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Abstract

We prove the theorem mentioned in the title for Rn where n = 3. The case of the
simplex was known previously. Also the case n = 2 was settled, but there the infimum was
some well-defined function of the side lengths. We also consider the cases of spherical and
hyperbolic n-spaces. There we give some necessary conditions for the existence of a convex
polytope with given facet areas and some partial results about sufficient conditions for the
existence of (convex) tetrahedra.

1. Preliminaries

Minimum-area convex polygons with given side lengths are characterized
by the following theorem of Böröczky–Kertész–Makai, Jr.
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Theorem A ([11]). Let m = 3 and sm = sm−1 = . . . = s1 > 0 and sm <
sm−1 + · · ·+ s1. Then the infimum of the areas of convex m-gons in R2 that
have side lengths si equals the following number A. This number A is the
minimum area of all triangles with side lengths

∑
i∈I1 si,

∑
i∈I2 si,

∑
i∈I3 si.

The minimum is taken over all partitions {I1, I2, I3} of {1, . . . ,m} into non-
empty parts for which the three resulting side lengths satisfy the non-strict
triangle inequality. If the cyclic order of the sides is fixed then an analogous
statement holds, where the sides with indices in each of the sets I1, I2, I3
form an arc of the polygonal curve.

When we investigate simple polygons instead of convex polygons, we have
the following result, due to Böröczky–Kertész–Makai, Jr. and Nikonorova.

Theorem B ([11, 42]). Let m = 3 and sm = sm−1 = . . . = s1 > 0 and
sm < sm−1 + · · ·+ s1. Then the infimum of the areas of simple m-gons
in R2 that have side lengths si equals the following number B. This num-
ber B is the minimum area of all triangles with side lengths

∑
i∈I1 εisi,∑

i∈I2 εisi,
∑

i∈I3 εisi. The minimum is taken over all partitions {I1, I2, I3}
of {1, . . . ,m} into non-empty parts, and all signs ε1, . . . , εm, for which the
three resulting side lengths are non-negative and satisfy the non-strict trian-
gle inequality.

Moreover, if this minimum is not 0 then we may additionally suppose
the following. For each j ∈ {1, 2, 3} the sum

∑
i∈Ij εisi cannot be written as∑

i∈I′j
εisi +

∑
i∈I′′j

εisi where {I ′j , I ′′j } is a partition of Ij and where these

partial summands are both positive.

We remark that the proofs in the two papers were different. Moreover,
in [42] the result is formulated in a special case only, but all ingredients of
the proof of the general case are present in [42] as well.

In our paper we write Rn, Hn and Sn for the Euclidean, hyperbolic and
spherical n-space, respectively. Theorems A and B extend to S2 and H2 as
follows.

Theorem C ([11]). Let m = 3 and sm = sm−1 = . . . = s1 > 0 and sm <
sm−1 + · · ·+ s1. Rather than R2 we consider H2 and S2, but in case of S2
we additionally suppose

∑m
i=1 si 5 π. Then in both cases the word-for-word

analogues of Theorems A and B hold for H2 and S2.
In each of these three theorems the question of finding the infimum is

reduced to finding the minimum of a set of non-negative numbers whose
cardinality is bounded by a function of m. In Theorems A and B, this bound
is 3m and 6m, respectively. In Theorem A with given cyclic order of the sides,
the bound is

(
m
3

)
. In Theorem C, the bounds are the same as for Theorems A

and B.

Böröczky et al. [11] posed the question whether it is possible to extend
these theorems to dimensions n = 3. Their conjecture was that, analogously



THE INFIMUM OF THE VOLUMES OF CONVEX POLYTOPES IS 0 3

to the two-dimensional case, the solutions would be given as the volumes of
some simplices. Unfortunately, they were unaware of the fact that the case
of simplices already had long ago been solved, namely in 1938, as we will
describe below.

The analogous problem about the maximal volume of simplices with
given facet areas (an isoperimetric-type problem) was solved by Lagrange [35]
in 1773 for R3 and by Borchardt [9] in 1866 for Rn. A simplex is called ortho-
centric if it has an orthocentre, i.e., a common point of all altitudes. It can
be characterized also as a simplex where any two disjoint edges (or, equiv-
alently, any two disjoint faces of dimension at least 1) are orthogonal. For
this reason, an orthocentric simplex is sometimes also called orthogonal , al-
though orthocentric is the presently used terminology. For a relatively recent
exposition of the above-mentioned facts and some other properties of ortho-
centric simplices, see for example [24]. See also the recent paper [20], whose
first part is a comprehensive survey about orthocentric simplices. There it
is also stressed that for many elementary geometrical theorems the objects
in Rn corresponding to triangles are not the general simplices but just the
orthocentric ones.

Theorem D ([9,35]). Let n = 3. Then among the simplices in Rn with
given facet areas Sn+1 = . . . = S1 > 0 (if such simplices exist) there exists
(up to congruence) exactly one simplex of maximal volume. It is also the
(up to congruence) unique orthogonal simplex with these facet areas.

Unaware of the above-mentioned solution of the maximum problem,
A. Narasinga Rao [50] posed the following problem in 1937:

“The areas of the four facets of a tetrahedron are α, β, γ, δ. Is
the volume determinate? If not, between what limits does it lie?”

This problem was soon solved independently by Venkatachaliengar, Iyen-
gar, Auluck, and Iyengar–Iyengar [6,30,31,61]. In fact, under the above hy-
pothesis the volume is not determined (supposing that such tetrahedra exist).
Moreover, they reproved that there is up to congruence exactly one tetrahe-
dron of maximal volume with the given facet areas, which is also orthogonal
– and they reproved that it is also the unique orthocentric tetrahedron with
these facet areas. Moreover, they proved that there exists a tetrahedron with
the given face areas that has an arbitrarily small volume. A generalization
of their first mentioned result to multi-dimensional Euclidean spaces was ob-
tained in [30,31,61]. We cite only their statement about the infimum of the
volumes.

Theorem E ([6, 30, 31, 61]). Let n = 3 and Sn+1 = Sn = . . . = S1 > 0.
Then there exists a simplex in Rn with these (n− 1)-volumes of the facets if
and only if

Sn+1 < S1 + S2 + · · ·+ Sn.

If this inequality holds, then, for any ε > 0, there is a nondegenerate simplex
in Rn with facet areas S1, S2, . . . , Sn+1 and volume at most ε.
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The proof of Theorem E by Iyengar and Iyengar [31] was based on the
following statement, which is valid for simplices only [31, p. 306]. Let T be
a simplex with facet areas S1, S2, . . . , Sn+1 and respective outer unit facet

normals u1, . . . , un+1. Then we have
∑n+1

i=1 Siui = 0. Let us consider an
(n+ 1)-gon P ⊂ Rn with side vectors S1u1, . . . , Sn+1un+1. Its convex hull
T ′ is then also a simplex, whose volume is invariant under permutations
of the side vectors of P . Moreover, for the volumes of T and T ′, we have

V (T )n−1 = V (T ′)
[
(n− 1)!

]2
/nn−2. Based on this relation and some calcu-

lations, Iyengar and Iyengar could make V (T ′) arbitrarily small. However,
this can also be done by choosing u1, . . . , un+1 in a small neighbourhood of
the x1 . . . xn−1-coordinate hyperplane. See also the first and third proofs of
our Theorem 2.

The question of maximal volume of polytopes with given facet areas is
much less understood.

For non-degenerate polytopes in Rn with given facet areas and given
facet outer unit normals, we have the following result of Brunn [14], see
also [41, §10.5]. The maximal volume is attained for the (up to translation)
unique convex polytope with these given facet areas and given facet outer
unit normals. (For coinciding facet outer unit normals, one has to add their
areas.) This result was rediscovered in [10, Theorems 2 and 3] and applied
to solve another problem. In crystallography, this set of maximal volume is
called the Wulff shape [62]. It minimizes total surface energy of the crystal
and is always convex. For a nice description of the interplay of mathematics
and crystallography see [12, §10.11].

For any given number m of facets and fixed total surface area, the poly-
tope of largest volume has an inball and the facets must touch the inball
at their centroids (Lindelöf’s theorem, see [56, p. 43] or [22, II.4.3, p. 264;
English ed. IX.43, p. 283].

Now let us restrict our attention to R3. L. Fejes Tóth [21, Theorem 1,
p. 175] (see also [22, II.4.3, p. 265, Satz; English ed. IX.43, p. 283, Theorem])
asserts that among (convex) polyhedra with given surface area and m = 4, 6,
and 12 faces, the largest volume is attained for the regular tetrahedron, cube,
and regular dodecahedron, respectively. He gave a bound on the maximum
volume [21, p. 175], valid for each m = 4, which is also asymptotically sharp
for m → ∞. For m = 5, the extremal polyhedron is the regular triangular
prism that has an inball [56, p. 41]. A recent complete and simple proof of
this fact is given in [25, Theorem 5.10]. However, for m = 8 and m = 20, the
extremal polyhedron is not the regular octahedron and icosahedron, respec-
tively [26, p. 234]. For more information about this isoperimetric problem
about convex polyhedra in R3 with given number of faces, see the old survey
in [26] or the recent survey in the introduction of [57]. For recent numeri-
cal results (examples) about the isoperimetric problem for polyhedra, with
large symmetry groups, see [36].
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A different problem is to maximize the volume enclosed by a given sur-
face that may be bent (isometrically) but not stretched. A theorem of S. P.
Olovianishnikoff says the following. For convex bodies P,Q ⊂ R3, where P
is a convex polyhedron, any mapping of ∂P to ∂Q preserving the geodesic
distance of every pair of points of ∂P (i.e., the length of the shortest arc in
∂P joining these points) extends to an isometry of R3. See [3, Ch. 3, §3, 2,
p. 150, Satz 1] for a special case, and S. P. Olovianishnikoff [43], p. 441, The-
orem for the general case described above. For convex bodies P,Q ⊂ R3

where ∂P is of class C2, the analogous theorem holds. See [2, Ch. 8, §5,
p. 337] for a special case and A. V. Pogorelov [46, Introduction, §1, A, p. 8,
Theorem 1, and Ch. 3, 3, p. 66, Theorem 1] for the general case described
above.

However, this uniqueness theorem does not say that this unique con-
vex polyhedron would have the maximal volume. The opposite is true: the
surface of every convex polytope can be isometrically deformed to increase
the enclosed volume [44]. For example, the cube can be “blown up”: the
face centers move outwards and the vertices move closer to the center. The
face diagonals maintain their original length, but the original edges of the
cube are longer than necessary: they become crumpled, with wrinkles per-
pendicular to the original edge. Globally, the polyhedron becomes more
“ball-like”. This volume-increasing phenomenon for convex bodies was first
observed by A. V. Pogorelov in the theory of thin shells in mechanics [47,48].
(A short summary of the results of [47] and of some other related results is
given in [49].) An animation showing a deformation of the cube with a vol-
ume increase by a factor of about 1.2567 has been produced by Buchin and
Schulz [15]. The problem of enclosing the largest volume with the surface of
a given convex polyhedron, possibly under the constraint of preserving the
original symmetries, has been treated in many papers [4,8,16,38,39,44,58,59]
(“inextensional” in the title of [58] means “isometric w.r.t. the geodesic dis-
tance”). (According to a private communication from the second author
of [39], in the tableau summarizing the numerical results in pp. 154 and 181,
the values in the middle column for the dodecahedron and the icosahedron
are not correct. They are actually smaller than the values in the third col-
umn, which are proved in [39], and those are the best published values.) For
a recent survey on this and related questions see [51].

Notation. In this paper, V (·) denotes volume of a set, S(·) its surface
area, diam(·) its diameter, aff(·) its affine hull, lin(·) its linear hull, and ∂(·)
its boundary. If we want to indicate also the dimension n then we will write
Vn(·) for the n-volume. Sometimes we will refer to the (n− 1)-volume in Rn,
Hn or Sn as area. We write κn for the volume of the unit ball in Rn. For
x, y in Rn, Hn or Sn, we write [x, y] for the segment and ℓ(x, y) for the line
joining x and y. On Sn, x and y must not be antipodes, and we mean by
[x, y] the minor arc on the great circle through x and y. The line ℓ(x, y) is
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well-defined only for x ̸= y – writing ℓ(x, y) we suppose x ̸= y. We denote
the distance between x and y by |xy|.

For standard facts about convex bodies we refer to [55].

2. New Results

2.1. Euclidean Space

The following theorem can be considered as folklore, but we could not
locate a proof. For completeness, we state and prove it.

Theorem 1. Assume that m > n = 3 are integers, and consider any
sequence of numbers Sm = Sm−1 = . . . = S1 > 0. Then the following state-
ments are equivalent:

(i) There exists a non-degenerate polytope P ⊂ Rn with m facets and with
facet areas S1, S2, . . . , Sm.

(ii) There exists a non-degenerate convex polytope P ⊂ Rn with m facets
and with facet areas S1, S2, . . . , Sm.

(iii) The inequality Sm < S1 + S2 + · · ·+ Sm−1 holds.

If we also allow degenerate polytopes in (i) or (ii), then they imply, rather
than (iii),

(iii′) Sm 5 S1 + · · ·+ Sm−1 with equality if and only if the polytope degen-
erates into the doubly counted facet with area Sm.

Theorem 2. Let m > n = 3 be integers. Let ε > 0 and Sm = Sm−1 =
. . . = S1 > 0 be a sequence of numbers such that Sm < S1 +S2 + · · ·+Sm−1.
Then there exists a non-degenerate convex polytope P ⊂ Rn with m facets
and with facet areas S1, S2, . . . , Sm and with volume V (P ) 5 ε.

Remark 1. This theorem shows that for dimension n = 3 there are no
separate questions for convex and general polytopes. Recall that for dimen-
sion n = 2 these questions had different answers, see Theorems A and B.

We give three different proofs of Theorem 2. The first one is indepen-
dent of Theorem D and reproves the case of the simplex. It is an existence
proof by contradiction. The second proof uses Theorem D. It reduces the
question to the case of simplices. Both proofs rely on delicate convergence
arguments (see Sections 3 and 4.0). The third proof is geometric. It con-
structs examples with small volumes that are like “needles”. In particular we
will give an explicit upper bound for the volumes of our examples in terms
of the “steepness” of their facets (Lemmas 2 and 4). If we consider n,m and
the facet areas as fixed then our estimate is sharp up to a constant factor
(see Lemma 4).
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Note that there is a very interesting dichotomy. In Theorems A and B for
R2 (and also in Theorem C for H2 and S2) we have some definite functions
of the side lengths as infima. In Theorem 2 for Rn with n = 3 the infimum
does not depend at all on the facet areas.

