
Technische Universit�at Graz Institut f�ur Mathematik

A Central Limit Theorem

for Convex Chains in the Square

Imre B�ar�any G�unter Rote William Steiger Cun-Hui Zhang

Report 293 May 1998

s

s

s

s

Technische Universit�at Graz, Steyrergasse 30, A-8010 Graz, Austria

Version 2

This is a successor of a report with the title The Limit Shape of Random Convex Polygons by G. Rote from

August 1994.

Title page processed by TEX on May 14, 1998



A Central Limit Theorem for Convex Chains in the Square

Imre B�ar�any

Mathemetical Institute

Hungarian Academy of Sciences

G�unter Rote
�

Institut f�ur Mathematik

Technische Universit�at Graz

William Steiger

Computer Science

Rutgers University

Cun-Hui Zhang

Statistics

Rutgers University

May 1, 1998

Abstract

Points P1; : : : ; Pn in the unit square de�ne a convex n-chain if they are below y = x

and, together with P0 = (0; 0) and Pn+1 = (1; 1), they are in convex position. Under
uniform probability, we prove an almost sure limit theorem for these chains that uses only
probabilistic arguments, and which strengthens similar limit shape statements established
by other authors. An interesting feature is that the limit shape is a direct consequence of
the method. The main result is an accompanying central limit theorem for these chains. A
weak convergence result implies several other statements concerning the deviations between
random convex chains and their limit.

1 Introduction and Summary

Take n points in the unit square in the plane. Write them in order of increasing x-coordinate

as P1; : : : ; Pn and let P0 = (0; 0) and Pn+1 = (1; 1). The points are the vertices of a convex

n-chain if the vectors Pi+1�Pi have increasing slope, i = 0; : : : ; n. The chain itself is the set of

points on the segments that connect successive vertices. To sample a random n-chain C, just

take the n points uniformly and independently from the unit square, conditional on the event

E that they form a convex chain. This de�nes the uniform probability on convex n-chains and

we refer to it as the uniform model for chains. The event E occurs rarely because, as shown

in Section 2 by elementary methods,

Theorem 1 Let P1; : : : ; Pn be a sample of n points, independently and uniformly distributed

in [0; 1]2. Then

Prob(the sample forms a convex n-chain) =
1

n!(n+ 1)!

In deriving this result the vertices on random convex n-chains are revealed as quantiles of n

uniform [0; 1] random variables.

�Institut f�ur Mathematik, Technische Universit�at Graz, Steyrergasse 30, A-8010 Graz, Austria; e-mail:

rote@opt.math.tu-graz.ac.at. Research of G�unter Rote was supported by the Fonds zur F�orderung der

wissenschaftlichen Forschung, project P8971-PHY.
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Figure 1: The limit shape L.

Random convex chains have a limit in a rather strong sense. We de�ne the parabolic arc

L = f (x; y) : py = 1� p1� x; 0 � x � 1 g: (1)

of points in the square equidistant from (1=2; 1=2) and the line y = x � 1, see Figure 1.

Denoting the Hausdor� distance by �, we prove the following statement in Section 3.

Theorem 2 For each n let Cn be a random convex n-chain. Then

Prob (�(Cn; L)! 0) = 1:

Thus sequences C1; C2; : : : of random, convex chains converge to L with probability 1, an

analogue of the strong law of large numbers. The curve L is called the limit shape. It is

interesting that the proof technique derives L directly.

In Section 4 we prove our main result, which shows that deviations between random

chains and the limit shape are asymptotically normally distributed in the following sense. For

t 2 [0; 1], xt = 2t � t2 and yt = t2 are the coordinates of the point on L where the tangent

slope is t=(1 � t). Then the di�erence between (xt; yt) and the vertex on the random chain

where the tangent slope is t=(1� t) converges in distribution to a bivariate normal vector with

mean (0; 0).

The technique used to establish these results can be pushed further without much di�culty.

In Section 5 we show that random chains converge weakly as stochastic processes, and then

use the invariance principle to obtain results for various functionals, e.g., the area between a

convex chain and L.

