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Chapter 7

Computational Topology: An
Introduction

Günter Rote, Gert Vegter1

7.1 Introduction

Topology studies point sets and their invariants under continuous deformations, invariants such
as the number of connected components, holes, tunnels, or cavities. Metric properties such as the
position of a point, the distance between points, or the curvature of a surface, are irrelevant to
topology. Computational topology deals with the complexity of topological problems, and with
the design of efficient algorithms for their solution, in case these problems are tractable. These
algorithms can deal only with spaces and maps that have a finite representation. To this end we
restrict ourselves to simplicial complexes and maps. In particular we study algebraic invariants
of topological spaces like Euler characteristics and Betti numbers, which are in general easier to
compute than topological invariants.

Many computational problems in topology are algorithmically undecidable. The mathematical
literature of the 20th century contains many (beautiful) topological algorithms, usually reducing
to decision procedures, in many cases with exponential-time complexity. The quest for efficient
algorithms for topological problems has started rather recently. The overviews by Dey, Edelsbrun-
ner and Guha [6], Edelsbrunner [7], Vegter [21], and the book by Zomorodian [22] provide further
background on this fascinating area.

This chapter provides a tutorial introduction to computational aspects of algebraic topology. It
introduces the language of combinatorial topology, relevant for a rigorous mathematical description
of geometric objects like meshes, arrangements and subdivisions appearing in other chapters of
this book, and in the computational geometry literature in general.

Computational methods are emphasized, so the main topological objects are simplicial com-
plexes, combinatorial surfaces and submanifolds of some Euclidean space. These objects are intro-
duced in Sect. 7.2. Here we also introduce the notions of homotopy and isotopy, which also feature
in other parts of this book, like Chapter 5. Most of the computational techniques are introduced
in Sect. 7.3. Topological invariants, like Betti numbers and Euler characteristic, are introduced
and methods for computing such invariants are presented. Morse theory plays an important role
in many recent advances in computational geometry and topology. See, e.g., Sect. 5.5.2. This
theory is introduced in Sect. 7.4.

Given our focus on computational aspects, topological invariants like Betti numbers are defined
using simplicial homology, even though a more advanced study of deeper mathematical aspects
of algebraic topology could better be based on singular homology, introduced in most modern
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2 CHAPTER 7. COMPUTATIONAL TOPOLOGY: AN INTRODUCTION

textbooks on algebraic topology. Other topological invariants, like homotopy groups, are harder
to compute in general; These are not discussed in this chapter.

The chapter is far from a complete overview of computational algebraic topology, and it does
not discuss recent advances in this field. However, reading this chapter paves the way for studying
recent books and papers on computational topology. Topological algorithms are currently being
used in applied fields, like image processing and scattered data interpolation. Most of these
applications use some of the tools presented in this chapter.

7.2 Simplicial complexes

Topological spaces. In this chapter a topological space X (or space, for short) is a subset of some
Euclidean space Rd, endowed with the induced topology of Rd. In particular, an ε-neighborhood
(ε > 0) of a point x in X is the set of all points in X within Euclidean distance ε from x. A subset
O of X is open if every point of O contains an ε-neighborhood contained in O, for some ε > 0.
A subset of X is closed if its complement in X is open. The interior of a set X is the set of all
points having an ε-neighborhood contained in X, for some ε > 0. The closure of a subset X of Rd
is the set of points x in Rd every ε-neigborhood of which has non-empty intersection with X. The
boundary of a subset X is the set of points in the closure of X that are not interior points of X.
In particular, every ε-neighborhood of a point in the boundary of X has non-empty intersection
with both X and the complement of X. See [1, Sect. 2.1] for a more complete introduction of the
basic concepts and properties of point set topology.

The space Rd is called the ambient space of X. Examples of topological spaces are:

1. The interval [0, 1] in R;

2. The open unit d-ball: Bd = {(x1, . . . , xd) ∈ Rd | x21 + · · ·+ x2d < 1};

3. The closed unit d-ball: Bd = {(x1, . . . , xd) ∈ Rd | x21 + · · ·+ x2d ≤ 1} (the closure of Bd);

4. The unit d-sphere Sd = {(x1, . . . , xd+1) ∈ Rd+1 | x21 + · · ·+ x2d+1 = 1} (the boundary of the
(d+1)-ball);

5. A d-simplex, i.e., the convex hull of d+1 affinely independent points in some Euclidean space
(obviously, the dimension of the Euclidean space cannot be smaller than d). The number
d is called the dimension of the simplex. Fig. 7.1 shows simplices of dimensions up to and
including three.

Figure 7.1: Simplices of dimension zero, one, two and three.

Homeomorphisms. A homeomorphism is a 1–1 map h : X → Y from a space X to a space Y
with a continuous inverse. (In this chapter a map is always continuous by definition.) In this case
we say that X is homeomorphic to Y , or, simply, that X and Y are homeomorphic.

1. The unit d-sphere is homeomorphic to the subset Σ of Rm defined by Σ = {(x1, . . . , xd+1,
0, . . . , 0) ∈ Rm | x21 + · · · + x2d+1 = 1} (m > d). Indeed, the map h : Sd → Σ, defined
by h(x1, . . . , xd+1) = (x1, . . . , xd+1, 0, . . . , 0), is a homeomorphism. Loosely speaking, the
ambient space does not matter from a topological point of view.
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2. The map h : Rk → Rm, m > k, defined by

h(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0),

is not a homeomorphism.

3. Any invertible affine map between two Euclidean spaces (of necessarily equal dimension) is
a homeomorphism.

4. Any two d-simplices are homeomorphic. (If the simplices lie in the same ambient space of
dimension d − 1, there is a unique invertible affine map sending the vertices of the first
simplex to the vertices of the second simplex. For other, possibly unequal dimensions of
the ambient space one can construct an invertible affine map between the affine hulls of the
simplices.)

5. The boundary of a d-simplex is homeomorphic to the unit d-sphere. (Consider a d-simplex in
Rd+1. The projection of its boundary from a fixed point in its interior onto its circumscribed
d-sphere is a homeomorphism. See Fig. 7.2. The circumscribed d-sphere is homeomorphic
to the unit d-sphere.)

2

1

Figure 7.2: The point p on the boundary of a 3-simplex is mapped onto the point p′ on the
2-sphere. This mapping defines a homeomorphism between the 2-simplex and the 2-sphere.

Simplices. Consider a k-simplex σ, which is the convex hull of a set A of k + 1 independent
points a0, . . . , ak in some Euclidean space Rd (so d ≥ k). A is said to span the simplex σ. A
simplex spanned by a subset A′ of A is called a face of σ. If τ is a face of σ we write τ � σ. The
face is proper if ∅ 6= A′ 6= A. The dimension of the face is |A′| − 1. A 0-dimensional face is called
a vertex, a 1-dimensional face is called an edge. An orientation of σ is induced by an ordering of
its vertices, denoted by 〈a0 · · · ak〉, as follows: For any permutation π of 0, . . . , k, the orientation
〈aπ(0) · · · aπ(k)〉 is equal to (−1)sign(π)〈a0 · · · ak〉, where sign(π) is the number of transpositions
of π (so each simplex has two distinct orientations). A simplex together with a specific choice
of orientation is called an oriented simplex. If τ is a (k−1)-dimensional face of σ, obtained by
omitting the vertex ai, then the induced orientation on τ is (−1)i〈a0 · · · âi · · · ak〉, where the hat
indicates omission of ai.

Simplicial complexes. A simplicial complex K is a finite set of simplices in some Euclidean
space Rm, such that (i) if σ is a simplex of K and τ is a face of σ, then τ is a simplex of K, and
(ii) if σ and τ are simplices of K, then σ ∩ τ is either empty or a common face of σ and τ . The
dimension of K is the maximum of the dimensions of its simplices. The underlying space of K,
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denoted by |K|, is the union of all simplices of K, endowed with the subspace topology of Rm.
The i-skeleton of K, denoted by Ki, is the union of all simplices of K of dimension at most i. A
subcomplex L of K is a subset of K that is a simplicial complex. A triangulation of a topological
space X is a pair (K,h), where K is a simplicial complex and h is a homeomorphism from the
underlying space |K| to X. The Euler characteristic of a simplicial d-complex K, denoted by

χ(K), is the number
∑d
i=0(−1)iαi, where αi is the number of i-simplices of K. Examples of

simplicial complexes are:

1. A graph is a 1-dimensional simplicial complex (think of a graph as being embedded in R3).
The complete graph with n vertices is the 1-skeleton of an (n−1)-simplex.

2. The Delaunay triangulation of a set of points in general position in Rd is a simplicial complex.

Combinatorial surfaces. A Combinatorial closed surface is a finite two-dimensional simplicial
complex in which each edge (1-simplex) is incident with two triangles (2-simplices), and the set
of triangles incident to a vertex can be cyclically ordered t0, t1, . . . , tk−1 so that ti has exactly one
edge in common with ti+1mod k, and these are the only common edges. Stillwell [20, page 69 ff]
contains historical background and the basic theorem on the classification combinatorial surfaces.