2.2. Hyperbolic Space

For the hyperbolic case we have a word-for-word analog of the impli-
cations (ii)=⇒(iii) and (ii)=⇒(iii′) from Theorem 1 (under the respective
hypotheses).

Proposition 1. Let P ⊂ Hn be a polytope with facet areas Sm = Sm−1 =
. . . = S1 > 0. Then the inequality Sm 5

∑m−1
i=1 Si holds, with equality if and

only if P degenerates into the doubly counted facet with area Sm.

Next we give two statements that show the following. The necessary
condition in Proposition 1 together with the inequalities Si 5 π is not suf-
ficient even for the existence of a tetrahedron in H3 with these facet areas.
That is, there are some further necessary conditions. Recall that the area of
a simple k-gon in H2 is bounded by (k − 2)π.

Proposition 2. Let us admit polyhedra in H3 whose vertices are all dis-
tinct but which possibly have some infinite vertices. Then a polyhedron with
facet areas Sm, Sm−1, . . . , S3 maximal (i.e., (k − 2)π for a k-gonal face) but
with facet areas S2, S1 not maximal does not exist.

Proposition 2 would suggest that for polyhedra in H3, if all facets but
two have areas nearly maximal (i.e., close to (k − 2)π for a k-gonal face)
then the same statement would hold for the remaining two facets as well.
However, this is not true. Even in the convex case, these two facets can have
areas close to 0, as shown by the following example. Consider a very large
circle in H2 ⊂ H3 and a regular l-gon p1 . . . pl inscribed in it (l = 3). Choose
pl+1 on our circle with |plpl+1| = ε. Then all triangles with vertices among
the pi’s have areas close to π except those that contain both pl and pl+1,
and those have very small areas. Now perturb these points pi a little bit in
H3 so that no four lie in a plane. Then their convex hull is a triangle-faced
convex polyhedron, and the perturbation of the segment [pl, pl+1] is an edge
of it. (To see this, use the collinear model. For any convex polygon with
strictly convex angles, its edges will remain edges of the convex hull after
a sufficiently small perturbation.) The two facets of our polyhedron incident
to this edge have very small areas while all other facets have areas close to π,
i.e., are nearly maximal.

However, an analogous statement for all but one facets will be shown in
the convex case.

Proposition 3. Assume that we have a convex polyhedron in H3 with
infinite vertices admitted. Suppose its m facets are a km-gon, . . ., k1-gon and
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have respective areas Sm = . . . = S2 = S1 > 0. Then for any i ∈ {1, . . . ,m}
we have

(ki − 2)π − Si 5
∑

15j5m
j ̸=i

(
(kj − 2)π − Sj

)
.

If there is a finite vertex whose incident edges do not lie in a plane, then the
above inequality is strict.

In §6 Remark 9, it will be explained that, in a sense, there are no inter-
esting analogues of Proposition 3 for R3 and S3.

Now we turn to sufficient conditions for the existence of hyperbolic tetra-
hedra.

Theorem 3. Assume that π/2 > S4 = S3 = S2 = S1 > 0, S4 < S1+S2+
S3, and one of the inequalities

(1) tan(S1/2) >
1− cosS4

2
√
cosS4

,

or

(2) S4 = S3 + S2

holds. Then there exists a non-degenerate tetrahedron T ⊂ H3 with facet
areas S1, S2, S3, S4.

2.3. Spherical Space

For the spherical case, we give some necessary and some sufficient con-
ditions for the existence.

We say that a set X ⊂ Sn (for n = 2) is convex if, for any two non-
antipodal x, y ∈ X, the connecting minor great-S1 arc [x, y] also belongs
to X. This definition classifies an antipodal pair of points as a convex set.
But these are the only convex sets which are disconnected, and since the
sets we consider contain non-trivial arcs, these exceptional cases play no role
for us. By a nondegenerate simplex in Sn we mean the set of those points
of Sn that have non-negative coordinates in some (non-orthogonal) coordi-
nate system with origin at 0, with its usual face lattice. A simplex in Sn is
a nondegenerate simplex, or a limiting position of nondegenerate simplices.
Thus, for example, we will not consider concave spherical triangles or spher-
ical triangles with sides 3π/2, π/4, π/4 or 2π, 0, 0, but a spherical triangle
with angles π, π/5, π/5 and sides π, π/3, 2π/3 is a (degenerate) simplex.
As a point set, this simplex is indistinguishable from a digon. A different
division of the digon side, like π, π/3, 3π/4, is regarded as a different sim-
plex. To emphasize the fact that we do not just regard a simplex as a point
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set but we consider its face structure, we will often refer to it as a combi-
natorial simplex. All simplices in Sn, as well as in Rn and Hn, are convex.
A simplex in an open half-Sn is always nondegenerate. (Observe that an
open half-Sn also has a collinear model in Rn that also respects convexity.
For the open southern half-Sn in Rn+1 consider the central projection to the
tangent space Rn at the South Pole.)

Proposition 4. Let P ⊂ Sn be a polytope with facet areas Sm = . . . =
S1 > 0, such that each facet lies in some closed half-Sn−1. Then

Sm 5 S1 + · · ·+ Sm−1.

Here strict inequality holds if P is contained in an open half-Sn and does
not degenerate into the doubly-counted facet with area Sm.

If P is a convex polytope contained in some closed half-Sn, then

m∑
i=1

Si 5 Vn−1(Sn−1).

Here strict inequality holds if P is contained in an open half-Sn.

Remark 2. Clearly, in the first part of Proposition 4, the hypothesis
that each facet lies in some closed half-Sn cannot be dispensed. Already for
n = 2, we may even have a degenerate combinatorial simplex lying in some
great-Sn−1 with one facet strictly containing a half-Sn−1. In the second part
of Proposition 4, if P is contained in a closed half-Sn but not in an open half-
Sn, then equality can occur: P can degenerate so that one facet is a closed
half-Sn−1, and the union of the other facets is this closed half-Sn−1 or the
closure of its complement in this Sn−1.

Remark 3. We do not know how to algorithmically decide whether
a simplex with given facet areas Si in Hn or Sn exists, for n = 3. The
main difficulty are the transcendental functions that enter into the calcu-
lation of volumes. In H3 and S3, however, we have a positive answer to a
slightly modified question. The question whether there is a tetrahedron (for
S3 in the sense described above) with facet areas S1, S2, S3, S4, is decidable
if we are given tan(S1/2), . . . , tan(S4/2) as inputs.

We model this question by setting up a system of equations and inequal-
ities in the unknown coordinates (xij) of the four vertices. (For S3 we use

its standard embedding into R4, while for H3 we use the hyperboloid model
in R4.) The equations express the condition that the vertices lie on S3 or H3,
and that the facet areas of the corresponding tetrahedron should be S1, S2,
S3, S4. Further inequalities are necessary for S3 to ensure our definition of
simplices. We are interested in the set of 4-tuples (S1, S2, S3, S4) for which
there exist coordinate vectors (xij) that fulfill the conditions. These condi-
tions turn out to be polynomial equations and inequalities (these polynomials
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having rational coefficients) in tan(S1/2), . . . , tan(S4/2) and in the coordi-
nates xij . By a fundamental result of Tarski [60], this existence question is
therefore (in principle) decidable (we can eliminate the variables xij). More

specifically, the set of quadruples
(
tan(S1/2), . . . , tan(S4/2)

)
for all tetrahe-

dra in H3 or S3 can be described by a finite number of polynomial equalities
and inequalities, these polynomials having rational coefficients, also using
the usual logical connectives “and”, “or”, “not”. In other words, this set
forms a semi-algebraic set.

Remark 4. For simplices in Sn and Hn (with finite vertices) the case
S1 = 0 and all other Si’s positive and sufficiently small can be described.
The description is: there exists a partition of the other facets into two classes
such that for the two classes the sums of the facet areas are equal. For this
we have to use index considerations, like later in the Proofs of Theorems 3
and 4.

Theorem 4. Assume that π/2 > S4 = S3 = S2 = S1 > 0, S4 < S1+S2+
S3, and one of the inequalities

(3) tan(S1/2) =
1− cosS4

2
√
cosS4

,

or

(4) S4 = S3 + S2

holds. Then there exists a non-degenerate (convex ) tetrahedron T ⊂ S3 with
facet areas S1, S2, S3, S4.

Now we turn to sufficient conditions for the existence of spherical poly-
hedral complexes. The second statement of Proposition 5 says the following.
For combinatorial simplices contained in some closed half-Sn, the two neces-
sary conditions from Proposition 4 are also sufficient for their existence.

Proposition 5. (i) Let n = 2 and m = 3 be integers and let
Sm = . . . = S1 > 0 and Sm 5 S1 + · · ·+ Sm−1 and S1 + · · ·+ Sm 5
Vn−1(Sn−1). Then there exists a convex n-dimensional polyhedral com-
plex in Sn that lies in a closed half-Sn and has facet areas S1, . . . , Sm.
All of its facets have two (n− 2)-faces. If Sm < S1 + · · ·+ Sm−1 and
S1+ · · ·+Sm < Vn−1(Sn−1) then all its dihedral angles are less than π.

(ii) Let n = 2 and assume Sn+1 = . . . = S1 > 0, Sn+1 5 S1 + · · ·+ Sn, and
S1 + · · ·+ Sn+1 5 Vn−1(Sn−1). Then there exists a convex polyhedral
complex in Sn lying in a closed half-Sn that is a combinatorial n-
simplex with facet areas S1, . . . , Sn+1. Its faces of any dimension (in-
cluding the complex itself ) have their dihedral angles at most π, and
are thus convex, but some of their dihedral angles are equal to π for
n = 3.
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3. Tools for the Euclidean case: Minkowski’s theorems

We recall some classical concepts and theorems, which are in essence
due to Minkowski, but got their final form by A. D. Aleksandrov [1] and
W. Fenchel and B. Jessen [23]. We state the results first for arbitrary con-
vex bodies, and then we restrict them to convex polytopes. We will actually
need general convex bodies when considering convergent sequences of convex
polytopes in our first two proofs of Theorem 2 (Sections 4.3 and 4.4). The
third proof uses only Minkowski’s Theorem about convex polytopes (Theo-
rem F′). The reader may want to skip directly to Theorem F′.

A convex body in Rn is a compact convex setK ⊂ Rn with interior points.
For x ∈ ∂K we say that u ∈ Sn−1 is an outer unit normal vector for K at x
if max

{
⟨k, u⟩ | k ∈ K

}
= ⟨x, u⟩. In this section we assume n = 2 although

the theorems of this section will be applied later for n = 3 only.

Definition 1 (Minkowski, Aleksandrov [1], Fenchel–Jessen [23], see also
[55, p. 207, (4.2.24) (with τ(K,ω) defined on p. 77)]). Let K ⊂ Rn be a con-
vex body. The surface area measure µK of K is a finite Borel measure on
Sn−1 defined as follows. For a Borel set B ⊂ Sn−1, µK(B) is the (n− 1)-
dimensional Hausdorff measure of the set {x ∈ ∂K | there is an outer unit
normal vector u to K at x such that u ∈ B}.

Thus, µK is an element of C(Sd−1)
∗
, the dual space of the space of real-

valued continuous functions C(Sd−1) on Sd−1, i.e., the finite signed Borel

measures on Sd−1. We will use the weak∗ topology of C(Sd−1)
∗
as the

topology for the finite (signed) Borel measures µK . That is, convergence
of a sequence (or more generally of a net) of finite signed Borel measures

µα ∈ C(Sd−1)
∗
to a finite signed Borel measure µ ∈ C(Sd−1)

∗
means the fol-

lowing. For each f ∈ C(Sn−1), we have
∫
Sn−1 f(u)dµα(u) →

∫
Sn−1 f(u)dµ(u).

Moreover, since Sn−1 is a compact metric space, the space C(Sn−1) is sepa-

rable, and hence the weak∗ topology of C(Sn−1)
∗
is metrizable. Therefore,

it suffices to give the convergent sequences in it (i.e., it is not necessary to
consider nets).

For these elementary concepts and facts from functional analysis, we re-
fer to [19].

Theorem F (Minkowski, Aleksandrov [1], Fenchel–Jessen [23], see also
[55, p. 389, (7.1.1), pp. 389–390, p. 392, Theorem 7.1.2., p. 397, Theorem
7.2.1]). Let n = 2 be an integer and K ⊂ Rn a convex body. The measure
µK defined in Definition 1 is invariant under translations of K and has the
following properties.

(i)
∫
Sn−1 u dµK(u) = 0, and

(ii) µK is not concentrated on any great-Sn−2 of Sn−1.



12 N. V. ABROSIMOV, E. MAKAI, JR., A. D. MEDNYKH et al.

Conversely, for any finite Borel measure µ on Sn−1 satisfying (i) and (ii),
there exists a convex body K such that µK = µ. Moreover, this convex body K
is unique up to translations.

Thus, we can consider the map K 7→ µK also as a map {translates
of K} 7→ µK .

Theorem G (Minkowski, Aleksandrov [1], Fenchel–Jessen [23], see also
[55, p. 198, Theorem 4.1.1, p. 205, pp. 392–393, proof of Theorem 7.1.2]).
Let n = 2 be an integer. Then the mapping {translates of K} 7→ µK defined
in Definition 1 and just before this theorem is a homeomorphism between its
domain and its range. Its domain is the quotient topology of the topology on
the convex bodies induced by the Hausdorff metric with respect to the equiva-
lence relation of being translates. Its range is the set of finite Borel measures
on Sn−1 satisfying (i) and (ii) of Theorem F with the subspace topology of

the weak∗ topology on C(Sn−1)
∗
.