In the remainder of this introduction we discuss the context for the above theorems and

mention some previous, related results. Most pertain to the lattice model of random chains

and respond to a question posed by Vershik about 15 years ago: \Is there a limit shape for

the set of convex lattice polygons contained in a given convex body K � R2?" Let K = [0; 1]2

denote the unit square and Pn, the set of all (upward) convex polygonal paths in K that

connect (0; 0) to (1; 1) and whose vertices are in 1
n
Z2. B�ar�any [1], Sinai [7], and Vershik [10]

each proved theorems giving a positive answer to the question. It is shown for example, that

for any " > 0,
jfP 2 Pn : �(P; L) < "gj

jPnj
! 1 (2)

as n ! 1. In other words a random convex lattice chain is close to the limit shape L with

(uniform) probability converging to 1. A main di�erence between (2) and Theorem 2 is that

in the lattice model the number of vertices on a chain P 2 Pn is a random variable. This
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Figure 2: Permuting segments in monotone chains

variable was studied in Sinai's paper [7] where in addition, a central limit theorem for the

deviations between P and L was stated. A further development in the lattice model appeared

in B�ar�any [2] where a statement like (2) was shown to hold for every compact, convex body

K � R2 with nonempty interior. In addition he characterized the limit shape as the convex

curve with maximal a�ne perimeter.

Finally, Theorem 2 may be regarded as a strengthening of the following recent result.

Proposition 1 (B�ar�any [3]) For every " > 0, Prob (�(Cn; L) > ")! 0;

Like (2), this is a weak law of large numbers but here, it pertains to the uniform model for

chains.

2 The Uniform Distribution on Chains

From now on Pi = (xi; yi), i = 1; : : : ; n will denote a sample of n points taken independently

and uniformly from [0; 1]2, and numbered so that x1 � � � � � xn. We write P0 = (0; 0) and

Pn+1 = (1; 1). The sample space is S = f z = (x1; : : : ; xn; y1; : : : ; yn) : xi; yi 2 [0; 1], xi
increasing g; probability is Lebesgue measure, normalized so Prob(S) = 1.

Proof of Theorem 1: By de�nition, the Pi are vertices on a convex chain Cn only if the

slopes of the di�erence vectors �i � Pi � Pi�1 are increasing, i = 1; : : : ; n + 1. For this it is

necessary that the sample de�ne a monotone chain; i.e., the yi are non-decreasing. Otherwise,

�1 has positive slope but some �i will have negative slope. The probability that a sample

de�nes a monotone chain is (n!)�1 since the subset M � S where y1 � � � � � yn clearly has

the same probability as the subset where y�1 � � � � � y�n , for any permutation �.

Now we condition on the event z 2 M , that the sample de�nes a monotone chain. We

make the following Claim: On the event M , all permutations of the slopes of the segments

�i are equally likely. The proof is based on an idea of Valtr [9] who made a similar statement

for increasing paths in a lattice. This fact will complete the proof of the theorem. First note

that points in M are in one-to-one correspondence with the set D = f� = (�1; : : : ;�n+1) :

�i = (ui; vi); ui; vi � 0; and
Pn+1

i=1 �i = (1; 1) g. For a chain in z 2 M with di�erences �, if

we interchange �i and �i+1 (see Figure 2), then

1. the vertices P0; : : : ; Pi�1 and Pi+1; : : : ; Pn+1 remain �xed.
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Figure 3: A sample of 4 points, its random monotone chain (dotted), and its convex chain

(solid).

2. Pi is reected at (Pi�1 + Pi+1)=2 to P
0
i .

3. in the new chain, the ranks of the slopes of �i and �i+1 are interchanged.

Therefore, since Pi is uniform in the rectangle with corners at Pi�1 and Pi+1, given the

other points, the chains z 2 M whose di�erences have slopes with ranks given by � have the

same probability as the chains whose slopes obey �0, a permutation di�ering from � by a single

transposition. Because all permutations may be obtained by a sequence of such transpositions,

the claim, and thus the theorem, is proved.

Remark 1: By de�nition, a random convex chain Cn may be generated as a sample of n

points in the square, rejecting the sample if (0; 0), (1; 1) and the points are not in convex

position; the Pi in an accepted sample are the internal vertices of the convex chain. Theorem

1 implies that the expected number of samples until one is accepted is n!(n + 1)!. On the

other hand, the proof suggests a more e�cient algorithm in which a single random sample is

transformed into a convex chain:

1. Generate P 0i = (ui; vi); i = 1; : : : ; n, a sample of n points uniformly distributed in the

square.