Homotopy and Isotopy: Continuous Deformations. Homotopy is a fundamental topo-
logical concept that describes equivalence between curves, surfaces, or more general topological
subspaces within a given topological space, up to “continuous deformations”.

Technically, homotopy is defined between two maps g, h : X → Y from a space X into a
space Y . The maps g and h are homotopic if there is a continuous map

f : X × [0, 1]→ Y

such that f(x, 0) = g(x) and f(x, 1) = h(x) for all x ∈ X. The map f is then called a homotopy
between g and h. It is easy to see that homotopy is an equivalence relation, since a homotopy can
be “inverted” and two homotopies can be “concatenated”.

When g and h are two curves in Y = Rn defined over the same interval X = [a, b], the homotopy
f defines, for each “time” t, 0 ≤ t ≤ 1, a curve f(·, t) : [a, b] → Rn that interpolates smoothly
between f(·, 0) = g and f(·, 1) = h.2

To define homotopy for two surfaces or more general spaces S and T , we start with the identity
map on S and deform it into a homeomorphism from S to T . Two topological subspaces S, T ⊆ X
are called homotopic if there is a continuous mapping

γ : S × [0, 1]→ X

such that γ(·, 0) is the identity map on S and γ(·, 1) is a homeomorphism from S to T .
By the requirement that we have a homeomorphism at time t = 1, one can see that this

definition is symmetric in S and T . Note that we do not require γ(·, t) to be a homeomorphism
at all times t. Thus, a clockwise cycle and a counterclockwise cycle in the plane are homotopic.
In fact, all closed curves in the plane are homotopic: every cycle can be contracted into a point
(which is a special case of a closed curve). A connected topological space with this property is
called simply connected.

Examples of spaces which are not simply connected are a plane with a point removed, or a
(solid or hollow) torus. For example, on the hollow torus in Fig. 7.3, the closed curve in the figure
is not homotopic to its inverse.

If we require that γ(·, t) is a homeomorphism at all times during the deformation we arrive the
stronger concept of isotopy. For example, the smooth closed curves without self-intersections in the
plane fall into two isotopy classes, according to their orientation (clockwise or counterclockwise).
Isotopy is usually what is meant when speaking about a “topologically correct” approximation of

2In the case of curves with the same endpoints g(a) = h(a) and g(b) = h(b), one usually requires also that these
endpoints remain fixed during the deformation: f(a, t) = g(a) and f(b, t) = g(b) for all t.
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a given surface, as discussed in Sect. 5.1, where the stronger concept of ambient isotopy is also
defined (Definition 1, p. 183).

A map f : X → Y is a homotopy equivalence if there is a map g : Y → X such that the composed
maps gf and fg are homotopy equivalent to the identity map (on X and Y , respectively). The
map g is a homotopy inverse of f . The spaces X and Y are called homotopy equivalent. A space
is contractible if it is homotopy equivalent to a point.

1. The unit ball in a Euclidean space is contractible. Let f : {0} → Bd be the inclusion map.
The constant map g : Bd → {0} is a homotopy inverse of f . To see this, observe that the
map fg is the identity, and gf is homotopic to the identity map on Bd, the homotopy being
the map F : Bd × [0, 1]→ Bd defined by F (x, t) = tx.

2. The solid torus is homotopy equivalent to the circle. More generally, the cartesian product
of a topological space X and a contractible space is homotopy equivalent to X.

3. A punctured d-dimensional Euclidean space Rd \ {0} is homotopy equivalent to a (d − 1)-
sphere.

Note that homotopy equivalent spaces need not be homeomorphic. However, such spaces share
important topological properties, like having the same Betti numbers (to be introduced in the next
section). Section 6.2.3 (p. 250) describes how this concept is applied in surface reconstruction.

7.3 Simplicial homology

A calculus of closed loops. Intuitively, it is clear that the sphere and the torus have different
shapes in the sense that these surfaces are not homeomorphic. A formal proof of this observation
could be based on the Jordan curve theorem: take a simple closed curve on the torus that does
not disconnect the torus. Such curves, the complement of which is connected, do exist, as can be
seen from Fig. 7.3. If there exists a homeomorphism from the torus to the sphere, the image of the
curve on the torus would be a simple closed curve on the sphere. By the Jordan curve theorem,
the complement of this curve is disconnected. Since connectedness is preserved by homeomor-
phisms, the complements of the curves on the torus and the sphere are not homeomorphic. This
contradiction proves that the torus and the sphere are not homeomorphic.

Figure 7.3: Every simple closed curve on the sphere disconnects. Not every closed curve on the
torus disconnects.

This proof seems rather ad hoc: it only proves that the sphere is not homeomorphic to a
closed surface with holes, but it cannot be used to show that a surface with more than one hole
is not homeomorphic to the torus. Homology theory provides a systematic way to generalize the
argument above to more general spaces.

In this chapter we present basic concepts and properties of simplicial homology theory, closely
related to simplicial complexes and suitable for computational purposes. An alternative, more
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abstract approach is followed in the context of singular homology theory. This theory is more
powerful when proving general results like topological invariance of homology spaces. Since we
focus on basic computational techniques we will not discuss this theory here, but refer the reader
to standard textbooks on algebraic topology, like [11]. The equivalence of Simplicial and Singular
Homology is proven in [11, Sect. 2.1].

Chain spaces and simplicial homology. Let K be a finite simplicial complex. In this chapter,
an simplicial k-chain is a formal sum of the form

∑
j ajσj over the oriented k-simplices σj in K,

with coefficients aj in the field Q of rational numbers. In other words, it can be regarded as
a rational vector whose entries are indexed by the oriented k-simplices of K. Furthermore, by
definition, −σ = (−1)σ is the simplex obtained from σ by reversing its orientation. With the
obvious definition for addition and multiplication by scalars (i.e., rational numbers), the set of all
simplicial k-chains forms a vector space Ck(K,Q), called the vector space of simplicial k-chains of
K. The dimension of this vector space is equal to the number of k-simplices of K. Therefore, the
Euler characteristic of a d-dimensional simplicial complex K can be expressed as an alternating
sum of dimensions of the spaces of k-chains:

χ(K) =

d∑
i=0

(−1)i dimCk(K,Q). (7.1)

The boundary operator ∂k : Ck(K,Q)→ Ck−1(K,Q) is defined as follows. For a single k-simplex
σ = 〈vi0 · · · vik〉, k > 0, let

∂kσ =

k∑
h=0

(−1)h〈vi0 · · · v̂ih · · · vik〉,

and then let ∂k be extended linearly, viz., ∂k(
∑
j ajσj) =

∑
j aj∂kσj . For consistency we define

C−1(K,Q) = 0, and we let ∂0 : C0(K,Q)→ C−1(K,Q) be the zero-map. The boundary operator
is a linear map between vector spaces. It is easy to check that it verifies the relation ∂k∂k+1 = 0.

Example: One-homologous chains. In the simplicial complex of Fig. 7.4 we consider the
2-chain γ = 〈v1v4v2〉 + 〈v2v4v5〉 + 〈v2v5v3〉 + 〈v3v5v6〉 + 〈v1v3v6〉 + 〈v1v6v4〉. Then ∂2γ = α − β,
where α = 〈v4v5〉+ 〈v5v6〉 − 〈v4v6〉 and β = 〈v1v2〉+ 〈v2v3〉 − 〈v1v3〉. Since ∂1α = 0 and ∂1β = 0,
it follows that ∂1∂2γ = 0.

6

5

21

4

3

Figure 7.4: One- and two-chains in an annulus.

The vector space Zk(K,Q) = ker ∂k is called the vector space of simplicial k-cycles. The
vector space Bk(K,Q) = im ∂k+1 is called vector space of simplicial k-boundaries. Since the
boundary of a boundary is 0, Bk(K,Q) is a subspace of Zk(K,Q). The quotient vector space
Hk(K,Q) = Zk(K,Q)/Bk(K,Q) is the k-th homology vector space of K. In particular, two k-
cycles α and β are k-homologous if their difference is a k-boundary, i.e., if there is a k + 1-chain
γ such that α − β = ∂k+1γ. The homology class of α ∈ Zk(K,Q) is denoted by [α]. The k-th
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Betti number of the simplicial complex K, denoted by βk(K,Q), is the dimension of Hk(K,Q).
In particular:

βk(K,Q) = dimZk(K,Q)− dimBk(K,Q). (7.2)

Remark. In this chapter, the coefficients of simplicial chains are rational numbers. One usually
takes these coefficients in a ring, like the set of integers. In that case one obtains homology groups
in stead of homology vector spaces. Then, the Betti numbers are the ranks of these groups.

Example: Zero-homology of a connected simplicial complex. Consider the connected
simplicial complex K of Fig. 7.5. The 0-chains α = 〈v6〉 and β = 〈v2〉 are 0-homologous since
their difference is the boundary of the 1-chain γ = −〈v1v2〉+ 〈v1v4〉+ 〈v4v6〉, since ∂1γ = −(〈v2〉−
〈v1〉) + (〈v4〉 − 〈v1〉) + (〈v6〉 − 〈v4〉) = α− β. In the same way one shows that every 0-chain of the

1

2

3

4

5

6

Figure 7.5: Zero-homology of a graph.

form 〈vi〉, 1 ≤ i ≤ 6, is homologous to α. This implies that every 0-chain of K is of the form c〈α〉,
for some c ∈ Q. Hence: H0(K,Q) = Q. It is not hard to generalize this property to all connected
simplicial complexes: if K is a finite connected simplicial complex, then H0(K,Q) = Q.