We have to remark that the cited sources, [55, pp. 392–393, proof of
Theorem 7.1.2], as well as [1, proof of the theorem on p. 36, on p. 38], con-
tain explicitly only the proof of the continuity of the bijection {translates
of K} 7→ µK . However, also the continuity of the inverse map is proved at
both places although not explicitly stated. In fact, as kindly pointed out to
the authors by R. Schneider, one has to make the following addition to his
book [55, proof of Theorem 7.1.2]. Let the sequence of surface area measures
µKi of some convex bodies Ki ⊂ Rn converge to the surface area measure
µK of some convex body K ⊂ Rn in the weak∗ topology. Then all Ki’s have
a bounded diameter. This is stated there for polytopes only, but the given
proof is valid for all convex bodies. By a translation one can achieve that
all Ki’s and also K are contained in a fixed ball. Let their barycentres be
at 0. Recall that the set of non-empty compact closed sets contained in
some closed ball is compact in their usual topology (i.e., that of the Haus-
dorff metric). Therefore, we can choose a convergent subsequence Kij of Ki

with limit K ′, say. Then the surface area measure µK′ of K ′ is the weak∗

limit of the µKij
’s, i.e., it equals the originally considered µK . By continuity

of the barycentre, also the barycentre of K ′ is 0, as well as the barycentre
of K. Hence we have K ′ = K. Then the entire sequence Ki converges to K.
Otherwise, we could choose another subsequence Kik converging to another
convex body K ′′, also with barycentre at 0, and with µK′′ = µK . This is
a contradiction.

It was also proved by Minkowski that a convex body K is a convex poly-
tope if and only if µK (that satisfies (i) and (ii) of Theorem F) has a finite
support [55, p. 390, Theorem 7.1.1, also considering p. 397, Theorem 7.2.1].
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If the support is {u1, . . . , um}, we may write

µK =

m∑
i=1

µK

(
{ui}

)
δ(ui),

where δ(ui) is the Dirac measure concentrated at ui. (I.e., for a Borel set
B ⊂ Sn−1 we have δ(ui)(B) = 0 ⇐⇒ ui /∈ B and δ(ui)(B) = 1 ⇐⇒ ui ∈ B.)

When we write such an equation, we always assume that µK

(
{ui}

)
̸= 0 for

all i ∈ {1, . . . ,m}. (Thus, the empty sum means the 0 (finite signed Borel)
measure; although for a convex body K, we have µK ̸= 0.) The weak∗ topol-
ogy restricted to the finite signed Borel measures of finite support, where
the support has at most m elements, is the following. (We will use only
the case when we have a finite Borel measure and (i) and (ii) of Theorem

F hold.) For uα, u ∈ Sd−1 with uα → u and for cα, c ∈ R \ {0} with cα → c,
where the uα’s and cα’s are nets indexed by α’s from the same index set, we
have cαδ(uα) → cδ(u). Moreover, for arbitrary uα ∈ Sn−1 and cα → 0, we
have cαδ(uα) → 0. Thus, the convergence is defined for finite signed Borel
measures whose supports have at most one point. Then the convergence is
defined for finite sums of such sequences as well (and in fact, only for these,
see the formal definition in the next paragraph).

More exactly, a sequence (or more generally, a net)

µα =

mα∑
i=1

µα

(
{ui}

)
δ(ui)

of finite signed Borel measures on Sd−1 with mα 5 m can converge only to
a finite signed Borel measure of support of at most m points. Moreover,

µα tends to a finite signed Borel measure µ =
∑m′

i=1 µ
(
{ui}

)
δ(ui) on Sn−1

with 1 5 m′ 5 m if and only if the following holds. For each α, there exists
a partition of {1, . . . ,mα} of cardinality m′, say {Pα1, . . . , Pαm′} (where each
Pαj is non-empty), such that

(A) for any j ∈ {1, . . . ,m′}, the sets Pαj converge to uj (i.e., for any neigh-
bourhood Uj of uj and for all sufficiently large α, we have Pαj ⊂ Uj)
and

(B) for any j ∈ {1, . . . ,m′}, the sum
∑{µα

(
{ui}

)
| i ∈ Pαj} converges to

µ
(
{uj}

)
.

The same sequence (or more generally a net) µα tends to the 0 (finite signed
Borel) measure if and only if

(C)
∑mα

i=1 |µα

(
{ui}

)
|→ 0. (This corresponds to the case m′ = 0, and also

here, an empty sum means 0.)
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For convex polytopes, Theorem F can be rewritten for

µK =

m∑
i=1

µK

(
{ui}

)
δ(ui)

as follows.

Theorem F′ (Minkowski, see also [55, p. 389, (7.1.1), pp. 389–390,
p. 390, Theorem 7.1.1, p. 397, Theorem 7.2.1]). Let m > n = 2 be integers,
let S1, . . . , Sm > 0, and let u1, . . . , um ∈ Sn−1. Then there exists a non-
degenerate convex polytope P having m facets with facet areas S1, . . . , Sm

and respective facet outer unit normals u1, . . . , um if and only if

(i)
∑m

1=1 Siui = 0, and

(ii) u1, . . . , um do not lie in a linear (n− 1)-subspace of Rn.

Moreover, if P exists, it is unique up to translations.

For convex polytopes with at mostm facets, Theorem G can be rewritten
for µK =

∑m
i=1 µK

(
{ui}

)
δ(ui) as follows.

Theorem G′ (Minkowski, see also [55, p. 198, Theorem 4.1.1, p. 205,
pp. 392–393, proof of Theorem 7.1.2] and the addition after our Theorem G).
Let m > n = 2 be integers. Then the mapping {translates of K} 7→ µK de-
fined in Definition 1 and after Theorem F is a homeomorphism between its
domain and its range. Its domain is the subspace corresponding to the non-
degenerate convex polytopes with at most m facets of the quotient topology
of the topology on the convex bodies (induced by the Hausdorff metric) with
respect to the equivalence relation of being translates. Its range is the set of
finite Borel measures on Sn−1 with supports of at most m points satisfying
(i) and (ii) of Theorem F′, with the subspace topology of the weak∗ topol-

ogy on C(Sd−1)
∗
. This subspace topology is described in more explicit form

before Theorem F′.

4. Proofs for the Euclidean case

Essentially the following proposition was used in [31] without explicitly
stating and proving it. It can be considered as folklore (as part of the proof
of the folklore Theorem 1), but we state and prove it for completeness.

Proposition 6. Let m > n = 3 be integers. Let δ > 0 and let Sm =
Sm−1 = . . . = S1 > 0 be numbers such that Sm < S1+S2+ · · ·+Sm−1. Then
there are pairwise distinct unit vectors v1, v2, . . . , vm ∈ Sn−1 with the follow-
ing properties:

(i) they lie in the open δ-neighbourhood of the x1x2-coordinate plane,
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(ii) they do not lie in a linear (n− 1)-subspace of Rn, and

(iii) S1v1 + S2v2 + · · ·+ Smvm = 0.

Proof. Let P be the x1x2-coordinate plane in Rn. Since Sm < S1+S2+
· · ·+ Sm−1, there exists a convex polygon A1A2 . . . Am (with angles strictly
smaller than π) in P such that |AiAi+1| = Si for i = 1, . . . ,m (indices con-
sidered modulo m), see [32, p. 44], [34, pp. 53–54]. Then the edge directions

ui :=
−−−−→
AiAi+1/|AiAi+1| ∈ Sn−1 ∩ P are distinct unit vectors. We will per-

turb A1A2 . . . Am to a spatial polygon B1B2 . . . Bm, keeping the side lengths

equal: |BiBi+1| = |AiAi+1| = Si. The unit vectors vi :=
−−−−→
BiBi+1/Si will then

fulfill (iii) by construction.
Clearly, for ∥vi − ui∥ < δ, the vector vi lies in the open δ-neighbourhood

of P , hence (i) is satisfied. Further, for δ sufficiently small, the vectors
v1, . . . , vm are also pairwise distinct.

Let k denote the largest integer such that there are arbitrarily small per-
turbations Bi of our original points Ai that satisfy the following: all edges
have the right length |BiBi+1| = Si, and the dimension of the affine hull of
B1, . . . , Bm has dimension k.

Assume for contradition that k < n. Then, by m = n+ 1 = k + 2, there
is an affine dependence among the Bi’s. Let, for example, Bm lie in the affine
hull H of B1, . . . , Bm−1. Then, fixing |Bm−1Bm| and |BmB1|, the point Bm

can move on an (n− 2)-sphere around the axis Bm−1B1 in a hyperplane
perpendicular to H. Hence there is an arbitrarily small perturbation of Bm

lying outside H, while aff{B1, . . . , Bm−1} already spans H. Thus we have
obtained a contradiction to the choice of k.

This proves k = n and thus (ii). �

4.1. Proof of Theorem 1

The implication (ii) =⇒ (i) is evident.
The implication (i) =⇒ (iii) is well-known, but we give the proof for com-

pleteness. Using the notations from Theorem F′, we have Sm = ∥Smum∥ =

∥∑m−1
i=1 Siui∥ 5

∑m−1
i=1 Si. The only case of equality is the degenerate case

given in condition (iii′) of the theorem.
Finally, (iii) =⇒ (ii) follows from Proposition 6 and Minkowski’s Theo-

rem F′.
The degenerate case, with (iii′), follows from the above considerations. �

4.2. Proofs for Theorem 2

We need the following relation between the surface area, diameter and
volume of a convex body. Here κn−1 is the volume of the unit ball in Rn−1.
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Proposition 7 (Gritzmann, Wills and Wrase [27]). Let K ⊂ Rn be

a convex body. Then the inequality S(K)n−1 > κn−1 ·diam(K) ·
(
nV (K)

)n−2

holds and this inequality is sharp. �
We will construct the polytope for Theorem 2 by Minkowski’s Theo-

rem F′. We need to choose only an appropriate surface area measure. For
a convex polytope, this finite Borel measure is concentrated in finitely many
points. Assume that for given facet areas we are far from the degenerate case
where this measure is concentrated in a great-Sn−2. Then by compactness,
the volume of the convex polytope is bounded from below. Therefore, to get
an arbitrarily small volume, we must approach the degenerate case. This
will be done in the following proof. Recall also the paragraph after Theo-
rem E citing [31] (p. 3), where also the degenerate case was approximated –
however, for simplices only.

4.3. First proof of Theorem 2

By Proposition 6, for any δ > 0, there are pairwise distinct vectors
v1, v2, . . . , vm ∈ Sn−1 in the open δ-neighbourhood of the x1x2-coordinate
plane, satisfying the following. They do not lie in a linear (n− 1)-subspace
of Rn, and S1v1+S2v2+ · · ·+Smvm = 0. By Minkowski’s Theorem F′ there
exists a non-degenerate convex polytope P = P (δ) in Rn having m facets
with areas S1, . . . , Sm and unit outer normals v1, . . . , vm.

Let us consider the sequence of polytopes Pk = P (1/k) for k = 1, 2, . . . .
We will show that V (Pk) → 0 as k → ∞. Assume the contrary. Then (pos-
sibly passing to a subsequence), we may assume without loss of generality
that V (Pk) = α > 0.

By Proposition 7, we get the inequality

S(Pk)
n−1 > κn−1 · diam(Pk) ·

(
nV (Pk)

)n−2 = κn−1 · diam(Pk) · (nα)n−2,

where S(Pk) =
∑m

i=1 Si is a constant. From this inequality, we conclude that
diam(Pk) is bounded by some constant D for all k.

By applying translations, we may assume without loss of generality that
all Pk’s have a common point. Therefore, all polytopes Pk lie in a ball of
radius D. Using compactness (possibly passing to a subsequence), we may
assume even more. The sequence Pk tends (in the Hausdorff metric) to
a non-empty compact convex set P0 as k → ∞ [55, p. 50, Theorem 1.8.6].
Therefore, V (P0) = α > 0, and hence P0 is a convex body. Moreover, by
Minkowski’s Theorem G′ (actually only by the continuity of the bijection in
that theorem), P0 is a convex polytope having m facets with all facet outer
unit normals in the x1x2-coordinate plane. However, this is a contradiction
to condition (ii) of Theorem F′. �
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Remark 5. Instead of Proposition 7, where the multiplicative constant
is sharp, we could have used a consequence of the Aleksandrov–Fenchel in-
equality [55, p. 327, Theorem 6.3.1] to show that the diameter is bounded.
Namely: the quermassintegrals Wi(K) ([55, p. 209]) for 0 5 i 5 n form a log-
arithmically concave sequence. Here, W0(K) = V (K) and for fixed n, W1(K)
is proportional to S(K) and Wn−1(K) is proportional to the mean width of
K ([55, p. 210, p. 291, (5.3.12)]). Then apply this logarithmic convexity for
volume, constant times surface area and constant times mean width. Finally,
use the fact that the quotient of the diameter and the mean width is between
two positive numbers (depending only on n). This yields the inequality of
Proposition 7 with a weaker constant.

Example 1. We give an example of a family of tetrahedra (n = 3 and
m = 4) with constant facet areas and arbitrarily small volume. The tetra-
hedra look like thin vertical needles and have vertices(

± ε, 0,−(1/ε)
√

1− ε4/4
)

and
(
0,±ε, (1/ε)

√
1− ε4/4

)
.

All facets have area 2, and the volume is (4ε/3)
√

1− ε4/4, which tends to
zero as ε → 0.

4.4. Second proof of Theorem 2

1. First we will construct a partition P = {P1, . . . , Pn+1} of the index
set {1, . . . ,m} into n+ 1 classes. We will achieve that the n+ 1 numbers∑

i∈Pj
Si (for 1 5 j 5 n+ 1) have the property that

(∗) the largest of these numbers is smaller than the sum of all others.

We start with the partition intom singleton classes. Suppose that we already
have constructed a partition Q = {Q1, . . . , Qk} such that

(∗∗) the largest of the numbers Tj :=
∑

i∈Qj
Si, where 1 5 j 5 k, is smaller

than the sum of all the other numbers Tj .

If k = n+ 1, then we stop. If k > n+ 1, then let us assume T1 5 T2 5 . . . 5
Tk. Now we take the two classes Q1 and Q2 with the two smallest sums and
form their union while the other classes Qj are kept. In the new partition,
the partition class that has maximal sum Tj can be either the same partition
class as in the preceding step or the newly constructed union. In the first
case, (∗∗) is evident. In the second case, we have T1+T2 5 Tk−1+Tk < T3+
· · ·+ Tk−1 + Tk before taking the union since k = n+ 2 = 5. Thus Tnew :=
T1 + T2 < T3 + · · ·+ Tk−1 + Tk. Therefore, (∗∗) holds in this case as well.