2. Writing u(i) for the i
th smallest among u1; : : : ; un [it is called the ith order statistic] and

v(i), the i
th smallest among v1; : : : ; vn [also an i

th order statistic], Qi = (u(i); v(i)) denotes

the n internal vertices on a random, monotone chain in M (dotted line in Figure 3).

3. Compute di�erence vectors �i = Qi�Qi�1, i = 1; : : : ; n+1, let �(j) be the vector with

the jth smallest slope, and compute Pi = �(1) + � � �+ �(i), i = 1; : : : ; n. These are the

internal vertices | in order of increasing x-coordinate | of a random convex chain Cn

(solid line in Figure 3).
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3 A Limit Shape Theorem

The proofs of Theorems 2 and 3 are direct, once we have a more convenient representation for

the vertices of a convex chain. By de�nition, the sample space for convex n-chains is S � R2n

de�ned by

S = f(x1; : : : ; xn; y1; : : : ; yn) : xi; yi 2 [0; 1]; xi; yi increasing, and
yi � yi�1
xi � xi�1

increasingg;

probability is Lebesgue measure, normalized so Prob(S) = 1. Given n, let (
; �) be a prob-

ability space on which we de�ne two sequences X1; : : : ; Xn+1 and Y1; : : : ; Yn+1 of mutually

independent random variables, each exponentially distributed; i.e., �fw 2 
 : Xi(w) � tg =
F (t) = 1� e�t. For each i, write

Ri =
Yi

Xi

Wi = Xi + Yi (3)

Zi =
Ri

1 + Ri
=

Yi

Wi
:

It is not di�cult to verify three known facts concerning exponential variables.

1. Zi is uniformly distributed in [0; 1].

2. Zi and Wi are independent.

3. For every n > 0, k � n, and any permutation (j1; : : : ; jn+1) of 1; : : : ; n+ 1, the ratio

Yj1 + � � �+ Yjk
Y1 + � � �+ Yn+1

(4)

is distributed like the kth order statistic of n independent, uniform random variables.

Write IA for the indicator of the event A � 
 and �x n > 0. For t 2 (0; 1) de�ne the

functions

xn(t) �
Pn+1

i=1 Wi(1� Zi)I[Zi�t]Pn+1
i=1 Wi(1� Zi)

=

Pn+1
i=1 XiI[Zi�t]Pn+1

i=1 Xi

(5)

and

yn(t) �
Pn+1

i=1 WiZiI[Zi�t]Pn+1
i=1 WiZi

=

Pn+1
i=1 YiI[Zi�t]Pn+1

i=1 Yi
: (6)

These functions describe the vertices of a random convex n-chain.

Lemma 1 Let X1; : : : ; Xn+1 and Y1; : : : ; Yn+1 be i.i.d. exponential random variables on (
; �)

with ratios Ri = Yi=Xi and write Zi = Ri=(1 +Ri). Let t1 < � � � < tn+1 be the ordered values

of Z1; : : : ; Zn+1. The points

Pi = (xn(ti); yn(ti)); i = 1; : : : ; n

are in convex position, and for any measurable A � S,

�fw : (xn(t1); : : : ; xn(tn); yn(t1); : : : ; yn(tn))(w) 2 Ag = Prob(A);

i.e., the Pi are the n internal vertices of a random, convex n-chain.
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Proof: Let j1; : : : ; jn+1 be the permutation that sorts the ratios; i.e., Rj1 < � � � < Rjn+1 .

Therefore ti = Zji . Observe from (6) that yn(t) is a step function with a step of size

Yji
Y1 + � � �+ Yn+1

at ti and that on [tk ; tk+1),

yn(t) = bk �
Yj1 + � � �+ Yjk
Y1 + � � �+ Yn+1

; k = 1; : : : ; n:

Similarly xn(t) has a step of size
Xji

X1 + � � �+Xn+1

;

at ti and on [tk; tk+1),

xn(t) = ak �
Xj1 + � � �+Xjk

X1 + � � �+Xn+1

:

So as t increases from 0 to 1, (xn(t); yn(t)) \jumps" from (0; 0) through the set of points

Pk = (ak; bk), k = 1; : : : ; n, to (1; 1). These are the vertices on a random convex chain because

from (4),

u(i) =
X1 + � � �+Xi

X1 + � � �+Xn+1

and v(i) =
Y1 + � � �+ Yi

Y1 + � � �+ Yn+1

are both distributed like the ith order statistics from a sample of n independent uniforms.