Example: One-homologous chains. The boundary chains of the annulus in Fig. 7.4 are one-
homologous. Indeed, the difference of the boundary chains α = 〈v4v5〉 + 〈v5v6〉 − 〈v4v6〉 and
β = 〈v1v2〉+ 〈v2v3〉 − 〈v1v3〉 is the boundary of the 2-chain γ = 〈v1v4v2〉+ 〈v2v4v5〉+ 〈v2v5v3〉+
〈v3v5v6〉+ 〈v1v3v6〉+ 〈v1v6v4〉.

Betti numbers. We present a few examples, demonstrating the computation of Betti numbers
directly from the definition.

1. Connected simplicial complex. If K is a connected simplicial complex, then β0(K,Q) = 1. In
fact, we already did the example on 0-homologous chains of a connected simplicial complex K,
proving that H0(K,Q) = Q.

2. Betti numbers of a tree. The tree of Fig. 7.6 is a simplicial complex K with edges oriented
according to the direction of the arrows, i.e., e1 = 〈v1v2〉 and so on. Since it is connected, we have
β0(K,Q) = 1. Furthermore, the matrix of the boundary operator ∂1 : C1(K,Q)→ C0(K,Q) with
respect to the basis e1, e2, e3, e4, e5 of C1(K,Q) and 〈v0〉, 〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉, 〈v5〉 of C0(K,Q) is

∂1 e1 e2 e3 e4 e5
〈v0〉 1 0 0 0 0
〈v1〉 −1 1 1 0 0
〈v2〉 0 −1 0 0 0
〈v3〉 0 0 −1 1 1
〈v4〉 0 0 0 −1 0
〈v5〉 0 0 0 0 −1
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0
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3
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e1

e2

e3
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e5

Figure 7.6: A tree.

(E.g., ∂1(e1) = 〈v0〉 − 〈v1〉 = 1 · 〈v0〉 + (−1) · 〈v1〉 + 0 · 〈v2〉 + 0 · 〈v3〉 + 0 · 〈v4〉 + 0 · 〈v5〉.) Since
the columns of this matrix are independent (why?), the image of ∂1 has dimension 5. Therefore,
β1(K,Q) = dim ker ∂1 = dimC1(K,Q)− dim im ∂1 = 0.

3. Betti numbers of the 2-sphere. The simplicial complex K of Fig. 7.7 is the boundary of a
3-simplex, consisting of four 2-simplices, six 1-simplices and four 0-simplices. For convenience it
is shown flattened on the plane, after cutting the edges incident to 0-simplex v4. The underlying
space |K| is homeomorphic to the 2-sphere. Vertices with the same label have to be identified,
like edges between vertices with the same label. The matrix of the boundary operator ∂1 with

1 2

3

4

44

Figure 7.7: A 2-sphere.

respect to the canonical bases of C1(K,Q) and C0(K,Q) is

∂1 〈v1v2〉 〈v1v3〉 〈v1v4〉 〈v2v3〉 〈v2v4〉 〈v3v4〉
〈v1〉 −1 −1 −1 0 0 0
〈v2〉 1 0 0 −1 −1 0
〈v3〉 0 1 0 1 0 −1
〈v4〉 0 0 1 0 1 1

It follows that dimC0(K,Q) = 4, dim im ∂1 = 3, and dim ker ∂1 = 3. The matrix of the boundary
operator ∂2 with respect to the canonical bases of C2(K,Q) and C1(K,Q) is
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∂2 〈v1v2v3〉 〈v1v3v4〉 〈v1v4v2〉 〈v2v4v3〉
〈v1v2〉 1 0 −1 0
〈v1v3〉 −1 1 0 0
〈v1v4〉 0 −1 1 0
〈v2v3〉 1 0 0 −1
〈v2v4〉 0 0 −1 1
〈v3v4〉 0 1 0 −1

Therefore, dim im ∂2 = 3 and dim ker ∂2 = 1. Combining the previous results, we conclude that
β0(K,Q) = 1, β1(K,Q) = 0 and β2(K,Q) = 1.

4. Betti numbers of the torus. Consider the simplicial complex of Fig. 7.8, which is a triangulation
of the torus. It has 7 vertices, 21 oriented edges, and 14 oriented faces. The matrix of ∂2 with

1 4 5
1

1 4 5
1

2 2

3 3

6 7

Figure 7.8: A triangulation of the torus.

respect to the canonical bases of C1(K,Q) and C2(K,Q) is

∂2 142 245 253 356 165 126 276 237 173 157 475 467 134 364

12 1 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 −1 0 0 0 1 0
14 1 0 0 0 0 0 0 0 0 0 0 0 −1 0
15 0 0 0 0 −1 0 0 0 0 1 0 0 0 0
16 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
23 0 0 −1 0 0 0 0 1 0 0 0 0 0 0
24 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
25 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
27 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
35 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
36 0 0 0 −1 0 0 0 0 0 0 0 0 0 1
37 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
45 0 1 0 0 0 0 0 0 0 0 −1 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
47 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
56 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
67 0 0 0 0 0 0 −1 0 0 0 0 1 0 0
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The matrix of ∂1 with respect to the canonical bases of C0(K,Q) and C1(K,Q) is obtained similarly
(preferably using a computer algebra system). Computing the dimensions of the kernel and image
of these operators we finally get

β0(K,Q) = 1, β1(K,Q) = 2, β2(K,Q) = 1

Euler characteristic and Betti numbers. One of the fundamental results of simplicial ho-
mology theory states that Betti numbers of the underlying space of finite simplicial complex does
not depend on the triangulation.

Theorem 1. Betti numbers are homotopy invariants: if K and L are simplicial complexes
with homotopy equivalent underlying spaces, then the i-th homology vector spaces of K and L are
isomorphic. In particular,

βi(K,Q) = βi(L,Q), for all i.

The proof of this theorem is beyond the scope of these introductory notes. One usually intro-
duces the more general singular homology groups for a topological space X, which are independent
of any triangulation. Then one proves that these groups are isomorphic to the simplicial homology
groups, obtained by taking simplicial chains with integer coefficients in stead of rational coeffi-
cients. In particular, the corresponding Betti numbers, being the ranks of these groups, are equal.

Theorem 2. Let K be a d-dimensional simplicial complex. Then

χ(K) =

d∑
i=0

(−1)iβi(K,Q).

Proof. Recall from (7.1) that χ(K) =
∑d
i=0 (−1)i dimCk(K,Q). Since

Hi(K,Q) =
ker ∂i

/
im ∂i+1

.

we see that

βi(K,Q) = dimHi(K,Q)

= dim ker ∂i − dim im ∂i+1

= dimCi(K,Q)− dim im ∂i − dim im ∂i+1.

Now:
d∑
i=0

(−1)i (dim im ∂i + dim im ∂i+1) = 0.

Hence:
d∑
i=0

(−1)iβi(K,Q) = χ(K,Q).

The claimed identities follow from the preceding derivation.

If X is a topological space with a simplicial complex K triangulating it, then we define χ(X) =
χ(K,Q). It follows from Theorem 1 and Theorem 2 that the Euler characteristic does not depend
on the specific choice of the triangulation K.

Incremental algorithm for computation of Betti numbers. As can be seen in the case
of a simple space like the torus, the matrices of the boundary map become rather large, even for
simple examples. Therefore alternative approaches have been developed for special cases. We start
with an incremental approach, in which the simplical complex is constructed by adding simplices
one at a time, making sure that during the process all partial constructs are indeed simplicial
complexes. The key idea is to maintain the Betti numbers of the partial complexes. The following
result indicates how to do this.
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Proposition 1. Let K be a simplicial complex, and let K ′ be a simplicial complex such that
K ′ = K ∪σ for some k-simplex σ. Let ∂i and ∂′i be the boundary operators of the chain complexes
associated with K and K ′, respectively. Furthermore, let γ = ∂′kσ. If γ also bounds in K, i.e.,
∂′kσ ∈ im ∂k, then

βi(K
′,Q) =

{
βi(K,Q) if i 6= k

βk(K,Q) + 1 if i = k

If γ does not bound in K, i.e., ∂′kσ 6∈ im ∂k, then

βi(K
′,Q) =

{
βi(K,Q) if i 6= k − 1

βk−1(K,Q)− 1 if i = k − 1

Proof.