This proves that (∗) holds for the final partition.
2. We consider the partition P = {P1, . . . , Pn+1} constructed above. For

the sums Rj :=
∑

i∈Pj
Si, we use Theorem E to construct a non-degenerate
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simplex S that has these facet areas and has an arbitrarily small volume.
Then, for the respective outer unit normals uj of the facets of this simplex,

we have
∑n+1

j=1 Rjuj = 0.

3. We will now split each facet of the simplex into almost parallel facets
to get the desired polytope with m facets. Let ε > 0 be small. For each
1 5 j 5 n+1, choose a linear 2-subspace Xj containing uj . Choose a vector

uji ∈ Xj for each i ∈ Pj such that the vectors −(1− ε)(
∑

i∈Pj
Si)uj and

Siuji (for i ∈ Pj) are the side vectors of a convex polygon in Xj . Since the
length of the first vector is almost equal to the sum of the others, all uji are
close to uj for ε sufficiently small. Then all vectors Siuji for 1 5 j 5 n+ 1
and i ∈ Pj linearly span Rn, and their sum is

∑
15j5n+1

(∑
i∈Pj

Siuji

)
=

∑
15j5n+1

(1− ε)

(∑
i∈Pj

Si

)
uj

= (1− ε)
∑

15j5n+1

Rjuj = 0.

4. By Minkowski’s Theorem F′, there exists a non-degenerate convex
polytope with facet outer unit normals uji and facet areas Si (for all 1 5 j 5
n+ 1 and all i ∈ Pj).

Observe that we have changed in the course of the proof the surface area
measure only a little bit (in the weak∗-topology of C

(
Sn−1

)∗
). Therefore,

after a suitable translation, the obtained convex polytope is arbitrarily close
to the original simplex S by Theorem G′ (actually only by the continuity
of the inverse of the bijection in that theorem). Since the simplex had an
arbitrarily small volume, our convex polytope also has an arbitrarily small
volume. �

4.5. Third proof of Theorem 2

The first two proofs of Theorem 2 did not give geometric information
about the constructed polytopes. (The first proof used an argument by con-
tradiction and the second proof used the examples of the simplices.) Now
we give a third proof that is more quantitative and will give also geometric
information. This proof constructs “needle-like” polytopes, as in Example 1.
See also the paragraph following the statement of Theorem 2 (p. 6).

First we give the proof for n = 3 dimensions. We begin with an elemen-
tary lemma. It shows that a convex polytope in R3 that has steep (almost
vertical) facets must have steep edges, as long as the angles between the
normal vectors of different facets are bounded away from 0 and π,
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Lemma 1. Consider two planes in R3 with unit normals u+ and u−. As-
sume that u+ and u− enclose an angle at most ε ∈ (0, π/2) with the xy-plane,
and the angle between them lies in [β, π−β], where 0 < β 5 π/2. Then their
intersection line encloses an angle at most

δ := arcsin
sin ε

sin(β/2)

with the z-axis, provided that ε 5 β/2. This inequality is sharp.

Proof. We choose a new coordinate system in the following way. The
intersection line becomes the vertical axis, and the two normal vectors
u+, u− ∈ S2 lie in the horizontal plane, enclosing an angle β′ ∈ [β, π − β]
with each other. In the new coordinate system, the original North Pole
becomes n = (n1, n2, n3) ∈ S2.

By hypothesis,

(5) ⟨n, u−⟩, ⟨n, u+⟩ ∈ [− sin ε, sin ε].

We want to conclude that

(6) |
⟨
(0, 0, 1), n

⟩
| = |n3| = cos δ,

i.e., that

(7)
√

n2
1 + n2

2 5 sin δ.

The points (n1, n2) ∈ R2 (projections of n to the xy-plane) for n satisfying
(5) form a rhomb of height 2 sin ε and angles β′, π − β′. A farthest point of
this rhomb from (0, 0) is one of the vertices and its distance from (0, 0) is

max
{
(sin ε)/ sin(β′/2), (sin ε)/ cos(β′/2)

}
5 (sin ε)/ sin(β/2) = sin δ. That

is, (7), or equivalently, (6) holds and both are sharp inequalities. Hence, the
inequality of the lemma holds and it is sharp. �

Lemma 2. Consider a convex polyhedron P ⊂ R3 with facet areas
S1, . . . , Sm. Assume that its facet outer normals enclose an angle at most ε
with the xy-plane and the angle between any two of them lies in [β, π − β],
where 0 < β 5 π/2. Then its volume is bounded by

V (P ) 5 2−1/4π−1 ·
( m∑

i=1

S
3/4
i

)2

·
(

sin ε

sin(β/2)

)1/2

,

if (sin ε)/ sin(β/2) 5 1/
√
2.
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Proof. We denote by si(z) the length of the horizontal cross-section of
the i-th facet at height z, and by smax

i the maximum length of such a hor-
izontal cross-section. Let hi be the “height” of the i-th face: the difference
between the maximum and the minimum z-coordinates of its points. Let
h′i be the “tilted height” of this facet in its own plane, i.e., the height when
the plane is rotated into vertical position about one of its horizontal cross-
sections.

Since (sin ε)/ sin(β/2) < 1, we have by Lemma 1 that P has no horizontal
edges. Therefore, using the quantity δ introduced in Lemma 1, we get

(8) smax
i 5 hi · tan δ.

Namely, from the minimal z-coordinate – where si(z) = 0 – si(z) can in-
crease only with a speed at most 2 tan δ (< ∞) to reach its maximal value
smax
i . This is clear for a vertical face, and for a nonvertical face the speed
is even smaller. Observe that the i-th facet lies in an upwards circular cone
with vertex the lowest point of the i-th facet and directrices enclosing an an-
gle δ with the z-axis. From the maximal value it must decrease again with
speed at most 2 tan δ till 0 at the maximal z-coordinate.

Therefore, using for (10) inequality (8),

Si = smax
i h′i/2 = smax

i hi/2(9)

= (smax
i )2/(2 tan δ).(10)

This gives

(11) smax
i 5

√
2Si tan δ.

These relations allow us to bound the volume V (P ) as follows, by using the
isoperimetric inequality on each horizontal slice.

V (P ) =

∞∫
−∞

(area of cross-section of P at height z) dz

5
∞∫

−∞

( m∑
i=1

si(z)

)2

dz/(4π)
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=
m∑
i=1

m∑
j=1

∞∫
−∞

si(z)sj(z) dz/(4π)

5
m∑
i=1

m∑
j=1

smax
i smax

j min{hi, hj}/(4π)(12)

5
m∑
i=1

m∑
j=1

smax
i smax

j

√
hihj/(4π)

=

( m∑
i=1

smax
i

√
hi

)2

/(4π)

=

( m∑
i=1

√
smax
i

√
smax
i hi

)2/
(4π)

5
( m∑

i=1

(2Si tan δ)
1/4
√
2Si

)2/
(4π)(13)

=
(
∑m

i=1 S
3/4
i )

2

√
2π

·
√

(sin ε)/ sin(β/2)√
1− (sin2 ε)/ sin2(β/2)

(14)

5 (
∑m

i=1 S
3/4
i )

2

√
2π

·

√√
2 sin ε

sin(β/2)
.

The first inequality uses the isoperimetric inequality. The second inequal-
ity (12) bounds the integral by an upper bound of the non-negative in-
tegrand times the length of the interval where the integrand is positive.
For (13), we have used (9) and (11). To obtain (14), we have used
Lemma 1. The last inequality simplifies the denominator under the assump-

tion (sin ε)/ sin(β/2) 5 1/
√
2 of the lemma. �

4.6. Third proof of Theorem 2 for n = 3 dimensions

As in the first proof, we use Minkowski’s Theorem F′. We want to apply
Lemma 2, making ε small. Thus, we must let the normal vectors with given
lengths Si converge to the xy-plane, keeping their sum to be 0. Moreover,
the linear span of the outer unit facet normals should be R3. Then we apply
Minkowski’s Theorem F′. In the limiting configuration the normals will lie
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in the xy-plane. They must form angles in [β, π−β] (with β ∈ (0, π/2]) with
each other in order that Lemma 2 should work. Thus we must avoid parallel
sides.

Will show that there is only one exceptional case in which parallel sides
cannot be avoided. Consider a planar convex m-gon M with sides Si that
has the minimum number of parallel pairs of sides. Let us assume that M
has a side such that the sum of the two incident angles is different from π.
Then by a small length-preserving motion of this side and the neighbouring
two sides, one can achieve the following. This side changes its direction while
new parallel pairs of sides are not created. Therefore, M can have a parallel
pair of sides only if, for each of these sides, the sum of the incident angles
is π. That is, we have four vertices that determine two parallel sides and
whose outer angles (i.e., π minus the inner angles) have sum 2π. Since the
sum of all outer angles is 2π, there are no more vertices and M must be
a parallelogram. If its sides are not equal then we rearrange the side vectors
so as to obtain a (convex) deltoid that is not a parallelogram. So the only
remaining case is when m = 4 and S1 = S2 = S3 = S4. However, this case
has been treated in Example 1: a tetrahedron with four faces of equal areas
and having an arbitrarily small positive volume. Suitable inflations provide
examples for all values of Si.

Disregarding this exceptional case, we have now a strictly convex poly-
gon in the xy-plane without parallel sides. Assume that the angle between
any two edges is in the range [β1, π − β1] for some β1 > 0. We still need to
perturb the sides so that the edge vectors span R3. Consider the first three
consecutive vertices A1, A2, A3 of M . Let us fix A1 and A3. Rotate the two
sides [A1,A2] and [A2,A3] about the line through A1 and A3 through a small
angle α > 0 while keeping their lengths fixed. The m− 2 = 2 remaining side
vectors span the xy-plane since they are not parallel. At the same time,

the vector
−−−→
A1A2 points out of the xy-plane and therefore the edge vectors

span R3.
By making the angle of rotation α small enough, we can ensure the fol-

lowing. The angle between all edge vectors of the perturbed polygon M(α)
is still in the range [β2, π − β2] for some fixed β2 > 0. Moreover, the angle ε
of the side vectors with the xy-plane can be made arbitrarily small. We use

the edge vectors
−→
Si of M(α) as outer normals and construct the polytope P

by Minkowski’s Theorem F′, with Si := ∥−→Si∥ and ui :=
−→
Si/Si. By Lemma 2,

the volume can be made arbitrarily small. �

Remark 6. In the polytope that we have constructed, all facets except
two are vertical. By going through the proof of Lemma 2, one can see the
following. It would have been sufficient to assume the constraint [β, π − β]
on the angles for those pairs of facet normals that involve at least one of the
two nonvertical facets.



THE INFIMUM OF THE VOLUMES OF CONVEX POLYTOPES IS 0 23

Example 2. For odd dimension n = 2k+1, there is a higher-dimensional
generalization of Example 1. Consider a large regular k-simplex of edge
length a := 1/ε in the xk+2 . . . xn-coordinate plane. It has k + 1 vertices
v1, . . . , vk+1. At each vertex vi, we draw a short segment of length b := ε
centred at vi in the direction of the xi-axis. The convex hull of the union of
these segments is an n-simplex with congruent facets. The facet areas are
∼ const · akbk = const, while the volume is const · akbk+1 = const · ε, which
becomes arbitrarily small as ε → 0.

4.7. Third proof of Theorem 2 for n > 3 dimensions

4.7.1. Construction of an almost flat spatial polygon. As for n = 3, we
start with a planar convex m-gon M in the x1x2-coordinate plane, where

m = n+ 1. It has side vectors
−→
Si (this notation will be preserved also after

perturbations) with side lengths Si, for 1 5 i 5 m.
M is contained in the x1 . . . xn−1-coordinate hyperplane X. By small

perturbations of the closed polygonM inX that preserve the side lengths Si,
we want to achieve that

(∗) the perturbed (skew) closed polygon M ⊂ X has no n− 1 side
vectors lying in an (n− 2)-dimensional linear subspace of X.

Initially, M lies in a 2-dimensional plane. We will fulfill (∗) by following
the proof of Proposition 6. Our desired conclusion is slightly stronger than
in Proposition 6: there we excluded only the case that all vectors lie in
a lower-dimensional subspace.

Assume that some i 5 n− 1 side vectors lie in a linear subspace of di-
mension less than i, where i is the smallest number with this property. We
will eliminate these linear dependencies iteratively. We have already seen
how we can avoid parallel edges (i = 2). The only case where parallel sides
could not be avoided was m = 4 and S1 = S2 = S3 = S4 (a rhomb) and this
happens only for n 5 m− 1 = 3. Therefore, we can assume i = 3. Observe
also that by small perturbations the different vertices remain distinct.

We may any time rearrange the cyclic order of side vectors of M as we

want. So we assume that the first i side vectors
−→
S1, . . . ,

−→
Si are linearly de-

pendent, and any i− 1 side vectors are linearly independent. Number the

vertices Aj so that
−→
Sj goes from vertex Aj to Aj+1 (indices taken modulo m).

We want remove this linear dependence by perturbing the vertex Ai. For
a technical reason, we have to first refine the order of the side vectors even

further. Let
∑i

j=1 λj
−→
Sj = 0 be the (unique, up to a scalar factor) linear de-

pendence. The λj ’s cannot be all equal, since
∑i

j=1

−→
Sj =

−−−−−→
A1Ai+1 = 0 would

imply that A1 and Ai+1 are equal points. The polygon has m > n > i sides,
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and hence this is excluded. Therefore, by permuting the side vectors if nec-
essary, we can assume that λi−1 ̸= λi. Since all (i− 1)-subsets are linearly
independent, we have λj ̸= 0 for all j, and thus we can assume without loss

of generality that λi = −1. In other words,
−→
Si =

∑i−1
j=1 λj

−→
Sj , with λi−1 ̸= −1.

Now, fixing Ai−1, Ai+1, ∥
−−→
Si−1∥, and ∥−→Si∥, we can perturb Ai as follows.

The point Ai moves on an (n− 3)-dimensional sphere in a hyperplane within
X with affine hull orthogonal to the segment [Ai−1, Ai+1]. There is a small
motion that moves Ai out of the subspace H := aff{A1, A2, . . . , Ai−1, Ai+1}
of X.