Also the points Qi = (u(i); v(i)) have di�erences �i = Qi �Qi�1 whose slopes are

Ri

�
X1 + � � �+Xn+1

Y1 + � � �+ Yn+1

�
; (7)

and they are ordered by the permutation j1; : : : ; jn+1. Therefore using part 2 of Remark 1,

Pk = �j1 + � � �+�jk

is seen to be the kth vertex on a random convex n-chain, and for t 2 [tk ; tk+1), Pk =

(xn(t); yn(t)).

To prove Theorem 2 we need the following statement; here, and throughout, k(x; y)k =p
x2 + y2.

Lemma 2 For each t 2 (0; 1) and " > 0,

Prob(k(xn(t); yn(t))� (2t� t2; t2)k > ")! 0

as n!1.

Proof:

Multiply the numerator and denominator of (6) by 1=(n+ 1) and apply the (weak) law of

large numbers to each to observe

yn(t)!
E(WZI[Z�t])

1

6



in probability; here W is the sum of 2 exponentials and Z is uniform on (0; 1) and independent

of W . Therefore yn(t)! t2 in probability. The same steps applied to (5) show that

xn(t)! [E(WI[Z�t])� E(WZI[Z�t])] = 2t � t2:

in probability.

Remark 2: For each t 2 [0; 1] the limits

(xt; yt) � (2t� t2; t2)

satisfy
p
yt = 1�p1� xt, t 2 [0; 1], because 1� xt = (1� t)2; therefore (2t� t2; t2) is on the

limit curve L de�ned in (2). Since L is the limit of (xn(t); yn(t)), it has been \discovered" as

a consequence of the method of proof. Previous limit shape theorems start with L and show

that the di�erence from a random chain converges to zero.

Remark 3: The tangent to L at (2t � t2; t2) has slope t=(1 � t). On the other hand for

t 2 [tk ; tk+1), (7) says that (xn(t); yn(t)) is the vertex on the n-chain supporting the line of

slope

Rjk+1

X1 + � � �+Xn+1

Y1 + � � �+ Yn+1

;

this quantity ! t=(1 � t) in probability as n ! 1 because t=(1 � t) 2 [Rjk ; Rjk+1) and the

ratio of sums converges to 1.

Proof of Theorem 2: For each n > 0 let X
(n)
1 ; : : : ; X

(n)
n+1 and Y

(n)
1 ; : : : ; Y

(n)
n+1 be mutually

independent exponential variables on 
 and de�ne xn(t) and yn(t) as in (5) and (6) except we

use Z
(n)
i = Y

(n)
i =(X

(n)
i + Y

(n)
i ) and the formulas

xn(t) =

Pn+1
i=1 X

(n)
i I

[Z
(n)

i
�t]Pn+1

i=1 X
(n)
i

; (8)

and

yn(t) =

Pn+1
i=1 Y

(n)
i I

[Z
(n)

i
�t]Pn+1

i=1 Y
(n)
i

: (9)

These functions describe a random convex chain Cn. Fix t 2 (0; 1). Lemma 2 was based on

the facts that for large enough n,

Prob(

����� 1

n+ 1

n+1X
i=1

X
(n)
i (I

[Z
(n)

i
�t] � (2t� t2))

����� > ") < "

and

Prob(

����� 1

n+ 1

n+1X
i=1

Y
(n)
i (I

[Z
(n)

i
�t] � t2)

����� > ") < ":

In fact a much stronger statement is true because X
(n)
i and Y

(n)
i have �nite variance. Ac-

cording to the complete convergence theorem of Hsu and Robbins [5], (see e.g. [4, p. 375]) the

denominators in (8) and (9) satisfy

1X
n=1

Prob(

����� 1

n+ 1

n+1X
i=1

(X
(n)
i � 1)

����� > ") <1

7



and
1X
n=1

Prob(

����� 1

n+ 1

n+1X
i=1

(Y
(n)
i � 1)