· · ·
∂′k+1−−−−→ Ck(K ′,Q)

∂′k−−−−→ Ck−1(K ′,Q)
∂′k−1−−−−→ · · ·∥∥∥ ∥∥∥

Ck(K,Q)⊕Q[σ] Ck−1(K,Q)

Case 1: ∂′kσ ∈ im ∂k. Then im ∂′i = im ∂i, for all i, so dim im ∂′i = dim im ∂i, for all i. Therefore:

dim ker ∂′k = dimCk(K ′,Q)− dim im ∂′k

= 1 + dimCk(K,Q)− dim im ∂k

= 1 + dim ker ∂k

Furthermore, for i 6= k we have dim ker ∂′i = dim ker ∂i. Hence (recall dimHi(K
′,Q) = dim ker ∂′i−

dim im ∂′i+1):

βi(K
′,Q) = dimHi(K

′,Q) =

{
dimHi(K,Q) if i 6= k

1 + dimHk(K,Q) if i = k

Case 2: ∂′kσ 6∈ im ∂k. Then

dim im ∂′i =

{
dim im ∂i if i 6= k

dim im ∂k + 1 if i = k.

Hence:

dim ker ∂′i = dimCi(K
′,Q)− dim im ∂′i

=

{
dimCi(K,Q)− dim im ∂i if i 6= k

1 + dimCk(K,Q)− (1 + dim im ∂k) if i = k

= dim ker ∂i

This result yields an incremental algorithm for the computation of Betti numbers. Whether this
algorithm is efficient depends on the implementation of the test ‘∂′kσ 6∈ im ∂k’. The paper [5]
presents an efficient implementation of this algorithm for subcomplexes of the three-sphere. This
incremental method can be used to compute the Betti numbers of some familiar spaces. Before
showing how to do this, we introduce some additional tools that are helpful in the computation
of Betti numbers.
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Chain maps and chain homotopy. Just like maps between spaces provide information about
the topology of these spaces, maps between homology spaces provide information about the ho-
mology of these spaces. The key stepping stone towards these maps are chain maps.

Let K and L be finite simplicial complexes. A chain map from K to L is a sequence of linear
maps fk : Ck(K,Q) → Ck(L,Q) such that ∂k+1 ◦ fk+1 = fk ◦ ∂k+1. In other words, the sequence
{fk} is a chain map if the following diagram is commutative:

. . .
∂k+2−−−−→ Ck+1(K,Q)

∂k+1−−−−→ Ck(K,Q)
∂k−−−−→ . . .yfk+1

yfk
. . .

∂k+2−−−−→ Ck+1(L,Q)
∂k+1−−−−→ Ck(L,Q)

∂k−−−−→ . . .

This chain map is denoted by f : C(K,Q) → C(L,Q). In fact, a chain map is a family of maps,
containing one linear map for each dimension.

Proposition 2. Let K, L and M be finite simplicial complexes.

1. The sequence of identity maps idk : Ck(K,Q)→ Ck(K,Q) is a chain map.

2. The composition of a chain map from K to L and a chain map from L to M is a chain map
from K to M .

The proof of this result is straightforward and left as an exercise (Exercise 4). Let f : C(K,Q)→
C(L,Q) be a chain map. The linear map f∗ : H(K,Q)→ H(L,Q) is defined by

f∗k([α]) = [fk(α)],

for α ∈ Zk(K,Q). We say that f∗ is the map induced by f at the level of homology. Using
commutativity of the diagram above, it is easy to see that this map is well-defined, i.e., that
[fk(α)] is independent of the choice of the representative α of the homology class [α]. This map
has some natural properties, following in a straightforward way from the definition.

Proposition 3. Let K, L and M be finite simplicial complexes.

1. The identity chain map generates the identity map at the level of homology.

2. The map induced by a composition of chain maps is the composition of the maps induced by each
chain map. In other words, for chain maps f : C(K,Q)→ C(L,Q) and g : C(L,Q)→ C(M,Q):

(g ◦ f)∗ = g∗ ◦ f∗.

A chain homotopy between two chain maps f, g : C(K,Q) → C(L,Q) is a sequence {Tk} of
linear maps Tk : Ck(K,Q)→ Ck+1(L,Q) such that

Tk−1 ◦ ∂k + ∂k+1 ◦ Tk = fk − gk.

If such a chain homotopy exists, then f and g are called chain-homotopic. We shall frequently use
the following result, the proof of which is a simple exercise in Linear Algebra (see Exercise 4).

Proposition 4. Chain homotopic chain maps induce the same linear map at the level of homology.

Simplical collapse. We now consider simplicial collapse, a very simple transformation of sim-
plicial complexes which does not alter homology in positive dimensions. This operation allows us
to compute the Betti numbers of a simplicial complex K by simplifying K until we obtain another
simplical complex L for which the Betti numbers are known or easy to compute.

Let K be a finite simplicial complex, and let α and β be two simplices of K such that α is a
face of β, and α is not a face of any other simplex of K. Let L be the subcomplex of K obtained by
deleting the simplices α and β. The transformation from K to L is called an elementary collapse.
See Fig. 7.9.

More generally, we say that K collapses onto a subcomplex L, denoted by K ↘ L, if there is
a finite sequence of elementary collapses transforming K into L.
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2

3

4

2

3

4

1 1

Figure 7.9: An elementary collapse removes the simplices v0v1v2v3 and v1v2v3 from the leftmost
simplex.

Proposition 5. Let K and L be finite simplicial complexes such that K collapses onto L. Then
Hk(K,Q) and Hk(L,Q) are isomorphic.

Proof. We give the proof for positive k, the case k = 0 being trivial. Our strategy consists of
finding a chain homotopy inverse to the inclusion chain map ι : C(L,Q)→ C(K,Q). To this end
let α be a k-simplex, positively oriented in the boundary ∂β of the k + 1-simplex β. Introduce
the map f : C(K,Q) → C(L,Q) by putting fk(α) = α − ∂β, fk+1(β) = 0, fi(σ) = σ for every
i-simplex different from α and β, and extending linearly. It is not hard to prove that f is a chain
map. Furthermore, f ◦ ι is the identity chain map on C(L,Q).

Let the sequence of linear maps Pi : Ci(K,Q) → Ci+1(K,Q) be defined by Pk(α) = β, and
Pi(σ) = 0 for each i-simplex σ different from α. A straightforward computation shows that the
sequence {Pi} is a chain homotopy between the identity map on C(K,Q) and the chain map ι ◦ f .
From this we conclude that ιi : Hi(L,Q)→ Hi(K,Q) is an isomorphism, for i > 0. In particular,
K and L have the same Betti numbers in positive dimension.

Example: Betti numbers of the projective plane. The incremental algorithm, combined
with the method of simplicial collapse, allows for rather painless computation of Betti numbers
of familiar spaces. In this example we compute the Betti numbers of the projective plane RP2.
The simplicial complex K of Fig. 7.10 is the unique triangulation of the projective plane with a
minimal number of vertices. The vertices and edges on the boundary of the six-gon are identified
in pairs, as indicated by the double occurrence of the vertex-labels v1, v2 and v3. The arrows
indicate the orientation of the simplices forming the basis of the chain space C2(K). We orient
the edges of the simplex from the vertex with lower index to the vertex with higher index.

Let L be the simplicial complex obtained from K by deleting the oriented simplex τ = 〈v4v5v6〉.
The Betti numbers of L are easy to compute, since a sequence of simplicial collapses transforms
L into the subcomplex L0 with vertices v1, v2 and v3, and oriented edges 〈v1v2〉, 〈v2v3〉 and
〈v1v3〉. The simplicial complex L0 is a 1-sphere, so β0(L) = β0(L0) = 1, β1(L) = β1(L0) = 1, and
βi(L) = βi(L0) = 0 for i > 1.

To relate the Betti numbers of K with those of L, we have to determine whether τ ′ = ∂2τ is a
boundary in L. Consider the special 2-chain α, which is the formal sum of all oriented 2-simplices
in L. Taking the boundary of α, we see that all oriented 1-simplices not in ∂2τ occur twice, those
in the interior of the six-gon in Fig. 7.10 with opposite coefficients and those in the boundary with
the same coefficient. In other words, ∂2α = 2γ−∂2τ , where γ is the 1-cycle 〈v1v2〉+〈v2v3〉−〈v1v3〉
of L. Therefore, [τ ′] = 2[γ] in H1(L). Since [γ] forms a basis for H1(L), we conclude that [τ ′] 6= 0
in H1(L). Hence τ ′ is not a boundary in L. Applying the incremental algorithm we see that
β0(K) = β0(L) = 1, β1(K) = β1(L)− 1 = 0, and β2(K) = β2(L) = 0.

Example: Betti numbers depend on field of scalars. Homology theory can be set up with
coefficients in a general field. A priory, this leads to different Betti numbers. This is illustrated
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Figure 7.10: A triangulation of the projective plane.

by revisiting the simplicial complex K of Fig. 7.10, and applying the same procedure to compute
the Betti numbers over Z2. Using the same notation as in the preceding example, we see that
[τ ′] = 2[γ] = 0 in H1(L,Z2), so τ ′ is a boundary in C2(L,Z2). Applying the incremental algorithm
again we conclude that βi(K,Z) = βi(L,Z) = 1, for i = 0, 1, and β2(K,Z) = β2(L,Z) + 1 = 1.
Note that the Euler characteristic is independent of the coefficient field.