Now we show that the dimension of this subspace H is in fact i− 1,
which implies that the dimension of aff{A1, A2, . . . , Ai, Ai+1} increases by

1 and
−→
S1, . . . ,

−→
Si become linearly independent. Clearly, dimH cannot be

greater than i− 1 = dimaff{A1, A2, . . . , Ai−1, Ai+1}. To see that dimH =

i− 1, we note that the vectors
−−−→
A1A2 =

−→
S1,

−−−→
A2A3 =

−→
S2, . . . ,

−−−−−−→
Ai−2Ai−1 =

−−→
Si−2,−−−−−−→

Ai−1Ai+1 =
−−→
Si−1+

∑i−1
j=1 λj

−→
Sj are linearly independent, since λi−1 ̸= −1, and

hence, their linear span has dimension i− 1.

Thus, we have established that, by perturbing Ai, the vectors
−→
S1, . . . ,

−→
Si

become linearly independent. If the perturbation is small enough, then every
set of side vectors that was linearly independent before the motion remains
linearly independent. Therefore, the number of linearly dependent i-tuples
of side vectors of M decreases. A finite number of iterations eliminates all
linearly dependent i-tuples, and i can be increased (till n− 1), until (∗) is
eventually established. This concludes the construction of the polygon M .

Condition (∗) can be rephrased in the following way. The determinant

of any n− 1 normed side vectors
−→
Si/Si of M (i.e., the signed volume of the

parallelepiped spanned by them) is nonzero. We denote by b > 0 the smallest
absolute value of these determinants. This bound will play the role of the
sine of the angle bound β in Lemmas 1 and 2.

4.7.2. Steep facets imply steep edges. We generalize Lemma 1 to higher di-
mensions:

Lemma 3. Let n = 3, and consider n− 1 hyperplanes in Rn making an
angle at most ε < π/2 with the vertical axis (the xn-axis). If their unit nor-
mal vectors span an (n− 1)-parallelotope of volume at least b (> 0) then they
intersect in a line. The angle between this line and the vertical direction is
bounded by

δ := arcsin
(n− 1)3/2 sin ε

b
,

provided that (n− 1)3/2 sin ε 5 b.
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For fixed n, the order of magnitude of this bound on δ as a function of ε
and b is optimal. More precisely, for any ε and b, where 0 < ε < π/2 and
0 < b 5 1, there are instances with

sin δ = min{1, (sin ε)/ sin
(
(arcsin b)/2

)
}.

Proof. Since the unit normal vectors v1, . . . , vn−1 are linearly indepen-
dent, the intersection of the hyperplanes is a line ℓ. Let us choose a new
orthonormal coordinate system where ℓ is the last coordinate axis. Then
the last coordinate of the vectors vi is zero, and we may write these vectors

as vi =
(v′i
0

)
with v′i ∈ Sn−2 ⊂ Rn−1. By assumption, the (n− 1)× (n− 1)

matrix V = (v′1, . . . , v
′
n−1) has determinant of absolute value |detV | = b.

Let p =
(
p′

pn

)
, with p′ ∈ Rn−1, be the unit vector of the original positive

xn-direction in the new coordinate system. Its angle δ ∈ [0, π/2] with the
line ℓ satisfies cos δ = |pn| and sin δ = ∥p′∥, and thus our goal is to show that

(15) ∥p′∥ 5 (n− 1)3/2
sin ε

b
.

Let αi denote the angle between p and the normal vi. By the angle assump-
tion on the hyperplanes, we have π/2− ε 5 αi 5 π/2 + ε. Therefore, with
ri := cosαi = ⟨p, vi⟩ = ⟨p′, v′i⟩, we have |ri| 5 sin ε.

The n− 1 equations ⟨p′, v′i⟩ = ri form a linear system (p′)TV = (r1, . . . ,

rn−1) (the column vectors of V being the vi’s), i.e., V
T p′ = (r1, . . . , rn−1)

T ,
which determines p′ uniquely:

(16) p′ =
(
V T
)−1

(r1, . . . , rn−1)
T .

We write adj
(
V T
)

for the transpose of the matrix whose entries are the

signed cofactors of the respective entries of V T . By the formula
(
V T
)−1

=

adj
(
V T
)
/det

(
V T
)
, each entry of

(
V T
)−1

is an (n− 2)× (n− 2) subdeter-

minant of V T divided by ± detV T . The rows of the submatrices of V T are
vectors of length at most 1 and therefore these subdeterminants are bounded

in absolute value by 1. It follows that the entries of
(
V T
)−1

are bounded

in absolute value by 1/b. Since the |ri|’s are at most sin ε, we get from (16)
that the n− 1 entries of p′ are bounded by (n− 1)(sin ε)/b in absolute value.
Hence we have proved (15).

To establish the lower bound, we can lift the tight three-dimensional ex-
ample from Lemma 1 to n dimensions. For ε 5 β/2, the enclosed angle will

be the same as in three dimensions, namely arcsin
(
(sin ε)/ sin(β/2)

)
, where
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sinβ = b. For ε > β/2, we use the example with ε = β/2. We embed the
3-dimensional example into Rn by a linear isometry that maps the positive
x, y, z-axes to the positive x1, x2, xn-coordinate axes of Rn. (The “vertical”
direction is now the direction of the xn-axis.) The two 2-planes of the three-
dimensional example are turned into hyperplanes as follows. We replace
them by their inverse images under the orthogonal projection of Rn to the
x1x2xn-coordinate subspace. Simultaneously, we add the hyperplanes with
equations x3 = 0, . . . , xn−1 = 0. �

4.7.3. Polytopes with steep facets have small volume.

Lemma 4. Let n > 3 be an integer. Assume that a convex polytope
P ⊂ Rn has facet areas S1, . . . , Sm. Moreover, its outer unit facet normals
enclose an angle at most ε ∈ (0, π/2) with the x1 . . . xn−1-plane. Also the
volume of the (n− 1)-parallelepiped spanned by any n− 1 unit facet normals
of P is at least b > 0. Then its volume is bounded by

V (P ) 5 constn ·
( m∑

i=1

S
n/(2n−2)
i

)2

·
(
sin ε

b

)1/(n−1)

,

if sin2 ε 5 b2/
[
2(n− 1)3

]
.

On the other hand, for n = 3 and any m = 2n, there exists a suitable
ε0 ∈ (0, π/4), such that the following holds. For any ε ∈ (0, ε0), there exists
a convex polytope P (ε) ⊂ Rn, with m facets, with the following properties. It
satisfies the hypotheses of this lemma (except the one about the facet areas),
with b depending only on n and m, such that

V
(
P (ε)

)
= const′n · S

(
P (ε)

)n/(n−1) · (tan ε)1/(n−1)

= const′n ·m−(n−2)/(n−1) ·
( m∑

i=1

Si(ε)
n/(2n−2)

)2

· (tan ε)1/(n−1).

Here, S1(ε), . . . , Sm(ε) are the areas of the facets of P (ε). In particular,
in the inequalities of Lemma 2 and this lemma, the order of magnitude as
a function of ε is optimal.

Proof. We begin with the proof of the upper estimate. We denote by
si(xn) the (n− 2)-volume of the horizontal cross-section of the i-th facet
at height xn. Moreover, we denote by smax

i the maximum (n− 2)-volume
of such a horizontal cross-section. Let hi be the “height” of the i-th facet:
the difference between the maximal and the minimal xn-coordinates of its
points. Let h′i be the “tilted height” of this facet in its own hyperplane. That
is, the height when the hyperplane is rotated into vertical position about one
of its horizontal cross-sections.
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Now, since sin2 ε 5 b2/
[
2(n− 1)3

]
, the angle δ from Lemma 3 lies in

(0, π/2). Hence, by Lemma 3, P has no horizontal edges, and thus, also
no horizontal k-faces for any k ∈ {1, . . . , n− 2}. Therefore, once more by
Lemma 3, we know that every facet is contained in two rotationally sym-
metric cones with (n− 1)-balls as bases. One cone has its apex at the unique
lowest point of this facet and extends upwards from there. Its axis is vertical
(parallel to the xn-direction), and the directrices enclose an angle δ with the
xn-axis. The other cone extends downwards from the highest point of the
facet and has a vertical axis and directrices enclosing an angle δ with the xn-
axis. We use the upwards cone from the minimal height till the arithmetic
mean of the minimal and maximal heights. We use the downward cone for
the other half of the vertical extent of the facet. By this argument, we can
bound the maximum cross-section area smax

i of the i-th facet as follows.

(17) smax
i 5

(
(hi/2) · tan δ

)n−2 · κn−2.

(From the minimal height till the arithmetic mean of the minimal and max-
imal heights we have the following. Any horizontal cross-section of the cone
is contained in some (n− 1)-ball of radius at most R := (hi/2) · tan δ. Thus,
any horizontal cross-section of the facet lies inside the intersection of its
own affine hull with the upwards cone. That is, it lies in the intersection of
an (n− 2)-dimensional affine subspace with a cone whose base is an (n− 1)-
ball of radius at most R. Hence, this horizontal cross-section lies inside some
(n− 2)-ball of radius at most R. A similar argument holds for the downward
cone.) Moreover, we also have

(18) Si = smax
i h′i/(n− 1) = smax

i hi/(n− 1).

Let us rewrite (17) and (18) as follows.

h
−(n−2)
i · smax

i 5
(
(tan δ)/2

)n−2 · κn−2(19)

hi · smax
i 5 (n− 1)Si.(20)

We multiply the 1/
[
(2n− 2)(n− 2)

]
-th power of (19) with the n/(2n− 2)-th

power of (20) to get an inequality that we will need.

(21) (smax
i )(n−1)/(2n−4)

√
hi

5
(
(tan δ)/2

)1/(2n−2) · (κn−2)
1/[(2n−2)(n−2)] ·

(
(n− 1)Si

)n/(2n−2)
.
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Let K :=
[
(n− 1)n−1κn−1

]−1/(n−2)
denote the constant of the isoperimetric

inequality in n− 1 dimensions:

(22) Vn−1(C) 5 K ·
(
Vn−2(∂C)

) (n−1)/(n−2)

(for C ⊂ Rn−1). Now we can bound the volume as follows.

V (P ) =

∞∫
−∞

[
(n− 1)-volume of the cross-section of P at height xn

]
dxn

5
∞∫

−∞

[( m∑
i=1

si(xn)

)(n−1)/(2n−4)
]2

dxn ·K

5
∞∫

−∞

[ m∑
i=1

si(xn)
(n−1)/(2n−4)

]2
dxn ·K

=

∞∫
−∞

m∑
i=1

m∑
j=1

si(xn)
(n−1)/(2n−4)sj(xn)

(n−1)/(2n−4) dxn ·K

=
m∑
i=1

m∑
j=1

∞∫
−∞

si(xn)
(n−1)/(2n−4)sj(xn)

(n−1)/(2n−4) dxn ·K

5
m∑
i=1

m∑
j=1

(smax
i )(n−1)/(2n−4)(smax

j )(n−1)/(2n−4)min{hi, hj} ·K(23)

5
m∑
i=1

m∑
j=1

(smax
i )(n−1)/(2n−4)(smax

j )(n−1)/(2n−4)
√

hihj ·K

5 (tan δ)1/(n−1) · 2−1/(n−1) · (κn−2)
1/[(n−1)(n−2)] · (n− 1)n/(n−1)(24)

·
( m∑

i=1

S
n/(2n−2)
i

)2

·K

= constn ·
( m∑

i=1

S
n/(2n−2)
i

)2
(

(n− 1)3/2(sin ε)/b√
1− (n− 1)3(sin2 ε)/b2

)1/(n−1)

(25)
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5 const′n ·
( m∑

i=1

S
n/(2n−2)
i

)2

·
(
sin ε

b

)1/(n−1)

.

The first inequality uses the isoperimetric inequality (22). The second in-

equality uses the concavity of the function t(n−1)/(2n−4) for t ∈ [0,∞) and
its vanishing at t = 0. (Observe that 0 < (n− 1)/(2n− 4) 5 1.) Inequality
(23), as in (12), bounds the integral of a non-negative function by an upper
bound of the integrand times the length of the interval where the integrand
is positive. For (24), we have used the bound (21) that we derived above.
Inequality (25) uses the bound δ from Lemma 3. Finally, by hypothesis,
the expression under the square root in the denominator of (25) is bounded

below by 1− (n− 1)3(sin2 ε)/b2 = 1/2. We have therefore established the
claimed upper bound.

Now we give the example for the lower bound for n = 3 and m = 2n.
Let ε ∈ (0, ε0), where ε0 ∈ (0, π/4) will be chosen later. Let us write
Rn = Rn−1 ⊕ R. Let T+, T− ⊂ Rn−1 be regular (n− 1)-simplices circum-
scribed about the unit ball Bn−1 of Rn−1. Put them in such a general
position w.r.t. each other so that any n− 1 of their altogether 2n facet outer
normals linearly span Rn−1. Let n 5 m+,m− and m = m+ +m−. Let R±

be obtained from T± by intersecting it still with m± − n closed halfspaces
in Rn−1, all containing Bn−1, with their boundaries touching Bn−1. Then

Bn−1 ⊂ R± ⊂ T± ⊂ (n− 1)Bn−1.

Let the altogether m = m+ +m− facet outer unit normals of R+ and R−

satisfy the same condition of general position as above. Namely, any n− 1 of
them linearly span Rn−1. Let b > 0 be the minimum of the (n− 1)-volumes
of the (n−1)-parallelotopes spanned by any n−1 of these altogether m facet
outer unit normals.

Observe that for n = 3 and m = 2, the largest value of b is sin(π/m)
– if we do not begin the construction with two regular triangles but allow
any m facet outer unit normals in Sn−2 = S1. For n > 3, the maximal value
of b can be bounded from above as follows – again not beginning with two
regular simplices, but allowing any m facet outer unit normals in Sn−2. Let
us choose altogether n− 1 outer unit normal vectors of R+ and R−, say,
u1, . . . , un−1 ∈ Sn−2. We have∣∣det(u1, . . . , un−1)

∣∣
(n− 1)!