����� > ") <1;

and this implies that both
Pn+1

i=1 X
(n)
i =(n + 1) and

Pn+1
i=1 Y

(n)
i =(n + 1) converge to 1 almost

surely. The same result applied to the numerators shows that

1X
n=1

Prob(

����� 1

n+ 1

n+1X
i=1

[X
(n)
i (I

[Z
(n)

i
�t] � (2t� t2))]

����� > ") <1

and
1X
n=1

Prob(

����� 1

n+ 1

n+1X
i=1

[Y
(n)
i (I

[Z
(n)

i
�t] � t2)]

����� > ") <1:

Together these facts guarantee that for �xed t 2 (0; 1), (xn(t); yn(t)) ! (2t � t2; t2) almost

surely; i.e., for any " > 0, and almost all w 2 
 there is N(t; "; w) for which

k(xn(t); yn(t))� (2t� t2; t2)k < ";

n > N(t; "; w).

Now take ti = i=(m+ 1), i = 1; : : : ; m and apply the previous fact to each ti. For almost

all w 2 
 there is N("; w) such that

k(xn(ti); yn(ti))� (xti ; yti)k < "; for all i = 1; : : : ; m;

when n > N("; w). If m is su�ciently large, this condition for the m points of the chain is

su�cient to ensure that �(Cn; L) < 2" when n > N("; w), since the curves are convex.

Remark 4: Lemma 2 says that a random, convex n-chain Cn is likely to be close to L when

n is large. Theorem 2 says that in a sequence C1; C2; : : : of chains, Cj having j vertices, the

chains are sure to be close to L and they remain close. Note also that the chains need not be

independent.

4 A Central Limit Theorem

For each n > 0, we have mutually independent exponential variables X1; : : : ; Xn+1 and

Y1; : : : ; Yn+1, and use the de�nitions in (3), (5), and (6). We will show that for any t 2 [0; 1],

the deviations

Dn(t) �
�
xn(t)� (2t� t2); yn(t)� t2

�
have a limiting normal distribution, a fact responsible for the heading of this section. Consider

�rst

p
n + 1

h
yn(t)� t2

i
=

1p
n+1

Pn+1
i=1

h
Yi(I[Zi�t] � t2)

i
1

n+1

Pn+1
i=1 Yi

:

The random variables in the numerator sum are independent with mean zero and variance

�2
y(t) = 2t3(1� t)(1 + 2t) so by the central limit theorem

Prob

�
yn(t)� t2 � vp

n+ 1

�
! 1q

2��2
y(t)

Z v

�1
e
� w

2

2�2
y
(t)dw:

8



Similarly the quantity

p
n + 1

h
xn(t)� (2t� t2)

i
=

1p
n+1

Pn+1
i=1

h
Xi

�
I[Zi�t] � (2t� t2)

�i
1

n+1

Pn+1
i=1 Xi

has a limiting normal distribution because the numerator is the sum of random variables with

mean zero and variance �2
x(t) = 2(1� t)3t(3� 2t). Thus

Prob

�
xn(t)� (2t� t2) � vp

n + 1

�
! 1p

2��2
x(t)

Z v

�1
e
� w

2

2�2
x(t)dw:

Clearly �2
x(t) = �2

y(1� t). Not only does the central limit theorem hold independently for each

coordinate of the point (xn(t); yn(t)) representing vertices of a random convex chain, but also

Theorem 3 For each t 2 [0; 1]

P (u; v) = Probfxn(t) � (2t� t2) +
up
n + 1

and yn(t) � t2 +
vp
n + 1

g

converges to the bivariate normal distribution with mean (0; 0) and covariance matrix

Kt =

 
�2
x(t) �x;y(t)

�x;y(t) �2
y(t)

!
;

�2
x(t) = 2(1� t)3t(3� 2t), �2

y(t) = 2t3(1� t)(1 + 2t), and �x;y(t) = 3t2(1� t)2. Thus

P (u; v)!
Z u

�1

Z v

�1
�(r; s)drds;

where �(r; s) = 1

2�
p

det(Kt)
exp(�1

2
(r; s)K�1

t (r; s)T).