7.4 Morse Theory

Finite dimensional Morse theory deals with the relation between the topology of a smooth manifold
and the critical points of smooth real-valued functions on the manifold. It is the basic tool for
the solution of fundamental problems in differential topology. Recently, basic notions from Morse
theory have been used in the study of the geometry and topology of large molecules. We review
some basic concepts from Morse theory, like in [21]. More elaborate treatments are [16] and [15].

7.4.1 Smooth functions and manifolds

Differential of a smooth map. A function f : Rn → R is called smooth if all derivatives of
any order exist. A map ϕ : Rn → Rm is called smooth if its component functions are smooth.
The differential of ϕ at a point q ∈ Rn is the linear map dϕq : Rn → Rm defined as follows. For
v ∈ Rn, let α : I → Rn, with I = (−ε, ε) for some positive ε, be defined by α(t) = ϕ(q + tv), then
dϕq(v) = α′(0). Let ϕ(x1, . . . , xn) = (ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)). The differential dϕq is
represented by the Jacobian matrix

∂ϕ1

∂x1
(q) . . .

∂ϕ1

∂xn
(q)

...
...

∂ϕm
∂x1

(q) . . .
∂ϕm
∂xn

(q)

 .

Regular surfaces in R3. A subset S in R3 is a smooth surface if we can cover the surface with
open coordinate neighborhoods. More precisely, a coordinate neighborhood of a point p on the
surface is a subset of the form V ∩ S, where V is an open subset of R3, for which there exists a
smooth map ϕ : U → R3 defined on an open subset U of R2, such that where V is an open subset
of R3 containing p, for which there exists a smooth map ϕ : U → R3 defined on an open subset U
of R2, such that
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(i) The map ϕ is a homeomorphism from U onto V ∩ S;

(ii) If ϕ(u, v) = (x(u, v), y(u, v), z(u, v)), then the two tangent vectors
∂x

∂u
∂y

∂u
∂z

∂u

 ,


∂x

∂v
∂y

∂v
∂z

∂v


are non-zero and not parallel.

The map ϕ is called a parametrization or a system of local coordinates in p. The set S is a smooth
surface if each point of S has a coordinate neighborhood. Note that condition (ii) is equivalent to
the fact that the differential of ϕ at (u, v) is an injective map.

Example: spherical coordinates. Let S be a 2-sphere in R3 with radius R and center (0, 0, 0) ∈ R3.
Consider the set U = { (u, v) | 0 < u < 2π,−π/2 < v < π/2 }. The map ϕ : U → S, given by

ϕ(u, v) = (R cosu cos v,R sinu cos v,R sin v).

corresponds to the well-known spherical coordinates. Note that ϕ(U) is the 2-sphere minus a
meridian. Each point of ϕ(U) has a system of local coordinates given by ϕ.

Example: coordinates on the upper and lower hemisphere. Again, let S be the sphere with radius
R and center at the origin of R3, and let U = { (x, y) | x2 + y2 < R2 }. The (open) upper and
lower hemispheres of the torus are the graph of a smooth function. More precisely, each point of
the upper hemisphere has local coordinates given by the map

ϕ(x, y) = (x, y,
√
R2 − x2 − y2).

A similar expression defines local coordinates at each point of the lower hemisphere. Covering the
sphere by six hemispheres yields a system (at least one) of local coordinate system for each point
of the sphere. Therefore, the sphere is a regular surface.

Example: coordinates on the torus of revolution. Let S be the torus obtained by rotating the circle
in x, y-plane with center (0, R, 0) and radius r around the x-axis, where R > r. We show that S is
a smooth surface by introducing a system of local coordinates for all points of the torus. To this
end, let U = {(u, v) | 0 < u, v < 2π} and let ϕ : U → R3 be the map defined by

ϕ(u, v) = (r sinu, (R− r cosu) sin v, (R− r cosu) cos v).

It is not hard to check that ϕ(U) ⊂ S. In fact, the map ϕ covers the torus except for one
meridian and one parallel circle. It is easy to find local coordinates in points of these two circles
by translating the parameter domain U a little bit. Therefore, the torus is a regular surface.

Example: Local form of torus of revolution near (0, 0,±(R−r)). As in the example of hemispheres,
parts of the torus are graphs of a smooth function. In particular, the points (0, 0,±(R− r)) have
local coordinates of the form ϕ(x, y) = (x, y, f±(x, y)), where

f±(x, y) = ±
√
R2 + r2 − x2 − y2 − 2R

√
r2 − x2.

Submanifolds of Rn. More generally, a subset M of Rn is an m-dimensional smooth subman-
ifold of Rn, m ≤ n, if for each p ∈ M , there is an open set V in Rn, containing p, and a map
ϕ : U → M ∩ V from an open subset U in Rm onto V ∩M such that (i) ϕ is a smooth homeo-
morphism, (ii) the differential dϕq : Rm → Rn is injective for each q ∈ U . Again, the map ϕ is
called a parametrization or a system of local coordinates on M in p. In particular, the space Rn
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is a submanifold of Rn. A subset N of a submanifold M of Rn is a submanifold of M if it is a
submanifold of Rn. The difference of the dimensions of M and N is called the codimension of N
(in M).

Example: linear subspaces are submanifolds. The Euclidean space Rm is a smooth submanifold of
Rn, for m ≤ n. For m < n, we identify Rm with the subset {(x1, . . . , xn) ∈ Rn | xm+1 = · · · =
xn = 0} of Rn.

Example: Sn−1 is a smooth submanifold of Rn. A smooth parametrization of Sn−1 at (0, . . . , 0, 1) ∈
Sn−1 is given by ϕ : U → Rn, with

U = {(x1, . . . , xn−1) ∈ Rn−1 | x21 + · · ·+ x2n−1 < 1},

and

ϕ(x1, . . . , xn−1) = (x1, . . . , xn−1,
√

1− x21 − · · · − x2n−1).

In fact, ϕ is a parametrization in every point of the upper hemisphere, i.e., the intersection of
Sn−1 and the upper half space {(y1, . . . , yn) | yn > 0}.

Example: codimension one submanifolds. The equator S1 = {(x1, x2, 0) | x21 + x22 = 1} is a
codimension one submanifold of S2 = {(x1, x2, x3) | x21 + x22 + x23 = 1}. More generally, every
intersection of the 2-sphere with a plane at distance less than one from the origin is a codimension
one submanifold.

Tangent space of a manifold. The tangent vectors at a point p of a manifold form a vector
space, called the tangent space of the manifold at p. More formally, a tangent vector of M at p is
the tangent vector α′(0) of some smooth curve α : I →M through p. Here a smooth curve through
a point p on a smooth submanifold M of Rn is a smooth map α : I → Rn, with I = (−ε, ε) for
some positive ε, satisfying α(t) ∈M , for t ∈ I, and α(0) = p. The set TpM of all tangent vectors
of M at p is the tangent space of M at p.

If ϕ : U → M is a smooth parametrization of M at p, with 0 ∈ U and ϕ(0) = p, then TpM is
the m-dimensional subspace dϕ0(Rm) of Rn, which passes through ϕ(0) = p. Let {e1, . . . , em} be
the standard basis of Rm; define the tangent vector ei ∈ TpM by ei = dϕ0(ei). Then {e1, . . . , em}
is a basis of TpM .

Example: tangent space of the sphere. The tangent space of the unit sphere Sn−1 = {(x1, . . . , xn) |
x21 + · · · + x2n = 1} at a point p is the hyperplane through p, perpendicular to the normal vector
of the sphere at p.

Smooth function on a submanifold. A function f : M → R on an m-dimensional smooth
submanifold M of Rn is smooth at p ∈M if there is a smooth parametrization ϕ : U →M∩V , with
U an open set in Rm and V an open set in Rn containing p, such that the function f ◦ϕ : U → R is
smooth. A function on a manifold is called smooth if it is smooth at every point of the manifold.

Example: height function on a surface. The height function h : S → R on a surface S in R3 is
defined by h(x, y, z) = z, for (x, y, z) ∈ S. Let ϕ(u, v) = (x(u, v), y(u, v), z(u, v)) be a system of
local coordinates in a point of the surface, then h ◦ ϕ(u, v) = z(u, v) is smooth. Therefore, the
height function is a smooth function on S.

Regular and critical points. A point p ∈M is a critical point of a smooth function f : M → R
if there is a local parametrization ϕ : U → Rn of M at p, with ϕ(0) = p, such that 0 is a critical
point of f ◦ϕ : U → R (i.e., the differential of f ◦ϕ at q is the zero function on Rn). This condition
does not depend on the particular parametrization.
A real number c ∈ R is a regular value of f if f(p) 6= c for all critical points p of f , and a critical
value otherwise.

Example: critical points of height function on the sphere. Consider the height function on the unit
sphere in R3. Spherical coordinates define a parametrization ϕ(u, v) in every point, except for the
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poles (0, 0,±1). With respect to this parametrization the height function h has the expression
h̃(u, v) = h(ϕ(u, v)) = sin v, so none of these points is singular (since −π/2 < v < π/2 away from
the poles). Near the poles (0, 0,±1) we consider the sphere as the graph of a function, corre-

sponding to the parametrization ψ(x, y) = (x, y,
√

1− x2 − y2). The height function is expressed

in these local coordinates as h̃(x, y) = h(ψ(x, y)) = ±
√

1− x2 − y2, so the singular points of h
are (0, 0,−1) (minimum), and (0, 0, 1) (maximum).