= Vn−2

(
conv{u1, . . . , un−1}

)
· dist

(
0, aff{u1, . . . , un−1}

)
/(n− 1)

5 Vn−2

(
conv{u1, . . . , un−1}

)
/(n− 1).
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Here, dist(·, ·) denotes distance. Thus, it suffices to bound

Vn−2

(
conv{u1, . . . , un−1}

)
from above. This is the spherical analogue – for Sn−2 – of the celebrated
Heilbronn problem. This problem asks about the maximum of the minimal
n-volume of n-simplices spanned by any m points in [0, 1]n. This problem
is poorly understood. For an extensive literature on this problem, see [13,
Ch. 11.2]. Unfortunately, this spherical variant cannot be reduced to the

case of [0, 1]n−2 by taking the projection of, say, the intersection of Sn−2

with each orthant to the tangent Rn−2 at its centre. Namely, the area of
conv{u1, . . . , un−1} can be large even if its projection has a small area. In
one direction, we have an implication: large projection areas imply large ar-
eas – but large areas still do not imply large values of

∣∣det(u1, . . . , un−1)
∣∣ .

However, this spherical variant is a special case of the (n− 1)-dimensional

Heilbronn problem for [0, 1]n−1. Namely, we can just add to any set of
(n− 1)-dimensional vectors in Sn−2 the single vector 0 – but probably we
loose an essential part of the information in this way.

Let P±(ε) be the half-infinite pyramid with vertex (0, . . . , 0,± tan ε) and
base R±. Then

C±
i (ε) ⊂ P±(ε) ⊂ C±

o (ε),

where C±
i (ε) and C±

o (ε) is a half-infinite cone with vertex (0, . . . , 0,± tan ε)

and base Bn−1 and (n− 1)Bn−1, respectively. Therefore,

Ci(ε) := C+
i (ε)∩C−

i (ε) ⊂ P (ε) := P+(ε)∩P−(ε) ⊂ Co(ε) := C+
o (ε)∩C−

o (ε).

Here, Ci(ε) and Co(ε) are double cones over Bn−1 and (n− 1)Bn−1, respec-
tively, with vertices (0, . . . , 0,± tan ε). Moreover, P (ε) is a convex polytope
with m facets, all facet outer unit normals enclosing an angle ε with the
x1 . . . xn−1-hyperplane. (Actually they enclose an angle ε with the respec-
tive facet outer unit normal of R+ or R− in Rn−1.) If ε0 and thus also ε is
sufficiently small then still any n− 1 facet outer unit normals of P (ε) span
an (n− 1)-parallelotope of volume at least some b′ ∈ (0, b).

A routine calculation gives

V
(
P (ε)

)
S
(
P (ε)

)n/(n−1)
=

V
(
Ci(ε)

)
S
(
Co(ε)

)n/(n−1)

=
(tan ε)1/(n−1)

n(2κn−1)
1/(n−1)[1 + (n− 1) tan2 ε

]n/(2n−2)
.
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Therefore,

V
(
P (ε)

)
=

S
(
P (ε)

)n/(n−1) · (tan ε)1/(n−1)

n(2κn−1)
1/(n−1)[1 + (n− 1) tan2 ε0

]n/(2n−2)

=
m−(n−2)/(n−1)

(∑m
i=1 Si(ε)

n/(2n−2)

)2

· (tan ε)1/(n−1)

n(2κn−1)
1/(n−1)[1 + (n− 1) tan2 ε0

]n/(2n−2)
.

Here, S1(ε), . . . , Sm(ε) are the areas of the facets of P (ε). The second in-
equality is equivalent to Hölder’s inequality for the numbers Si(ε), between
their arithmetic mean and their power mean with exponent n/(2n− 2) ∈
(0, 1). Finally, observe that tan ε0 ∈ (0, 1). �

4.7.4. Conclusion of the proof. Now we can finish the third proof of Theo-
rem 2 for n > 3. We proceed as for n = 3 but instead of Lemma 2 we use
Lemma 4. In Section 4.7.1 (see its last paragraph), we have constructed
a closed polygon M in the (n− 1)-dimensional subspace X with the follow-

ing property. Any n− 1 normed side vectors
−→
Si/Si span a parallelotope of

volume at least b. We follow the third proof of Theorem 2 for n = 3. We
take the first three consecutive vertices A1, A2, A3 of M and “rotate”A2 out
of the subspace X, keeping A1, A3 and the lengths |A1A2| and |A2A3| fixed.
We have a whole (n− 2)-dimensional sphere on which A2 can move, which
intersects X orthogonally. By bounding the distance by which A2 moves by
a suitable threshold we can ensure the following. Any n− 1 normed side vec-

tors
−→
Si/Si still span a parallelotope of volume at least b′ with some weaker

bound b′ > 0. The angle between [A1, A2] or [A2, A3] and the “horizontal”
hyperplane X can be made arbitrarily small. Thus, Lemma 4 guarantees
that the volume tends to zero as well. �

5. Proofs for the hyperbolic case

For general concepts in hyperbolic geometry, we refer to [5, 7, 18, 37, 40,
45]. In particular, a Lambert quadrilateral in H2 is a quadrilateral that has
three right angles.
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5.1. Proof of Proposition 1

LetH be the hyperplane of the facet Fm of P of area Sm. Let p : Hn → H
be the orthogonal projection of Hn to H. The image by p of the union of
the m− 1 facets different from Fm contains Fm.

Let dS be a surface element at a point x ∈ Hn. Let its image by p be
the surface element dS′ at p(x). Clearly, it suffices to show that dS′ 5 dS.
We may assume that dS is an (infinitesimal) (n− 1)-ball of radius dr in the
tangent space Tx(Hn) of Hn at x.

First we deal with the case when dS is orthogonal to the line ℓ
(
x, p(x)

)
.

(For x ∈ H, we mean by ℓ
(
x, p(x)

)
the line containing x and orthogonal

to H.) Then dS′ is an infinitesimal (n− 1)-ball in Tp(x)(Hn) of some ra-

dius dr′. By the trigonometric formulas of Lambert quadrilaterals in H2

(see [45, §29, (V)] or [17, Theorem 2.3.1]), we have 1 5 cosh |xp(x)| =(
tanh(dr)

)
/ tanh(dr′). Hence, dr′ 5 dr and therefore, dS′ 5 dS.

Now we extend this analysis to the case when dS is not orthogonal to
the line ℓ

(
x, p(x)

)
. Then the image by p of the infinitesimal (n− 1)-ball

dS in Tx(Hn) is an infinitesimal (n− 1)-ellipsoid in Tp(x)(Hn). It has n− 2

semiaxes equal to dr′ and the (n− 1)-st semiaxis smaller than dr′. Hence,
dS′ < dS in this case.

The case of equality is clear: the polytope must degenerate to the doubly
counted facet Fm. �

5.2. Proof of Proposition 2

From maximality of Sm, Sm−1, . . . , S3, it follows that all vertices lie at
infinity. Namely, a vertex cannot be incident only to the facets of areas S2,
S1. Hence, also S2, S1 are maximal. �

5.3. Proof of Proposition 3

Let P be a convex polyhedron as in the proposition with respective facets
F1, . . . , Fm. Let us consider any vertex v of some facet Fi. In the facets
incident to v, the angle of Fi at v is at most the sum of the angles of all
other facets incident to v. To see this, we intersect P with an infinitesimally
small sphere with centre at this vertex (in the conformal model). We obtain
a convex spherical polygon whose side lengths are the (convex) angles of the
facets incident to v at v, all these angles being in [0, π).

Summing these inequalities over all vertices v of Fi we obtain the follow-
ing. The sum t1 of the angles of Fi is at most the sum t2 of the angles of
all other facets at the vertices of Fi. The sum t2 is bounded above by the
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sum t3 of all angles of all facets different from Fi. The resulting inequality
t1 5 t3 is equivalent to the inequality to be proved.

Clearly, if we have at least one finite vertex with incident edges not in
a plane, then we have at least one strict inequality among the summed in-
equalities. So in this case, we have strict inequality in the proposition. �

The inequality t1 5 t3 from this proof is discussed for the spaces R3 and
S3 in Remark 9 in Section 6.1.

5.4. Proof of Theorem 3

Proposition 8 ([5, p. 127], [28, Theorem 1, Proposition 2]). For n = 2,
a simplex in Hn (with vertices at infinity admitted) is of maximal volume
if and only if all its vertices are at infinity and it is regular. It has a finite
volume.

Let vn be the maximal volume of a simplex in Hn. For instance, v2 = π

and v3 = −3
∫ π/3
0 log |2 sinu| du = 1.0149416 . . . ([40, p. 20], [5, p. 127]). Ob-

viously, the facet areas Si of a compact simplex in Hn are smaller than vn−1.

Lemma 5. The area S of a right triangle △ABC ⊂ H2 with angle
∠ACB = π/2 and side lengths |AC| = b and |BC| = a fulfills the equation

tanS =
sinh a · sinh b

cosh a + cosh b
.

Proof. This is a routine consequence of the trigonometric formulas for
a right triangle inH2. We use S = π/2−α−β, tan∠CBA = (tanh b)/ sinha ,
tan∠CAB = (tanh a)/ sinh b [18, p. 238], and tanhx = (sinhx)/ coshx. �

Lemma 6. Let d > 0. Assume that △ABC ⊂ H2 is a triangle such that
|AB| 5 d and |AC| 5 d. Then the area S of this triangle is bounded by the
inequality

S 5 2 arctan
cosh d− 1

2
√
cosh d

.

Proof. Without loss of generality we may assume that |AB| = |AC| =
d. Let H be the orthogonal projection of A to the line ℓ(B,C). The segment
AH cuts the triangle ABC into two congruent right triangles. With x =
cosh |AH| and y = cosh |BH| = cosh |CH|, we have x, y = 1 and xy = coshd.
Let S be the area of △ABC. Lemma 5 gives

tan2(S/2) =
(x2 − 1)(y2 − 1)

(x+ y)2
.
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Looking for the maximum of the numerator and the minimum of the de-
nominator subject to the constraints x, y > 0 and xy = cosh d, we see that

the maximal value of S is attained for x = y =
√
cosh d. This proves the

lemma. �
To show that a tetrahedron with given facet areas exists, we will use

a topological argument, which is encapsulated in the following lemma. The
lemma guarantees the existence of a zero of a function under certain condi-
tions on the boundary.

Lemma 7. Let F = (f1, f2): P → R2 be a continuous function defined on
a rectangular domain P = [0, a]× [0, b], where a, b > 0. Assume that there
are u1, u2, v1, v2 ∈ R such that u1 > u2 and v1 < v2 and

f1(x, 0) + f2(x, 0) 5 0, f1(x, b) + f2(x, b) = 0, and

u1f1(0, y) + u2f2(0, y) 5 0, v1f1(a, y) + v2f2(a, y) 5 0

for every 0 5 x 5 a and every 0 5 y 5 b. Then there exists a point (c, d) ∈ P
such that F (c, d) = (0, 0).

Proof. The conclusion clearly holds if F vanishes at some point of the
boundary ∂P of P . If F has no zero on ∂P , then it is sufficient to establish
that the index of the vector field F on the curve ∂P is 1. This implies that F
has a zero in the interior of P [29, p. 98, proof of Theorem VI.12, sufficiency].

To determine the index of F , we define the auxiliary function F0 : ∂P →
S1 as follows. On the vertical boundaries of P , we let F0(0, y) = AL :=

(
−

1/
√
2, 1/

√
2
)
and F0(a, y) = AR := −AL =

(
1/

√
2,−1/

√
2
)
for 0 5 y 5 b.

On the lower boundary, F0(x, 0) = (ξ, η) turns counterclockwise in the half-
plane ξ + η 5 0 with constant angular velocity from AL to AR as x varies
from 0 to b. The upper boundary is similar, but there F0(x, b) changes
clockwise in the half-plane ξ + η = 0. Then it follows from the assumptions
that, for (x, y) ∈ ∂P , F (x, y) and F0(x, y) never point to opposite directions.

Hence, F (x, y)/
∥∥F (x, y)

∥∥ , F0(x, y): ∂P → S1 are homotopic. Therefore, the
index of F equals the index of F0, namely 1. �

We still need two lemmas that together form a sharpening of two lemmas
from [11].

Lemma 8 ([11, Lemmas 1 and 2]). Consider a (possibly degenerate)
triangle A in S2, R2 or H2 with sides a, b, x, where a, b > 0. For the
case of S2, we additionally assume a+ b 5 π. Then, for a, b fixed and

|a− b| 5 x 5 a+ b, the area A of this triangle is a concave function of x.

(For x = a+ b = π on S2, we define A by a limit procedure: namely, fix-

ing a, b, we let x → a+ b = π. Accordingly, we set A = π. Observe that for
a+ b = π, the area A is half the area of a digon with sides containing the
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sides a, b of A.) In addition, the area is strictly concave for R2 and H2 and,
under the additional constraint a+ b < π, also for S2. �

We calculate more precise details about this concave function and the
value of its maximum.

Lemma 9. We use the notations of Lemma 8 and denote by γ the angle
between the sides a, b. For S2, let us additionally assume a+ b < π. Then
A equals 0 for x = |a− b| and x = a+ b, and it has a unique maximum for
some value x = xmax, with corresponding angle γ = γmax.

For H2, we have

cosh(xmax/2) =
√

(cosh a + cosh b)/2,

cos γmax = tanh(a/2) · tanh(b/2),

and the value of the maximal area is

π − 2 arcsin
sinh(a/2)

sinh r
− 2 arccos

tanh(a/2)

tanh r
+

π − 2 arcsin
sinh(b/2)

sinh r
− 2 arccos

tanh(b/2)

tanh r
,

where cosh r =
√

(cosh a + cosh b)/2.

For R2, we have

x2max = a2 + b2, γmax = π/2,

and the maximal area is ab/2.
For S2, we have

cos(xmax/2) =
√

(cos a + cos b)/2,

cos γmax = − tan(a/2) · tan(b/2),

and the maximal area is

2 arcsin
sin(a/2)

sin r
+ 2arccos

tan(a/2)

tan r
− π +

2arcsin
sin(b/2)

sin r
+ 2arccos

tan(b/2)

tan r
− π,

where cos r =
√

(cos a + cos b)/2.
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Moreover, letting y/2 be the distance between the midpoint of the side x
and the common vertex of the sides a and b, we have the following equiva-
lences:

γ ∈ [0, γmax) ⇐⇒ x < y, and γ = γmax ⇐⇒ x = y, and

γ ∈ (γmax, π] ⇐⇒ x > y.

