure 1, where the point sets are represented as the teeth of two combs).

Formally, we compute

min
t2IR

d(A+ t; B) = min
t2IR

max
n
max
a2A

min
b2B

jb� (a+ t)j; max
b2B

min
a2A

j(a+ t) � bj
o
:

Here the parameter t denotes the amount by which A is shifted. The algorithm takes

O((m+ n) log(m+ n)) time and is described in the next section. Previously, the problem

could only be solved in O(mn log(m + n)) time, see Huttenlocher and Kedem [5]. The

concluding section discusses implementation issues, a lower bound for the time complexity,

the limitations of our method, and some related problems.

1



A -� t

B

Figure 1: Two sets of points.

2 The algorithm

In a �rst step we (conceptually) transform the problem to a variation dealing with the

\non-symmetric" or \one-way" Hausdor� distance:

~d(A;B) = max
a2A

min
b2B

jb� aj:

This will make the algorithm more convenient to explain, because we can now treat the

sets A and B di�erently without confusion. To transform the original problem, we take

a reected copy ~A of A and add it to the right of B, su�ciently far apart (see �gure 2).

(Any distance three times larger than the diameter of A plus the diameter of B would

certainly be su�cient.) Similarly, we take a reected copy ~B of B and add it to A on the

right side, the same distance apart. The new sets are called B and A, respectively; their

cardinality is m+n. It is clear that the non-symmetric Hausdor� distance of the new sets

is the same as the Hausdor� distance of the two original sets, and this equality remains

true if we translate any of the sets. Figure 2 shows the Hausdor� distance of the new sets

and where it occurs.

A ~B

B ~A

A

B

-
~d(A;B)

Figure 2: Extending the original sets.

So we now want to minimize the function F (t) := ~d(A + t;B). This function can be

built up in the following way: For a single point x, f(x) = ~d(x;B) is a continuous piecewise

linear function of the variable x (see �gure 3), with edges of slope 1 and �1. Its minima are

at the points of B. We have to consider m+ n such functions f(a+ t), which are basically

the same, except that they are shifted in the horizontal direction by di�erent amounts a.

The function F (t) is just the upper envelope of these functions:

F (t) = max
a2A

f(a+ t) (1)

Like f(x), the function F (t) is piecewise linear, with edges of slope �1. Each edge of F (t)

originates from (at least) one of the functions f(a + t) in (1). It is straightforward to

construct F in O((m+n)2 log(m+n)) time by varying t from �1 to +1 and maintaining

the current order of the m + n values f(a+ t). (Since we are only interested in distances

from A to B and from ~B to ~A, not from A to ~A or from ~B to B, our original problem can

actually be solved in O(mn log(m+ n)) time, see Huttenlocher and Kedem [5]).

However, the following considerations show that we do not need so much e�ort to

construct the function F . We assume that the initial position of A and B (with parameter

2



- x

6f(x) =
~d(x;B)

B

@
@

@
@

�
��

@
@@

�� @@ �
�
�
�
��

@
@
@
@
@@

�
�
�
�

�� @@�
�
@
@

��@@

Figure 3: The function f(x) = ~d(x;B)

value t = 0) corresponds to the position where A and B are aligned at their endpoints, as

in �gure 2.

If we shift A by t, the left or right endpoint will contribute at least jtj to the Hausdor�

distance, and so we know that F (t) � jtj. From this lower bound we can conclude:

Lemma Each of the m+ n functions f(a+ t), for a 2 A, in equation (1) contributes at

most two edges to the function F (t).

Proof. Consider some function f(a+ t) that has a local maximum at some point t0 with

f(a + t0) > jt0j, (see �gure 4). From this maximum the function decreases to 0 towards

both sides before it can rise again. Since the slope is always �1, the only two edges that

appear above the lower bound F (t) � jtj are the two edges emanating from t0. In case

f(a + t) does not have such a local maximum only one edge can appear above the lower

bound F (t) � jtj. (In the exceptional case that f(a) = 0, two edges may form part of the

lower bound, and the lemma is also true.)

- t

6

0 t0

�
�
�
�
��

@
@
@
@
@@

�
��

@@��@
@

@
@
@
@
@

@
@

@@

�
�
�
�
�
�
�
��

F (t) � jtj
p

Figure 4: A lower bound for F (t) and one function f(a+ t).

The lemma implies that F (t) has at most 2(m+n) linear pieces. (A more exact analysis

shows that the true (tight) upper bound on the number of edges is 2(m + n) � 8, for all

m � 3 and n � 3.)

To �nd the two pieces of f(a + t) which possibly contribute to F (t) we compute the

function at t = 0, (i. e., we compute f(a)) and we follow the edge in the rising direction

to the next peak, which is the local maximum of the lemma, from which the two relevant

edges start. The other cases of the lemma are also handled easily. If the function f(x) is

given as a sorted list of the points in B and the functions f(a+ t) are processed in order of

increasing values a 2 A, the 2(m+ n) linear pieces can be found in O(m+ n) time. (The

process is essentially a merging of A and B.)

Now, F (t) is the (pointwise) maximum of these 2(m + n) linear pieces of slopes �1

(see �gure 5). F (t) can easily be computed (and minimized) in O((m + n) log(m + n))

time: We could for example add the functions f(a + t) one at a time and maintain the

3



upper envelope of the functions added so far in a balanced tree. Alternatively, we could

sort the \spikes" (where a spike consists of a rising edge, a local maximum, and a falling

edge) according to their left endpoints and add them from left to right (cf. Huttenlocher

and Kedem [5], algorithm 2). After the sorting, this can be carried out in linear time.