Example: critical points of height function on the torus. The torus M in R3, obtained by rotating a
circle in the x, y-plane with center (0, R, 0) and radius r around the x-axis, is a smooth 2-manifold.
Let U = {(u, v) | −π/2 < u, v < 3π/2} ⊂ R2, and let the map ϕ : U → R3 be defined by

ϕ(u, v) = (r sinu, (R− r cosu) sin v, (R− r cosu) cos v).

Then ϕ is a parametrization at all points of M , except for points on one latitudinal and one
longitudinal circle. The height function on M is the function h : M → R defined by h̃(u, v) =
h(ϕ(u, v)) = (R− r cosu) cos v, so the singular points of h are:

(u, v) ϕ(u, v) type of singularity
(0, 0) (0, 0, R− r) saddle point
(0, π) (0, 0,−R+ r) saddle point
(π, 0) (0, 0, R+ r) maximum
(π, π) (0, 0,−R− r) minimum

The type of a singular point will be introduced in Sect. 7.4.2.

Implicit surfaces and manifolds. In many cases a set is given as the zero set of a smooth
function (or a system of functions). If this zero set contains no singular point of the function, then
it is a manifold:

Proposition 6. (Implicit Function Theorem). Let f : M → R be a smooth function on the
smooth submanifold M of Rn. If c is a regular value of f , then the level set f−1(c) is a smooth
submanifold of M of codimension one.

A proof can be found in any book on analysis on manifolds, like [19].

Example: implicit surfaces in three-space. The unit sphere in three space is a regular surface, since
0 is a regular value of the function f(x, y, z) = x2 +y2 +z2−1. The torus of revolution is a regular
surface, since 0 is a regular value of the function g(x, y, z) = (x2+y2+z2−R2−r2)2−4R2(r2−x2).

Hessian at a critical point. Let M be a smooth submanifold of Rn, and let f : M → R be a
smooth function. The Hessian of f at a critical point p is the quadratic form Hpf on TpM defined
as follows. For v ∈ TpM , let α : (−ε, ε)→M be a curve with α(0) = p, and α′(0) = v. Then

Hpf(v) =
d2

dt2

∣∣∣∣
t=0

f(α(t)).

The right hand side does not depend on the choice of α. To see this, let ϕ : U →M be a smooth
parametrization of M at p, with 0 ∈ U and ϕ(0) = p, and let v = v1e1 + · · ·+vmem ∈ TpM , where
ei = dϕ0(ei). Then

Hpf(v) =

m∑
i,j=1

∂2(f ◦ ϕ)

∂xi∂xj
(0)vivj .

In particular, the matrix of Hf (p) with respect to this basis is
∂2(f ◦ ϕ)

∂x21
(0) . . .

∂2(f ◦ ϕ)

∂x1∂xm
(0)

...
...

∂2(f ◦ ϕ)

∂x1∂xm
(0) . . .

∂2(f ◦ ϕ)

∂x2m
(0)

 . (7.3)
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It is not hard to check that the numbers of positive and negative eigenvalues of the Hessian do
not depend on the choice of ϕ, since p is a critical point of f .

Non-degenerate critical point. The critical point p of f : M → R is non-degenerate if the
Hessian Hpf is non-degenerate. The index of the non-degenerate critical point p is the number of
negative eigenvalues of the Hessian at p. If M is 2-dimensional, then a critical point of index 0, 1,
or 2, is called a minimum, saddle point, or maximum, respectively.

7.4.2 Basic Results from Morse Theory

Morse function. A smooth function on a manifold is a Morse function if all critical points are
non-degerate. The k-th Morse number of a Morse function f , denoted by µk(f), is the number of
critical points of f of index k.

Example: quadratic function on Rm. The function f : Rm → R, defined by f(x1, . . . , xm) = −x21−
. . .−x2k+x2k+1+ . . .+x2m, is a Morse function, with a single critical point (0, . . . , 0). This point is a
non-degenerate critical point, since the Hessian matrix at this point is diag(−2, . . . ,−2, 2, . . . , 2),
with k entries on the diagonal equal to −2. In particular, the index of the critical point is k.

Example: singularities of the height function on Sm−1. The height function on the standard
unit sphere Sm−1 in Rm is a Morse function. This function is defined by h(x1, . . . , xm) = xm
for (x1, . . . , xm) ∈ Sm−1, With respect to the parametrization ϕ(x1, . . . , xm−1) = (x1, . . . , xm−1,√

1− x21 − · · · − x2m−1), the expression of the height function is

h ◦ ϕ(x1, . . . , xm−1) =
√

1− x21 − · · · − x2m−1.

Therefore, the only critical point of h on the upper hemisphere is (0, . . . , 0, 1). The Hessian matrix
(7.3) is the diagonal matrix diag(−1,−1, . . . ,−1), so this critical point has index m−1. Similarly,
(0, . . . , 0,−1) is the only critical point on the lower hemisphere. It is a critical point of index 0.

Example: singularities of the height function on the torus. The singular points of the height
function on the torus of revolution with radii R and r are (0, 0,−R−r), (0, 0,−R+r), (0, 0, R−r),
and (0, 0, R + r). See also Sect. 7.4.1. A parametrization of this torus near the singular points

±(R− r) is ϕ(x, y) = (x, y, f±(x, y)), where f±(x, y) = ±
√
R2 + r2 − x2 − y2 − 2R

√
r2 − x2. The

expression h(x, y) = f±(x, y) of the height function with respect to these local coordinates at
(x, y) = (0, 0) is

h(x, y) = ±
(
R− r − 1

2r
x2 +

1

2(R− r)
y2
)

+ Higher Order Terms.

Hence the singular points corresponding to (x, y) = (0, 0), i.e., (0, 0,±(R− r)), are saddle points,
i.e., singular points of index one. Similarly, the singular point (0, 0, R + r) is a maximum (index
two), and the singular point (0, 0,−R− r) is a minimum (index zero), and the

Regular level sets. Let M be an m-dimensional submanifold of Rn, and let f : M → R be
a smooth function. The set f−1(h) := {q ∈ M |f(q) = h} of points where f has a fixed value
h is called a level set (at level h). If h ∈ R is a regular value of f , then f−1(h) is a smooth
(m− 1)-dimensional submanifold of Rn.
Similarly, we define the lower level set (also called excursion set) at some level h ∈ R as Mh =
{ q ∈M | f(q) ≤ h }. If f has no critical values in [a, b], for a < b, then the subsets Ma and Mb of
M are homeomorphic (and even isotopic).

The Morse Lemma. Let f : M → R be a smooth function on a smooth m-dimensional sub-
manifold M of Rn, and let p be a non-degenerate critical point of index k. Then there is a smooth
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parametrization ϕ : U → M of M at p, with U an open neighborhood of 0 ∈ Rm and ϕ(0) = p,
such that

f ◦ ϕ(x1, . . . , xm) = f(p)− x21 − · · · − x2k + x2k+1 + · · ·+ x2m.

In particular, a critical point of index 0 is a local minimum of f , whereas a critical point of index
m is a local maximum of f . See Fig. 7.11.

Figure 7.11: Passing a critical level set of a Morse function in three-space. The critical point has
index 1. A local model of the function near the critical point is f(x1, x2, x3) = −x21 + x22 + x23,
with the x1-axis running vertically.

Abundance of Morse functions. (i) Morse functions are generic. Every smooth compact
submanifold of Rn has a Morse function. (In fact, if we endow the set C∞(M) of smooth functions
on M with the so-called Whitney topology, then the set of Morse functions on M is an open and
dense subset of C∞(M). In particular, there are Morse functions arbitrarily close to any smooth
function on M .)
(ii) Generic height functions are Morse functions. Let M be an m-dimensional submanifold of
Rm+1 (e.g., a smooth surface in R3). For v ∈ Sm, the height-function hv : M → R with respect to
the direction v is defined by hv(p) = 〈v, p〉. The set of v for which hv is not a Morse function has
measure zero in Sm.

Passing critical levels. One can build complicated spaces from simple ones by attaching a
number of cells. Let X and Y be topological spaces, such that X ⊂ Y . We say that Y is obtained
by attaching a k-cell to X if Y \X is homeomorphic to an open k-ball. More precisely, there is

a map f : Bk → Y \X, such that f(Sk−1) ⊂ X and the restriction f | Bk is a homeomorphism
Bk → Y \ X. Let f : M → R be a smooth Morse function with exactly one critical level in
(a, b), and a and b are regular values of f . Then Mb is homotopy equivalent to Ma with a cell of
dimension k attached, where k is the index of the critical point in f−1([a, b]). See Fig. 7.12.

Figure 7.12: Passing a critical level of index 1 corresponds to attaching a 1-cell. Here M is the
2-torus embedded in R3, in standard vertical position, and f is the height function with respect
to the vertical direction. Left: Ma, for a below the critical level of the lower saddle point of f .
Middle: Ma with a 1-cell attached to it. Right: Mb, for b above the critical level of the lower
saddle point of f . This set is homotopy equivalent to the set in the middle part of the figure.
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Morse inequalities. Let f be a Morse function on a compact m-dimensional smooth submani-
fold of Rn. For each k, 0 ≤ k ≤ m, the k-th Morse number of f dominates the k-th Betti number
of M :

µk(f) ≥ βk(M,Q).