Proof: Using (6) and (7) we write
p
n + 1Dn(t) as

1p
n+1

Pn+1
i=1

�
Xi(I[Zi�t] � (2t� t2)); An[Yi(I[Zi�t] � t2)]

�
1

n+1

Pn+1
i=1 Xi

; (10)

where An = (
Pn+1

i=1 Xi)=(
Pn+1

i=1 Yi). Concentrating on the numerator, we estimate the proba-

bility that it is componentwise less than (u; v), an arbitrary pair of reals. This is

Prob

"
1p
n+ 1

n+1X
i=1

�
Xi(I[Zi�t] � (2t� t2)); Yi(I[Zi�t] � t2)

�
� (u;

v

An

)

#
:

The sum adds independent random vectors, each of mean (0; 0); the expectation of the product

of the components of these vectors is easily veri�ed to be �x;y(t) = 3t2(1� t)2. Therefore the

sum has a limiting normal distribution with mean (0; 0) and covariance matrix Kt. The

asserted limit statement holds because both An and the denominator of (10) converge to 1.

In fact all �nite dimensional distributions along a random chain are asymptotically normal.

Suppose we are given s1 < � � �< sk in [0; 1]. An argument similar to the previous one leads to

the conclusion that (xn(s1); yn(s1); : : : ; xn(sk); yn(sk)) converges to a certain 2k-dimensional

normal random variable.
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5 Weak Convergence

Again, for each n > 0 we have mutually independent exponential variables X1; : : : ; Xn+1

and Y1; : : : ; Yn+1, and use (5) and (6) to de�ne xn(t) and yn(t), t 2 [0; 1]. In Section 2 we

showed that (xn(t); yn(t)) describes the vertices of a random convex chain Cn. Here we study

the chain itself and show that it converges as a stochastic process. This allows us to invoke

the invariance principle to study various functionals of the chain, for example A(Cn; L) and

�(Cn; L), respectively the area and Hausdor� distance between the chain and the limit shape.

Under the notation of Lemma 1, Wi = Xi + Yi, Zi = Yi=Wi and t1 < � � � < tn+1 denotes

the ordered values of Z1; : : : ; Zn+1. For each t 2 [tk; tk+1] de�ne

Cn(t) =
tk+1 � t

tk+1 � tk
(xn(tk); yn(tk)) +

t � tk

tk+1 � tk
(xn(tk+1); yn(tk+1));

k = 0; : : : ; n, where t0 = 0. By Lemma 1, this function interpolates linearly between vertices

on a random n-chain C, so Cn(t), 0 � t � 1 provides a parametrization of the chain. Write

L(t) = (x(t); y(t)) = (2t� t2; t2)

and de�ne

�n(t) =
p
n+ 1(Cn(t)� L(t)) : (11)

Since jCn(t)� (xn(t); yn(t))j < c logn=n almost surely, we can write

�n(t) =
p
n + 1((xn(t); yn(t))� L(t)) + o(1);

a fact we will use repeatedly.

Let C2
0 [0; 1] be the Banach space of all continuous functions g(t) from [0; 1] to R2 under

the sup-norm kgk1 = sup0�t�1 kg(t)k. De�ne

f(z; t) = (f1(z; t); f2(z; t)) ;

where

f1(z; t) =
p
6(1� z)(I[z�t] � (2t� t2)) ; f2(z; t) =

p
6z(I[z�t] � t2);

and, letting B(z) be a standard Wiener process, de�ne

�(t) =

Z 1

0
f(z; t)dB(z): (12)

From (10)

�n(t) =

1p
n+1

Pn+1
i=1

Wip
6
(f1(Zi; t); Anf2(Zi; t))

1
n

Pn+1
i=1 Xi

+ o(1);

and this has a normal limit. Calculation of the covariance operator of �n shows that

lim
n!1

Cov(�n(t); �n(s)) = K(t; s) =

Z
f(z; t)Tf(z; s) dz;

which is identical to that of �(�). (In fact Kt = K(t; t) is explicitly given in Theorem 3.) This

is the intuition behind the following statement which gives much more information about the

convergence.

10
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Figure 4: Area and Hausdor� distance.

Theorem 4 The stochastic process �n(�); n � 1, converges weakly (in distribution) to the

Gaussian process �(�) in (12) as random elements in C2
0 [0; 1]; i.e.,

lim
n!1

Eh(�n) = Eh(�) (13)

for all bounded continuous mappings h from C2
0 [0; 1] to the reals. The covariance operator of

�(�) is K(t; s) =
R
f(z; t)Tf(z; s) dz. In addition,

sup
n
E exp[�k�nk1] <1

for all � <1.