Proof. For R2, the statement is elementary. Therefore, we investigate
only the cases of H2 and S2.

Denote the vertices of the triangle opposite to the sides a, b and x, by A,
B and C, respectively. Let D be the mirror image of C with respect to the
midpoint of the side x. Then the quadrilateral ABCD is centrally symmetric
with respect to the intersection O of its diagonals BC (of length x) and AD

(of length y). Its area is 2A, so it suffices to investigate its area.
We recall the isoperimetric property of the circle in R2, H2, and on S2

– but in the last case of radius r < (a+ b)/2 < π/2 – among sets of equal
perimeter. Namely, that the maximum area is attained for the circle. For S2,
one must restrict the candidate to (closed) sets contained in some open half-
S2 [52, Ch. 18, §6, 2, (18.39)]. Observe that a piecewise C1 closed curve on
S2 with length less than 2π lies in some open half-S2, by elementary integral-
geometric considerations [52, Ch. 7, §2, (7.11) and Ch. 18, §6, 1, (18.37)]. (A
very detailed exposition of the isoperimetric inequality in spaces of constant
curvature, i.e., in Rn, Hn, and Sn, can be found in [53]. See [54] for further
details.)

For γ = 0, we have x = |a− b| < a+ b = y, while for γ = π, we have
x = a+ b > |a− b| = y. Therefore, for some γ ∈ (0, π), we have x = y. This
implies that, for this γ, i.e., for this x, ABCD is inscribed in a circle of cen-
tre O and radius r := x/2 = y/2. By the isoperimetric property of the circle
– on S2 of radius r < (a+ b)/2 < π/2, in the sense described above – this
value of γ must therefore be γmax, and this x is xmax, see [33, p. 63, Problem
21], [32, §5, Problem 63], [34, p. 52]. (These references deal with the case of
R2. However, their well-known proof carries over to H2 and S2 if we use the
isoperimetric property of the circle – on S2 of radius r < (a+ b)/2 < π/2, in
the sense described above.)

We determine the radius of this circle. We use the law of cosines for the
triangles △AOC, △DOC and write φ := ∠BOC. For H2, we have

cosh a = cosh(x/2) · cosh(y/2)− sinh(x/2) · sinh(y/2) · cosφ,

and

cosh b = cosh(x/2) · cosh(y/2) + sinh(x/2) · sinh(y/2) · cosφ.
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Adding these, we obtain

(26) cosh a + cosh b = 2 cosh(x/2) · cosh(y/2).

Analogously, for S2, we obtain

cos a + cos b = 2 cos(x/2) · cos(y/2).

(These are the analogues of the parallelogram law in R2.) Thus, for H2, we
have

cosh a + cosh b = 2 cosh2 r = 2 cosh2(xmax/2),

and, for S2, we have

cos a + cos b = 2 cos2 r = 2 cos2(xmax/2)

in the range 0 < r 5 (a+ b)/2 < π/2.
Furthermore, for H2, x is a strictly increasing function of γ and, by (26),

y is a strictly decreasing function of x. Hence, for x = 2r we have y = 2r,
for |a− b| 5 x < 2r we have 2r < y 5 a+ b, and similarly, for 2r < x 5 a+ b
we have |a− b| 5 y < 2r. These imply the last equivalences in the lemma
for H2.

Next we determine cos γmax for H2. The law of cosines for the triangle
△ABC gives

cos γmax =
cosh a · cosh b− cosh(2r)

sinh a · sinh b
.

In this equation, we have cosh(2r) = 2 cosh2 r − 1 = cosh a + cosh b− 1,
and this implies the formula in the lemma. (Observe that 0 < a, b implies
cos γmax = tanh(a/2) · tanh(b/2) ∈ (0, 1).)

For S2, the proof of the last equivalences in the lemma and the calculation
of cos γmax are analogous. (Observe that now 0 < a, b and a/2 + b/2 < π/2
imply cos γmax = − tan(a/2) · tan(b/2) ∈ (−1, 0).)

Finally, the value of the maximum follows from the trigonometric for-
mulas for a right triangle in H2 and S2. �

We prove Theorem 3 with the following

Construction 1. Consider a number

(27) S ∈ (0, π/2)

and a number t > 0 such that

2sinh (t/2) > tanS.
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(Later, S will be the area of a compact right triangle, which explains con-
dition (27). At the same time, this explains the hypothesis 0 < S4 < π/2 of
Theorem 3, since in the proof, S will be chosen for example as S4.)

Now we define a function

ft,S : [0, t] → R

as follows. For any x ∈ [0, t], consider the function

gx(y) := arctan
sinhx · sinh y
coshx+ cosh y

+ arctan
sinh(t− x) · sinh y
cosh(t− x) + cosh y

,

where y ∈ [0,∞). It is easy to see that (d/dy)gx(y) > 0 for y ∈ [0,∞), and
gx(0) = 0, and

lim
y→∞

gx(y) = arctan(sinhx) + arctan
(
sinh(t− x)

)
= arctan

(
sinhx+ sinh(t− x)

)
= arctan

(
2 sinh(t/2)

)
> S

for all x ∈ [0, t]. Here, at the first inequality, we used concavity of the func-
tion arctan y on [0,∞) and arctan 0 = 0. At the second inequality, we used
convexity of the function sinhx on the interval [0, t]. Therefore, there is
a unique ỹ ∈ (0,∞) such that gx(ỹ) = S. We put

(28) ft,S(x) := ỹ ∈ (0,∞).

Now we investigate some properties of this function. Obviously, ft,S is con-

tinuous on [0, t], (moreover, it is C1 on (0, t)), and ft,S(x) = ft,S(t− x).
Here is the geometric interpretation of ft,S . Consider a triangle△ABC ⊂

H2 with the following properties:

(1) |AB| = t,

(2) the area of △ABC is S,

(3) if H is the orthogonal projection of C to the line ℓ(A,B), then H ∈
[A,B] and |AH| = x ∈ [0, t].

Then it is easy to see (using Lemma 5) that |CH| = ft,S(x). It is also easy

to see that for 0 < S̃ < S and for every x ∈ [0, t], we have ft,S̃(x) < ft,S(x).

In what follows we determine the number

(29) ht,S := ft,S(0) = ft,S(t).

By Lemma 5, we have

tanS =
sinh t · sinhht,S
cosh t+ coshht,S

.
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Solving this equation for coshht,S , we get

coshht,S =
tan2 S · cosh t+

√
1 + tan2 S · sinh2 t

sinh2 t− tan2 S
.

(Observe that sinh t > 2 sinh(t/2) > tanS by the strict convexity of the func-
tion sinh t on [0,∞) and sinh 0 = 0. Therefore, the denominator in this for-
mula is positive.) From this, we see that coshht,S → 1/ cosS for t → ∞.

Proof of Theorem 3. 1. First we consider the case when hypothe-
sis (1) of Theorem 3 holds.

Let us take a t > 0 such that

(30) 2 sinh(t/2) > tanS4,

and for the number ht,S4 := ft,S4(0) = ft,S4(t) defined in (28) and (29), we
have

(31)
coshht,S4 − 1

2
√

coshht,S4

< tan(S1/2).

Such a t exists since coshht,S4 → 1/ cosS4 for t → ∞, and

lim
t→∞

coshht,S4 − 1

2
√

coshht,S4

=
1− cosS4

2
√
cosS4

< tan(S1/2),

by hypothesis (1) of the theorem.
Consider any plane σ in H3. Take points A1, A2 ∈ σ such that |A1A2| =

t, where t has been chosen above. Let σ+ and σ− be the two half-planes
bounded by the line ℓ(A1, A2) in σ.

For a given x ∈ [0, t], we take the pointH = H(x) on the segment [A1,A2]
satisfying |A1H| = x. Consider the half-line lx from H in σ+ that is or-

thogonal to the line ℓ(A1, A2). Now let Ã4 = Ã4(x) be the point on lx
satisfying |Ã4H| = ft,S3(x), and let Ã3 = Ã3(x) be the point on lx satis-

fying |Ã3H| = ft,S4(x). By S4 = S3, we have Ã4 ∈ [Ã3,H], and thus also

|HÃ4| 5 |HÃ3|.
Let

{
γ(φ)

}
be the one-parameter group of rotations about the line

ℓ(A1, A2) through the angles φ, in some definite sense of rotation, with γ(0)
being the identity. For φ ∈ [0, π] we consider the point A3 = A3(x, φ) :=

γ(φ)
(
Ã3(x)

)
. Note that A3(x, π) ∈ σ−. Consider also A4(x, φ) := Ã4(x),

A1(x, φ) := A1 and A2(x, φ) := A2.
We are going to prove that there exists an (x, φ) ∈ [0, t]× [0, π] such

that the (possibly degenerate) tetrahedron T = T (x, φ) := A1(x, φ)A2(x, φ)
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A3(x, φ)A4(x, φ) has facet areas S1, S2, S3, S4, where Si is the area of the
facet opposite to Ai(x, φ).

Let si(x, φ) be the area of the facet of T (x, φ) that is opposite to the
vertex Ai = Ai(x, φ). By our construction, we obviously have s4(x, φ) = S4

and s3(x, φ) = S3.
Let us define functions f1, f2 : [0, t]× [0, π] → R as follows.

(32) f1(x, φ) = s2(x, φ)− S2, f2(x, φ) = s1(x, φ)− S1.

It is easy to see that

f1(x, 0) + f2(x, 0) = S4 − S1 − S2 − S3 < 0,(33)

f1(x, π) + f2(x, π) = S3 + S4 − S1 − S2 = 0.(34)

Now we check that

(35) f1(0, φ) < 0, f2(t, φ) < 0,

for all φ ∈ [0, π].

For the first inequality in (35), we note that the point Ã3(0) satis-

fies |Ã3(0)A1| = ft,S4(0) = ht,S4 , and the point Ã4(0) satisfies |Ã4(0)A1| =
ft,S3(0) =: ht,S3 5 ht,S4 . Therefore, for every φ ∈ [0, π], the triangle
△A1A3(0, φ)A4(0, φ) satisfies |A1A3(0, φ)| 5 ht,S4 and |A1A4(0, φ)| 5 ht,S4 .
By Lemma 6 and (31), we get

s2(0, φ) 5 2 arctan
coshht,S4 − 1

2
√

coshht,S4

< S1 5 S2.

Therefore, f1(0, φ) = s2(0, φ)− S2 5 s2(0, φ)− S1 < 0 for all φ ∈ [0, π].
For the second inequality of (35), we replace in the above argument

A1, Ã3(0), and Ã4(0) by A2, Ã3(t), and Ã4(t), respectively. We get f2(t, φ) =
s1(t, φ)− S1 < 0 for all φ ∈ [0, π].

Taking into account the inequalities (33–35), by applying Lemma 7
with (u1, u2, v1, v2) := (1, 0, 0, 1), we find an (x, φ) ∈ [0, t]× [0, π] such that
f1(x,φ) = f2(x,φ) = 0. This means that s1(x,φ) = S1 and s2(x,φ) = S2 for
the corresponding (possibly degenerate) tetrahedron T .

2. Now we consider the case when hypothesis (2) of Theorem 3 holds.
We use the same construction of the tetrahedron T as in the first case. For
the functions f1 and f2 defined by (32), we get the inequalities (33) and (34).
Now we check that

(36) f2(0, φ) = 0, f1(t, φ) = 0
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for all φ ∈ [0, π]. For this we note that

(37) s1(0, φ) = s1(0, 0) = S4 − S3 = S2 = S1

and

(38) s2(t, φ) = s2(t, 0) = S4 − S3 = S2

for all φ ∈ [0, π] provided t is sufficiently large, as we will prove. Of course,
we have to prove only the first inequalities in (37) and (38).

We will investigate s1(0, φ). (The case of s2(t, φ) is analogous.) Recall

that |HÃ4| 5 |HÃ3|, which implies

h0,S3 =
∣∣A1(0, φ)A4(0, φ)

∣∣ 5 ∣∣A1(0, φ)A3(0, φ)
∣∣ = h0,S4 .

For t fixed but φ ∈ [0, π] variable, the length of the third side of the triangle
△A1(0, φ)A3(0, φ)A4(0, φ) lies in the range∣∣A3(0, φ)A4(0, φ)

∣∣ ∈ [h0,S4 − h0,S3 , h0,S4 + h0,S3 ].

Therefore, to show

(39) s1(0, φ) = s1(0, 0),

we must show the following. Let

a :=
∣∣A2(0, φ)A4(0, φ)

∣∣ and b :=
∣∣A2(0, φ)A3(0, φ)

∣∣ .
Then a 5 b, since

cosh a = cosh t · cosh
∣∣A1(0, φ)A4(0, φ)

∣∣
5 cosh t · cosh

∣∣A1(0, φ)A3(0, φ)
∣∣ = cosh b.

Let c :=
∣∣A1(0, φ)A3(0, φ)

∣∣ − ∣∣A1(0, φ)A4(0, φ)
∣∣ = h0,S4 − h0,S3 . Then the

area of the triangle with sides a, b, c is less than or equal to the area of the
triangle with the same first two sides a, b and with third side in the interval

[h0,S4 − h0,S3 , h0,S4 + h0,S3 ] ⊂ [h0,S4 − h0,S3 , 2h0,S4 ] ⊂ [h0,S4 − h0,S3 , const].

For the last inclusion observe the following. By the geometric interpre-
tation, if S4 is fixed and t is above the bound 2 arsinh

[
(tanS4)/2

]
from (30)

and increases, then h0,S4 decreases. Therefore, h0,S4 remains bounded for
fixed S4 if t increases from its originally chosen value t0, say, to infinity .
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Inequality (39) is proved if we show the following monotonicity property.
Fixing the first two sides a, b and varying the third side x in the interval
[h0,S4 − h0,S3 , const], the area is a monotonically increasing function of x.

Now we apply Lemmas 8 and 9 to the triangle with sides a, b, x. We
need to show that its area is increasing for x ∈ [b− a, const], where we know
from the preceding considerations that 0 5 b− a 5 const. By these Lem-
mas, this area-increasing property is satisfied for x ∈ [b− a, xmax], where

xmax is defined by cosh2(xmax/2) = (cosh a + cosh b)/2. Thus, to complete
the argument, it suffices to show that xmax = const, i.e., that xmax → ∞ for
t → ∞.