An intuitive explanation is based on the observation that passing a critical level of a critical point of
index k is equivalent corresponds to the attachment of a k-cell at the level of homotopy equivalence.
Therefore, either the k-th Betti number increases by one, or the k − 1-st Betti number decreases
by one, cf the incremental algorithm for computing Betti numbers in Sect. 7.3, while none of the
other Betti numbers changes. Since only the k-th Morse number changes, more precisely, increases
by one, the Morse inequalities are invariant upon passage of a critical level.

In the same spirit one can show that the Morse numbers of f are related to the Betti numbers
and the Euler characteristic of M by the following identity:

m∑
k=1

(−1)kµk(f) =

m∑
k=1

(−1)kβk(M,Q) = χ(M).

Gradient vector fields. Consider a smooth function f : M → R, where M is a smooth m-
dimensional submanifold of Rn. The gradient of f is a smooth map grad f : M → Rn, which
assigns to each point p ∈M a vector grad f(p) ∈ TpM ⊂ Rn, such that

〈grad f(p), v〉 = dfp(v), for all v ∈ TpM .

Since dfp(v) is a linear form in v, the vector grad f(p) is well defined by the preceding identity.
This definition has a few straightforward implications. The gradient of f vanishes at a point p if
and only if p is a singular point of f . If p is not a singular point of f , then dfp(v) is maximal for
a unit vector v ∈ TpM iff v = grad f(p)/‖ grad f(p)‖. In other words, grad f(p) is the direction of
steepest ascent of f at p. Furthermore, if c ∈ R is a regular value of the function f , then grad f
is perpendicular to the level set f−1(c) at every point.

To express grad f in local coordinates, let ϕ : U → M be a system of local coordinates at
p ∈M . Let e1, . . . , em be the basis of TpM corresponding to the standard basis e1, . . . , em of Rm.
In other words: ei = dϕq(ei), where q ∈ U is the pre-image of p under ϕ. We denote the standard
coordinates on Rm by x1, . . . , xm. Then

grad f(p) =

m∑
i=1

ai(q)ei,

where ai : U → R is the smooth function defined by the set of linear equations

m∑
j=1

gij(q)aj(q) =
∂(f ◦ ϕ)

∂xi
(q), (1 ≤ i ≤ m),

with gij(q) = 〈ei, ej〉. Since the coefficients are the entries 〈ei, ej〉 of a Gram matrix, the system

is non-singular. Note that ai =
∂(f ◦ ϕ)

∂xi
if the system of coordinates is orthonormal at p, that is

gij(q) = 1, if i = j and gij(q) = 0, if i 6= j. This holds in particular if U = M = Rn and ϕ is the
identity map on U , so the definition agrees with the usual definition in a Euclidean space.

Integral lines, and their local structure near singular points. In the sequel M is a
compact submanifold of Rn. The gradient of a smooth function f on M is a smooth vector field
on M . For every point p of M , there is a unique curve x : R → M , such that x(0) = p and
x′(t) = grad f(x(t)), for all t ∈ R. The image x(R) is called the integral curve of the gradient
vector field through p.

Lemma 1. Let f : M → R be a smooth function on a submanifold M of Rn.
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1. The integral curves of a gradient vector field of f form a partition of M .

2. The integral curve x(t) through a singular point p of f is the constant curve x(t) = p.

3. The integral curve x(t) through a regular point p of f is injective, and both limt→∞ x(t) and
limt→−∞ x(t) exist. These limits are singular points of f .

4. The function f is strictly increasing along the integral curve of a regular point of f .

5. Integral curves are perpendicular to regular level sets of f .

The proof is a bit technical, so we skip it. See [10] for details. The first property implies that
the integral curves through two points of M are disjoint or coincide. The third property implies
that a gradient vector field does not have closed integral curves. The limit limt→∞ x(t) is called
the ω-limit of p, and is denoted by ω(p). Similarly, limt→−∞ x(t) is the α-limit of p, denoted
by α(p). Note that all points on an integral curve have the same α-limit and the same ω-limit.
Therefore, it makes sense to refer to these points as the α-limit and ω-limit of the integral curve.
It follows from Lemma 1.2 that ω(p) = p and α(p) = p for a singular point p.

Stable and unstable manifolds. The structure of integral lines of a gradient vector field grad f
near a singular point can be quite complicated. However, for Morse functions, the situation is
simple. To gain some intuition, let us consider the simple example of the function f(x1, x2) =
x21 − x22 on a neighborhood of the non-degenerate singular point 0 ∈ R2. The gradient vector field
is 2x1e1 − 2x2e2, where e1, e2 is the standard basis of R2. The integral line (x1(t), x2(t)) through
a point p = (p1, p2) is determined by x1(0) = p1, x2(0) = p2, and{

x′1(t) = 2x1(t)

x′2(t) = −2x2(t)

Therefore, the integral curve through p is (x1(t), x2(t)) = (p1e
2t, p2e

−2t), which is of the form
x1x2 = c. See Fig. 7.13 (Left). The singular point o = (0, 0) is the α-limit of all points on the

p

Figure 7.13: Left: Integral curves of the gradient of f(x1, x2) = x21 − x22 on a neighborhood of
the singular point (0, 0) ∈ R2. Right: Integral curves of the gradient vector field near a general
saddle point of a function on R2.

horizontal axis, and the ω-limit of all points on the vertical axis. The general structure of integral
curves near a saddle point is similar, as indicated by Fig. 7.13 (Right). The stable curve of p
consists of all points with ω-limit equal to p. The unstable curve is defined similarly. These curves
intersect each other at p, and are perpendicular there.

More generally, the stable manifold of a singular point p is the set W s(p) = {q ∈M | ω(q) = p}.
Similarly, the unstable manifold of p is the set Wu(p) = {q ∈ M | α(q) = p}. Note that both
W s(p) and Wu(p) contain the singular point p itself. Furthermore, the intersection of the stable
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and unstable manifolds of a singular point consists just of the singular point: W s(p)∩Wu(p) = {p}.
Stable and unstable manifolds of gradient systems are submanifolds [12, Chapter 6]. The dimension
of W s(p) is equal to the number of negative eigenvalues of the Hessian of f at p, whereas the
dimension of Wu(p) is equal to the number of positive eigenvalues of this Hessian. Stable and
unstable manifolds of gradient systems are submanifolds [12, Chapter 6].

The Morse-Smale complex. A Morse function on M is called a Morse-Smale function if its
stable and unstable manifolds intersect transversally, i.e., at a point of intersection the tangent
spaces of the stable and unstable manifolds together span the tangent space of M . If p and q
are distinct singular points, the intersection W s(p) ∩Wu(q) consists of all regular integral curves
with ω-limit equal to p and α-limit equal to q. In particular, a Morse-Smale function on a two-
dimensional manifold has no integral curves connecting two saddle points, since the stable manifold
of one of the saddle points and the unstable manifold of the second saddle point would intersect
non-transversally along this connecting integral curve.

Morse-Smale functions form an open and dense subset of the space of functions on a compact
manifold [18].

The Morse-Smale complex associated with a Morse-Smale function f on M is the subdivision
of M formed by the connected components of the intersections W s(p) ∩Wu(q), where p and q
range over all singular points of f , see Fig. 7.14. The Morse-Smale complex is a CW-complex. In
geographical literature, the Morse-Smale complex is known as the surface network.

maximumminimum saddle

Figure 7.14: The Morse-Smale complex of a function on the plane. The stable one-manifolds are
solid, the unstable one-manifolds are dashed. (Courtesy Herbert Edelsbrunner.)

The Morse-Smale complex on a two-manifold consists of cells of dimension 0, 1 and 2, called
vertices, edges and regions. According to the Quadrangle Lemma [9], each region of the Morse-
Smale complex is a quadrangle with vertices of index 0, 1, 2, 1, in this order around the region.
Hence the complex is not necessarily a regular CW-complex, since the boundary of a cell is possibly
glued to itself along vertices and arcs.

Using a paradigm called simulation of differentiability, in [9] the concept of Morse-Smale com-
plex is also defined for piecewise linear functions, and an algorithm for its construction is applied
to geographic terrain data. In [8] this work is extend to piecewise linear 3-manifolds.