Proof: (The argument is straightforward, but somewhat technical, so it appears in the ap-

pendix.)

Theorem 4 can be used to investigate the convergence of many functionals of the random

chain Cn. Perhaps the easiest example is the coordinate functional ht(�) = �(t) which gives

Theorem 3.

The boundedness of the moment generating function implies that (13) also holds for all

continuous mappings h from C2
0 [0; 1] to the reals which, for some � satisfy jh(g)j � exp[�kgk1],

g 2 C2
0 [0; 1], even for unbounded ones. This property is needed in some of the following

applications.

We �rst study the limiting Hausdor� distance. From (11) we write

�n(t) =
p
n+ 1((xn(t); yn(t))� L(t)) + o(1) = (�1;n(t); �2;n(t))

and note that (t; t � 1)=
p
t2 + (t� 1)2 is the unit normal to the tangent line at L(t). Then

(see Fig. 4) d(Cn(t); L) and d(Cn; L(t)) [distance from Cn(t) to the limit shape and distance

from L(t) to the random chain, respectively] are both

(1 + o(1))

����� t�1;n(t) + (t� 1)�2;n(t)p
t2 + (t� 1)2

����� :

11



Therefore
p
n�(Cn; L) = h(�n) + o(1) where

h(�n) = sup
t
(j(t�1;n(t) + (t� 1)�2;n(t))j=

q
t2 + (t� 1)2):

Clearly h is continuous and h(g) � 2kgk1 � exp[�kgk1], � = 2. Now,

E(h(�)) = E sup
t

�����
Z 1

0

(tf1(z; t) + (t� 1)f2(z; t))p
t2 + (t� 1)2

dB(z)

����� ;
and Theorem 4 implies

Corollary 1 The Hausdor� distance between the random convex chain Cn and its limit L

satis�es

lim
n!1

p
nE�(Cn; L) = E sup

0�t�1

����
Z 1

0
f�(z; t)dB(z)

���� <1;

where

f�(z; t) =

p
6f(t� z)I[z�t] � t2(2� 3z � t + 2tz)gp

t2 + (t� 1)2
:

Next let A(Cn; L) denote the area between the random convex chain Cn and its limit L

and vn(t) the vertical distance from L(t) to Cn (Fig. 4). Then

p
nA(Cn; L) =

p
n

Z 1

0
vn(t)dx(t) = 2

p
n

Z 1

0
(1� t)vn(t)dt:

Since (see Figure 4)
p
n(1� t)vn(t) = jt�1;n(t) + (t� 1)�2;n(t)j+ o(1),

p
nA(Cn; L) =

Z 1

0
jt�1;n(t) + (t� 1)�2;n(t)jdx(t) + o(1):

The integrand converges uniformly on 0 � t � 1� " so we write

p
nA(Cn; L) = h"(�n) + 2

p
n

Z 1

1�"
(1� t)vn(t)dt+ o(1); (14)

where

h"(�n) =

Z 1�"

0
jt�1;n(t) + (t � 1)�2;n(t)jdx(t):

p
nvn(t)(1� t) converges in distribution to jR 10 [tf1(z; t) + (t � 1)f2(z; t)]dB(z)j, which is the

absolute value of a normal random variable with mean zero and variance Vt =
R 1
0 [tf1(z; t) +

(t�1)f2(z; t)]
2dz, by Theorem 3. A simple calculation shows Vt to be 2t

3(1� t)3. In addition,

jh"(�n)j � k�nk1, so that by Theorem 4,

Eh"(�n)! Eh"(�) =

Z 1�"

0
jNormal(0; 2t3(1� t)3)jdt:

It is easy to show that lim"!0 limn!1 of the last two terms in (14) is zero. Therefore, since

the L1-norm of Normal(0; 2t3(1� t)3) is 4
p
(t3(1� t)3=�),

Corollary 2 The area A(Cn; L) between Cn and L satis�es

lim
n!1

p
nE[A(Cn; L)] = 2

r
2

�

Z 1

0

q
2t3(1� t)3dt =

4p
�

�2(5=2)

�(5)
=

3
p
�

32
:

12



Appendix | Proof of Theorem 4

Weak convergence is easy to prove. From (5), (6) and the de�nition of (f1(z; t); f2(z; t)) it

follows that

(xn(t); yn(t))� L(t)