- x

0

6F (t)

@
@
@
@
@

@
@
@

�
�
�
�
�
�
�
�

@
@
@
@
@
@
@
@
@@�

�
�
�

�
��

�
�
�
�
��

@
@
@
@
@@

�
�
�
�
��

@
@
@
@
@@

@
@@

�
��

�
�
�
�
�
�
�

@
@
@
@
@
@
@

�
�
�
�
�
�
�@
@
@
@@

�
�
�
��

@
@
@
@@

@
@
@
@
@
@

@
@

@
@
@
@
@
@
@
@
@
@
@

@
@
@

Figure 5: The upper envelope F (t) of the relevant part of the functions f(a+ t), for a 2 A,

for the example of �gure 2.

Theorem The minimal Hausdor� distance between two point sets on a line under trans-

lation can be computed in O(n logn) time and O(n) space, where n is the total number of

given points.

Proof. As was discussed in the paragraph preceding the theorem, the two relevant edges

for each of the n functions f(a+ t) can be found in linear time if B and A are sorted, and

their upper envelope can be constructed in O(n logn) time. Scanning this upper envelope

to �nd its minimum takes again only linear time. It is clear that linear space is su�cient

for all steps.

3 Conclusion

Note that apart from two sorting steps, all steps of our algorithm can be carried out in

linear time. The two sorting steps that are involved are the sorting of the initial data

ai and bj and one sorting step for constructing F (t), where certain numbers of the form

bj � ai have to be sorted. This is of interest because in practice the time complexity of

sorting is usually a \fast" O(n logn) (with a low constant in the O-notation); therefore our

algorithm should be very fast, too.

The complexity of O(n logn) of our algorithm is optimal in the algebraic decision tree

model, even if the initial data ai and bj are given in sorted oder. This can be shown with the

technique of Ben-Or [1] (see [7, p. 30]). For a sketch of the proof we refer to �gure 5. If all

spikes of the functions f(a+ t) have the same height, minimizing their upper envelope F (t)

corresponds to �nding the maximum gap between adjacent spikes. For this so-called Max

Gap problem an 
(n logn) lower bound has been proved by Ramanan [8] and Lee and

4



Wu [6, appendix]. The left endpoints of the spikes are numbers of the form bj�ai. It is not

too di�cult to convince oneself that an arbitrary given instance of the Max Gap problem

can be transformed in linear time into two sorted sets of numbers A = fa1; a2; : : : ; ang and

B = fb1; b2; : : : ; bng for our problem so that the spikes of the function F are at the desired

positions.

The Max Gap problem can be solved in linear time if the oor function b�c can be

used (see [7, pp. 253{254]). However, since the spikes of the functions f(a + t) need not

have the same height, our problem is actually more general than the Max Gap problem.

For example, if we are given the spikes of F and want to decide whether there is a point

t with F (t) � d, for some threshold d, we have to determine whether a set of intervals is

disjoint. Thus we actually have a max gap problem for intervals. This makes it unlikely

that the lower bound for our problem can be overcome even if the oor function is used.

Although we have reduced our problem to the problem with the non-symmetric Haus-

dor� distance, our method cannot be applied if the problem is originally posed for two

arbitrary given sets with the non-symmetric Hausdor� distance. The reason is that a cru-

cial requirement for our method is that the diameter of A is at least as big as the diameter

of B, which implies the lower bound F (t) � jtj. Huttenlocher and Kedem [5] give an

example where the function F for the non-symmetric Hausdor� distance can have 
(mn)

breakpoints, all at the same height. Our method does therefore not provide a way to avoid

computing all of these breakpoints and to improve the O(mn log(m + n)) bound for this

general problem.

In one of the applications of Huttenlocher and Kedem [5], the sets A and B were

actually not points on a line, but points on the unit circle, and the allowed \translation"

was accordingly a rotation about the origin. In this case our algorithm also does not work,

for the same reason as above.

A related problem occurs in certain scheduling problems for urban transportation sys-

tems: When two periodic railway lines share the same track, the safety distance between

successive trains should be as large as possible. Finding the appropriate amount by which

the schedule of one line should be shifted is equivalent to maximizing the Hausdor� dis-

tance between two point sets on a circle under rotation. Brucker and Meyer [3] solve this

problem in O(mn log(m + n)) time. The problem can of course be generalized to more

than two train lines, and it has also some variations, for example, when several bus lines

meet at a terminal and the maximum (or average) waiting time for the passengers should

be minimized. These problems lead to various di�erent objective functions, some of which

are similar to the Hausdor� distance, see Brucker, Burkard, and Hurink [2] or Burkard [4].

5



References

[1] M. Ben-Or, Lower bounds for algebraic computation trees, in: Proc. 15th Annual ACM

Symp. on Theory of Computing, pp. 80{86, 1983.

[2] P. Brucker, R. E. Burkard, and J. Hurink, Cyclic schedules for r irregularly occurring

events, J. Computational and Applied Mathematics 30 (1990), 173{189.

[3] P. Brucker and W. Meyer, Scheduling two irregular polygons, Discrete Applied Math-

ematics 20 (1988), 91{100.

[4] R. E. Burkard, Optimal schedules for periodically recurring events. Discrete Applied

Mathematics 15 (1986), 167{180.

[5] D. P. Huttenlocher and K. Kedem, Computing the minimum Hausdor� distance for

point sets under translation, in: Proceedings of the Sixth Annual Symposium on Com-

putational Geometry, Berkeley, California, June 6{8, 1990. Association for Computing

Machinery, 1990; pp. 340{349.

[6] D. T. Lee and Y. F. Wu, Geometric complexity of some location problems, Algorithmica

1 (1986), 193{212.

[7] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,

Springer-Verlag, 1985.

[8] P. Ramanan, Obtaining lower bounds using arti�cial components, Information Process-

ing Letters 24 (1987), 243{246.

6