Reeb graphs and contour trees. The level sets f−1(h) of a Morse function f on a two-
dimensional domain change as h varies. At certain values of h, components of the level set may
disappear, new components may appear, or a component may split into two components, or two
components may merge. A component of a level set is called a contour. The Reeb graph (after the
American journalist John Reeb, 1887–1920 [17]) encodes the changes of contours. It is obtained
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Figure 7.15: (a) a contour map of level sets (isolines), (b) the corresponding contour tree, (c) the
join tree, and (d) the split tree. As in Fig. 7.14, minima and maxima are indicated by empty and
full circles, and crosses denote saddle points. The points where a contour touches the boundary
play also a role in the contour tree (for example, they may be local minima or maxima) but they
are not critical points in the sense of having derivative 0. The level sets in (a) are labeled with the
height values, and these values are indicated in the trees of (b), (c), and (d). The critical point F
changes only the topology of a contour and not the number of contours; when the contour tree is
viewed as a discrete structure, F is not a vertex of the tree.

by contracting every contour to a single point. When f is defined on a simply connected domain
(for example, a box), the Reeb graph is a tree, and it is also referred to as the contour tree.
Fig. 7.15b shows an example of a contour tree of a bivariate function h = f(x, y) defined on a
square domain. The vertical axis of the contour tree represents the value h of the function. The
intersection of a horizontal line at a given value h with the contour tree yields all contours at that
level, and the merging or splitting, appearance or disappearance of contours is reflected in vertices
of degree 3 and 1 in the contour tree, respectively. Saddle points become vertices of degree 3,
and minima and maxima become vertices of degree 1. A contour tree is therefore a good tool to
visualize the behavior of a function on a global scale, in particular when it is a function of more
than two variables, see [14, 13]. In these applications, f is usually a continuous piecewise linear
function interpolating data at given sample points. These functions are not smooth and therefore
not Morse functions, but the notion of level sets and Reeb graphs extends without difficulty to
this class of functions. It is not uncommon to have multiple saddle points, where more than two
contours meet at the same time. The Reeb graph has then vertices of degree higher than three.
More examples of contour trees are shown in Fig. 5.23 of Sect. 5.5.2.

Note that the Reeb graph only regards the number of components (the 0-homology) of the level
sets, it does not reflect every change of topology. For example, in three dimensions, a contour
might start as a ball, and as h increases, it might extrude two arms that meet each other, forming
a torus, without changing the connectivity between contours. (At this point, we have a saddle of
index 1.) In two dimensions, this phenomenon happens only for points on the boundary of the
domain, such as the point F in Fig. 7.15.

Figure 7.15c displays the join tree, which is defined analogously to the contour tree, except
that it describes the evolution of the lower level sets Mh = f−1([−∞, h]) instead of the “ordinary”
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Figure 7.16: (a) the lower level set at level 300 and (b) the corresponding part in the join tree

level sets f−1(h). For example, at h = 300 we have three components in the lower level set, as
indicated in Fig. 7.16. Since the lower level sets can only get bigger as h increases, they can only
join and never split (hence the name join tree): the tree is a directed tree with the root at the
highest vertex. The split tree (Fig. 7.15d) can be defined analogously for upper level sets. The
join and the split tree are important because it is easier to construct these trees first instead of
constructing the contour tree directly. As shown by Carr, Snoeyink, and Axen [2] the contour tree
can then be built from the join tree and the split tree in linear time.

The simplest and fastest way to construct the join (and split) tree of a piecewise linear function
is the method of monotone paths, as described in [3]. We sketch the main idea. This method
requires an initial identification of all “critical” vertices: vertices where the topology of the level
set changes locally as the level set passes through them. This condition can be checked by scanning
the neighboring faces of each vertex independently. These vertices are candidates for becoming
vertices of the join tree. They are sorted by function values and processed in increasing order.
At each critical vertex v which is not a minimum, we start a monotone decreasing path into each
different “local component” of the lower level set in the neighborhood of v. For example, if we
increase h in Fig. 7.16, the next critical point that is processed is J , see Fig. 7.17. Into each of the
two shaded regions, we start a descending path. Each path is continued until it reaches a local
minimum (such as the point L) or a previously constructed path (such as the descending path from
M that ends in O). If we have stored the appropriate information with each path, we can identify
the components of the lower level sets that need to be merged (namely, the component L and the
component MNO; the component K remains separate). Since each path can only descend, it is
guaranteed that it cannot leave the lower level set into which it belongs, and therefore it identifies
the correct component. It can happen that two descending paths reach the same component.
In this case we only have a change of topology of the contour, without changing the number of
contours.

This algorithm works in any dimension. If the piecewise linear function f is defined on a
triangulated mesh with t cells and there are nc critical points, the algorithm O(t+nc log nc) time
and O(t) space.

Note that the descending paths do not have to follow the steepest direction; thus, unlike the
integral curves of the gradient vector field, they can cross the boundaries of the Morse-Smale
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Figure 7.17: Identifying the components that are to be merged by growing descending paths

complex.
With few exeptions [4], the efficient computation of Reeb graphs has been studied mostly for

functions on simply connected domains, and hence under the heading of contour trees.

7.5 Exercises

Exercise 1 (Triangulations of surfaces). Prove that the number of vertices in a finite triangulation
of a boundaryless surface with Euler characteristic χ is at least⌈

7 +
√

49− 24χ

2

⌉
.

(You should be able to do this exercise without any knowledge of homology theory.)

Exercise 2 (Non-homeomorphic spaces with equal Betti numbers). Give an example of two
simplicial complexes with equal Betti numbers, but with non-homeomorphic underlying spaces.

Exercise 3 (Homology of connected graphs). Let G be a tree. Prove that β0(G,Q) = 1 and
β1(G,Q) = 0 using the matrix of the boundary map. (Hint: Consider an enumeration of the
vertices and oriented edges such that edge ei is directed from vertex vj to vertex vi, with j > i.)

Exercise 4 (Chain maps and chain homotopy). Prove Propositions 2, 3 and 4.

Exercise 5 (Cone construction and Betti numbers of spheres). Let L be a finite simplicial complex
in Rn, and regard Rn as the subspace of Rn+1 with final coordinate zero. Let v be a point in
Rn+1 \Rn. If σ is a k-simplex of L with vertices v0, . . . , vk, then the (k+ 1)-simplex with vertices
v, v0, . . . , vk is called the join of σ and v. The cone of L with apex v is the simplicial complex
consisting of the simplices of L, the join of each of these simplices and v, and the 0-simplex 〈v〉
itself. (One can check that these simplices form a simplicial complex.) Let K be the cone of L.

1. Let the map Tk : Ck(K,Q) → Ck+1(K,Q) be defined as follows: Let σ = 〈v0, . . . , vk〉 be
a k-simplex of K. If σ is also a k-simplex of L, then Tk(σ) = 〈v, v0, . . . , vk〉, otherwise
Tk(σ) = 0. Prove that the sequence {Tk} is a chain homotopy between the identity map and
the zero map on the chain complex C(K,Q).
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2. Conclude that Hk(K,Q) = 0, for k > 0. What is H0(K,Q)?

3. Determine the Betti numbers of the d-dimensional disk, i.e., the space Bd = {(x1, . . . , xd) ∈
Rd | x21 + · · ·+ x2d ≤ 1}. (Hint: Note that a disk is homeomorphic to a d-simplex.)

4. Use the previous result, and the incremental homology algorithm to determine the Betti
numbers of the d-sphere.

Exercise 6 (Homology of orientable surfaces). 1. Prove that β0(K) = 1 for every triangula-
tion K of an orientable surface of genus g (a sphere with g handles).

2. Let K be a simplicial complex whose underlying space is the torus, and let all simplices of K
be oriented compatibly. Let α =

∑
σ σ, where the sum ranges over all (oriented) simplices

of K. Prove that Z2(K,Q) = Qα, and that β2(K,Q) = 1.

3. Use the same technique as in part 2 of this exercise to prove that β2(K,Q) = 1 for every
triangulation K of an orientable surface of genus g.

4. Let L be the subcomplex of K obtained by deleting an arbitrary 2-simplex. Use the in-
cremental algorithm to prove that β2(L,Q) = β2(K,Q) − 1, and βi(L,Q) = βi(K,Q), for
i = 0, 1.

5. Now let K be the simplicial complex of Fig. 7.8. Prove that L simplicially collapses onto the
subcomplex M , the subgraph of L consisting of the vertices v1, . . . , v5 and the edges v1v2,
v2v3, v3v1, v1v4, v4v5, and v5v1. Conclude that β1(K,Q) = 2, and β0(K,Q) = 1.

6. Try to generalize this exercise to an orientable surface of genus g.

Exercise 7 (Morse Theory yields Betti numbers). 1. Use Morse theory to compute the Betti
numbers of the d-sphere Sd.

2. Compute the Euler characteristic of a surface M with g handles by defining a suitable Morse
function on it. Then compute the Betti numbers of this surface. (Hint: You may want to
use the first and third result of Exercise 6).

3. For a Morse function f , let s be a critical point with Morse index i. Consider the intersection
L−(s) of the lower level set f−1((−∞, f(s)]) with a small sphere around s. Prove that the
Euler characteristic of L−(s) equals 1− (−1)i.

Exercise 8 (The mountaineer’s equation). For a smooth Morse function on the 2-sphere S2, the
number of peaks and pits (maxima and minima) exceeds the number of passes (saddles) by 2.

Exercise 9 (Contour trees for bivariate Morse functions). Show that, for a smooth Morse function
on the 2-sphere S2, a saddle point will always generate a vertex of degree three in the Reeb graph.
Use this observation and the previous exercise to prove that the Reeb graph is in fact a tree in
this case.
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