(n+ 1)�1=2
=

�Pn+1
i=1 (Wi=

p
6)f1(Zi; t)

(n+ 1)�1=2
Pn+1

i=1 Xi

;

Pn+1
i=1 (Wi=

p
6)f2(Zi; t)

(n+ 1)�1=2
Pn+1

i=1 Yi

�
: (15)

By the strong law of large numbers
Pn

1 Xi=n ! 1,
Pn

1 Yi=n ! 1 and
Pn

1 Wi=n ! 2. By

the Borel-Cantelli lemma, lim supnmax1�i�nWi= logn = 1. Thus, by (11) and (15), the weak

convergence of �n follows from that of �0n(t) = (n + 1)�1=2
Pn

i=1(Wi=
p
6)f(Zi; t) under the

k � k1 norm, and the two should share the same limiting distribution if the weak convergence

holds. Since F = f(w=
p
6)f(z; t) : 0 � t � 1g is a Vapnik-�Cervonenkis class of functions

of (w; z), the weak convergence of �0n follows from standard results in the empirical process

theory, e.g. van der Vaart and Wellner [8, Theorems 2.6.7 and 2.5.2]. The limiting covariance

operator E(W1=
p
6)2fT (Z1; t)f(Z1; s) of �

0
n is clearly identical to K(t; s) as E(W1=

p
6)2 = 1

and Z1 is independent of W1 and uniformly distributed on [0; 1], so (13) holds.

To prove the boundedness E exp[�k�nk1] we shall compare �n(t) and (15) with

�00n(t) =
p
n + 1

Pn
i=1Wif(Zi; t)Pn

i=1Wi
: (16)

By the large deviation results for gamma-distributions,

1

n
logP

� nX
i=1

Xi

n
� c

�
! I(c) 80 < c < 1;

1

2n
logP

� nX
i=1

Wi

2n
> c

�
! I(c) 8c > 1;

where I(c) = 1 � c + log c. Since I(c)! �1 as c ! 0 or c ! 1 and k�nk1 � p
n+ 1, the

boundedness of E exp[�k�nk1] for all � follows from that of E exp[�k�00nk1] for all �. Note

here that by (11), the maximum of each component of �n(t) in absolute value over 0 < t < 1

is identical to those of (15). Since fZig are independent of fWig, (16) and the standard

symmetrization methods imply

E exp[�k�00nk1] � E exp

�
2�


n+1X
i=1

ai�i


1

�
; (17)

where ai = ai(t) =
p
n+ 1Wif(Zi; t)=

Pn
i=1Wi and f�ig are Rademacher variables (i.e., "i =

�1, each with probability 1=2), independent of f(Wi; Zi)g. Let ~E be the expectation with

respect to f�ig given f(Wi; Zi)g. Since F = f(w=
p
6)f(z; t) : 0 � t � 1g is a Vapnik-

�Cervonenkis class of functions, by the Dudley-Pisier and Hoe�ding inequalities, (cf. van der

Vaart and Wellner [8, Corollary 2.2.8]).

~�n
def
= ~E


n+1X
i=1

ai�i


1
� KJ(~�n) (18)

for some �nite constantK, where J(c) <1 is the entropy integral of F and ~�2n =
Pn+1

i=1 kaik21.
We apply Talagrand's deviation inequalities for product measures, (cf. e.g. Ledoux [6, top of

13



p. 70]) to f = (
Pn+1

i=1 ai�i)=~�n (but using �~�n instead of �) to see

~E exp

�
�


n+1X
i=1

ai�i


1

�
� exp [�~�n + �2~�2n=2] (19)

for all � > 0. It follows from inequalities (17){(19) that, for any M ,

Ee�k�
00

nk1 � e2K�J(M)+2�2M2

+ e2�
p

12(n+1)Prob

�
12(n+ 1)

Pn+1
i=1 W

2
i

(
Pn+1

i=1 Wi)
2

> M2

�
;

since k�00nk1 � p12(n+ 1) and ~�2n � 12(n+1)
Pn+1

i=1 W
2
i =(

Pn+1
i=1 Wi)

2
. For each � and as n!

1, the probability in the above expression is of an order smaller than expf�2�p12(n+ 1)g
for large M .
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