We estimate xmax from below. We have

cosh2(xmax/2) = (cosh a + cosh b) /2 = cosh a > ea/2,

hence

(exmax/2)
2
> cosh2(xmax/2) > ea/2,

and hence

xmax > a − log 2 = t− log 2 → ∞,

as we wanted to show. Thus, (36) is proved.
Taking in account inequalities (33), (34), and (36), we can apply Lemma 7

with (u1, u2, v1, v2) = (0,−1,−1, 0) to find a point (x,φ) ∈ [0, t]× [0, π] such
that f1(x,φ) = f2(x,φ) = 0. This means that s1(x,φ) = S1 and s2(x,φ) = S2

for the corresponding (possibly degenerate) tetrahedron T .
3. It remains to exclude degeneration of our tetrahedron. Our construc-

tion yields degenerate tetrahedra only for φ = 0 and φ = π. In the first case,
S4 = S1 + S2 + S3, which contradicts our hypotheses. In the second case,
S4 + S3 = S2 + S1, which implies π > S4 = S3 = S2 = S1 > 0. (By the way,
this can occur only for case (1) of the theorem.) Then a suitable regular
tetrahedron satisfies the conclusion of the theorem. �

Remark 7. Let us apply the construction in the proof of Theorem 3
to the numbers Siε

2 and tε rather than Si and t, where ε → 0. Then, for
sufficiently small ε > 0, hypothesis (1) from Theorem 3 holds, and as an
analogue of (30) we have 2 sinh(tε/2) > tan(S4ε

2). In the limit, we obtain
a Euclidean tetrahedron with facet areas Si and one edge of length t. Let-
ting t → ∞ gives another proof for the last statement of Theorem E for R3

(existence of tetrahedra of arbitrarily small positive volume). Namely, the
heights of the two facets meeting at the edge of length t, corresponding to
this edge, are O(1/t). Thus, the tetrahedron is included in a right circular
cylinder of height t and radius O(1/t). Hence, the volume of the tetrahe-
dron is O(1/t). Degeneration is excluded as in Step 3 of the above proof of
Theorem 3.
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6. Proofs for the spherical case

Recall our convention about the notion of simplices in Sn at the begin-
ning of Section 2.3.

6.1. Proof of Proposition 4

1. We begin with the proof of the first inequality. Let the facets of P
be Fi. Their areas satisfy the equation

(40) Si = constn ·
∫

|Fi ∩ S1| dS1.

Here, | · | denotes cardinality, and constn > 0. The integration is taken with
respect to the unique O(n+ 1)-invariant probability Borel measure (for the
standard embedding Sn ⊂ Rn+1) on the manifold of all great-S1’s in Sn [52,
Ch. 18, §6, 1].

In the integration, we may disregard those S1’s that lie in the great-
Sn−1’s spanned by the facets F1, . . . , Fm, since they have measure 0. By
the same reason, we may disregard those S1’s that pass through the relative
boundary of Fi (in the great-Sn−1 spanned by it) for all i ∈ {1, . . . ,m} si-
multaneously. If an S1 does not lie in the above hyperplane and does not
intersect the above relative boundaries then it cannot contain two opposite
points of any Fi. Namely, since Fi lies in a closed half-Sn−1, both of these
points would otherwise lie in the relative boundary of Fi taken with respect
to the great-Sn−1 spanned by it. If such an S1 enters P at some point p ∈ Fm

it must also leave P , through some other facet (since this S1 does not con-
tain two opposite points of Fm) till it comes back to p. This holds even in
the degenerate case, that is, when some portion of Fm is a doubly counted
boundary of P either as a “flat” piece of P or as bounded from both sides
by the interior of P .

These considerations imply that the integral (40) for i = m is at most the
sum of the integrals for all 1 5 i 5 m− 1. Thus, (40) gives our inequality.

Now assume that P lies in an open half-Sn (in the open northern hemi-
sphere, say) but does not degenerate to the doubly-counted facet Fm.

Let Sm be the great-Sn−1 spanned by Fm. If ∪n−1
i=1 Fi ̸⊂ Sm, then there

exists an x ∈ ∪m−1
i=1 rel intFi such that x /∈ Sm. Also, there exists a y ∈ Sm \

Fm that also lies in the open northern hemisphere. Then x ̸= y, and since
both x and y lie in the open northern hemisphere, the great-S1 xy through
these two points exists.

The set of S1’s transversally intersecting ∪m−1
i=1 rel intFi but not inter-

secting Fm contains some neighbourhood of the great-S1 xy in the set of
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all great-S1’s and has therefore positive measure. This implies the strict
inequality in this case.

If ∪n−1
i=1 Fi ⊂ Sm, then in both cases ∪n−1

i=1 Fi ̸⊂ Fm and ∪n−1
i=1 Fi ⊂ Fm, we

have strict inequality unless P degenerates to the doubly counted facet Fm.
However, this degeneration was excluded.

2. We turn to the proof of the second inequality. We again use the
formula (40). Again we disregard those S1’s that lie in the great-Sn−1’s
spanned by any facet Fi of P , as well as those S1’s that pass through the rel-
ative boundary of any facet Fi of P . We compare the sum of the right hand
sides of (40) for all 1 5 i 5 m with the analogous integral when in the right
hand side of (40) we take a great-Sn−1 rather than Fi.

Clearly, for a great-Sn−1, the cardinality of its intersection with a great-
S1 is almost always 2. For the S1’s that were not disregarded and for any i,
the cardinality |Fi ∩ S1| is at most 1, since a great-S1 cannot contain two
opposite points of Fi (see part 1 of this proof). If P is not degenerate,
one great-S1 cannot transversally intersect the interiors of three facets Fi.
Namely, at each of these intersection points, it passes either into P or out
of P (with some definite orientation of our S1). Thus, there would be at
least four points of intersection, and the intersection of P and this great-S1
would be the union of at least two disjoint non-trivial arcs. However, this
contradicts convexity of P . Hence, the sum of the integrands in (40) over
all facets i = 1, . . . ,m is at most 2. For degenerate P , the same inequality
holds. This implies the second inequality of the proposition.

If P lies in an open half-Sn, then the set of S1’s intersecting the bound-
ary of the open half-Sn but not intersecting ∪m

i=1Fi has a positive measure.

(Namely, any great-S1 sufficiently close to the boundary of the open half-Sn
has this property.) This implies the strict inequality in this case. �

Remark 8. Part 1 of the above proof of Proposition 4 extends also
for Hn and yields Proposition 1, however without the case of equality. We
have to use also [52, Ch. 18, §6, 1], and instead of S1, we have to take a seg-
ment of a fixed positive length t and then let t tend to infinity. However, we
preferred to give the elementary proof for Proposition 1.

Remark 9. Clearly, the argument for the inequality t1 5 t3 in the proof
of Proposition 3 is valid also for R3 and S3. However, for R3, this inequal-
ity is easy to show, see below. It is also easy to show for S3, provided
that each facet is contained in a closed half-S2 and has at least three sides
– in particular if the polyhedron is contained in an open half-S3 – see be-
low. For R3, the sum of the angles of the ki-gon Fi is t1 = (ki − 2)π. Also,
Fi has ki neighbouring faces, each of which has angle sum at least π, so t1 =
(ki − 2)π < kiπ 5 t3. Similarly, for S3, with the above hypotheses, the sum
of the angles of Fi is t1 = Si + (ki − 2)π, while every other facet Fj has an
angle sum Sj + (kj − 2)π = Sj + π, since kj = 3. So the sum of the angles of
the other facets Fj is at least

∑
j ̸=i(Sj + π), and hence,

∑
j ̸=i Sj + kiπ 5 t3.

Therefore, t1 = Si + (ki − 2)π < Si + kiπ 5 (
∑

j ̸=i Sj) + kiπ 5 t3. Here, we
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used the first inequality of Proposition 4, which implies Si 5
∑

j ̸=i Sj , pro-

vided every facet lies in some closed half-S2.

6.2. Proof of Theorem 4

Now we give the spherical analogues of Lemmas 5 and 6.

Lemma 10. The area S of a right triangle △ABC ⊂ S2 with angle
∠ACB = π/2 and side lengths |AC| = b and |BC| = a (where 0 < a, b 5 π)
fulfills the equation

tanS =
sin a · sin b
cos a + cos b

if a+ b ̸= π. For a+ b = π, the area is S = π/2.

Lemma 11. Let 0 < d 5 π/2. Assume that △ABC ⊂ S2 is a triangle
such that |AB| 5 d and |AC| 5 d. Then the area S of this triangle is bounded
above by the inequality

S 5 2 arctan
1− cos d

2
√
cos d

if d ̸= π/2. For d = π/2, we have S 5 π.

Proof of Lemmas 10 and 11. The case a+ b = π of Lemma 10 and the
case d = π/2 of Lemma 11 is elementary. In the remaining cases cos d > 0
for Lemma 11, and we proceed analogously as in Lemmas 5 and 6. �

To prove Theorem 4, we use an analogous construction as for Theorem 3.

Construction 2. Let

(41) S ∈ (0, π/2],

and choose

t = π/2.

This choice is motivated as follows. We will apply Lemma 8 to triangles with
sides a, b 5 π/2, but Lemma 8 does not hold for a = b ∈ (t, π) = (π/2, π).
Thus, t = π/2 is the largest value for which our proof applies. Also, S will
be the area of a spherical triangle contained in a spherical triangle with three
sides π/2, which explains the constraint (41). Now, we define a function

ft,S : [0, t] → R
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as follows. For any x ∈ [0, t], consider the function

gx(y) := arctan
sinx · sin y
cosx+ cos y

+ arctan
sin(t− x) · sin y
cos(t− x) + cos y

,

defined for y ∈ [0, π/2]. It is easy to see that (d/dy)gx(y) > 0 for y ∈ [0, π/2),
gx(0) = 0, and

gx(π/2) = π/2 = S,

for all x ∈ [0, t]. Therefore, there exists a unique ỹ ∈ (0, π/2] such that
gx(ỹ) = S. We put

ft,S(x) := ỹ ∈ (0, π/2].

Now we investigate some properties of this function. Obviously ft,S is con-

tinuous on [0, t], (moreover, is C1 on (0, t)), and ft,S(x) = ft,S(t− x).
Here is the geometric interpretation of ft,S . Consider a triangle△ABC ⊂

S2 with the following properties.

(1) |AB| = t,

(2) the area of △ABC is S,

(3) C has an orthogonal projection H to the line ℓ(A,B) such that H lies
in the segment [A,B] and |AH| = x ∈ [0, t]. (Observe that there are
at least two orthogonal projections of C to ℓ(A,B).)

Then it is easy to see (using Lemma 10) that |CH| = ft,S(x). It is also easy

to see that for 0 < S̃ < S and for every x ∈ [0, t], we have ft,S̃(x) < ft,S(x).

The boundary values

ht,S := ft,S(0) = ft,S(t)

are easy to determine. By the geometric interpretation, this is the third side
of a spherical triangle with two other sides of length π/2 and area S, i.e.,

ht,S = S.

Proof of Theorem 4. 1. First we consider the case when hypoth-
esis (3) of Theorem 4 holds. We roughly follow the lines of the proof of
Theorem 3 for the analogous case when hypothesis (1) holds.

We have

(42)
1− cosht,S4

2
√
cosht,S4

=
1− cosS4

2
√
cosS4

5 tan(S1/2),

by the hypothesis of the theorem. From this point onwards, the construction
is the same as in Theorem 3.
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We still have to show that our tetrahedron T satisfies our convention
about simplices in Sn (see the beginning of Section 2.3). A convex combina-
torial simplex in an open half-Sn is always considered as a simplex in Sn. Let
e1, e2, e3, e4 denote the usual unit basis vectors, and let x1, x2, x3, x4 denote
the corresponding coordinates. We set A1 := e1 and A2 := e2. The rota-
tion about ℓ(A1, A2) in S3 maps A3 := e3 to e3 cosφ+ e4 sinφ, say. Then
T is in the closed half-S3 defined by the inequality x1 + x2 = 0. Moreover,
if S3 5 S4 < π/2, then T is contained in the open half-S3 defined by the
inequality x1 + x2 > 0, and we are done. If S3 5 S4 = π/2, a slight pertur-
bation of the open half-S3 given by x1 + x2 > 0 contains T for all φ ∈ [0, π],
and we are done. If S3 = S4 = π/2, and 0 5 φ < π/2 is fixed, then also
a slight perturbation of the open half-S3 given by x1 + x2 > 0 contains T
and then we are also done. The case S3 = S4 = φ = π/2 will be treated in
part 3 below.

We have to observe that from the construction, we have∣∣A3(x, φ)A4(x, φ)
∣∣ 5 ft,S3(x) + ft,S4(x) 5 2ft,S4(x) 5 π.

Thus, the edge
[
A3(x,φ), A4(x,φ)

]
of our tetrahedron is in the closed angu-

lar domain swept by γ(φ)σ+ for φ ∈ [0, π], as in the hyperbolic case. (This
explains the inequality S4 5 π/2 of the theorem – and thus also the inequal-
ity S 5 π/2 in the construction: without this inequality of the theorem, the
last sentence would not be valid. Moreover, let S3 = S4 ∈ (π/2, π). Then

consider
∣∣A3(x,φ)A4(x,φ)

∣∣ defined not as a distance but defined by analytic
continuation from φ’s close to 0, i.e., by retaining the geometry of the fig-
ure. Then for φ = π we would have

∣∣A3(x,φ)A4(x,φ)
∣∣ = 2ft,S4(x) ∈ (π, 2π).

This would imply that the tetrahedron T defined by the same analytic con-
tinuation, i.e., by retaining the geometry of the figure, would not be convex.)

We define si(x,φ) (for 1 5 i 5 4) and fi(x,φ) (for i = 1,2) as in the proof
of Theorem 3. The formulas

f1(x, 0) + f2(x, 0) = S4 − S1 − S2 − S3 < 0,(43)

f1(x, π) + f2(x, π) = S3 + S4 − S1 − S2 = 0(44)

follow like (33) and (34) in the hyperbolic case. The formulas

f1(0, φ) 5 0, f2(t, φ) 5 0,

for all φ ∈ [0, π] follow from Lemma 11 similarly as in the hyperbolic case
from Lemma 6. (Observe that here we have non-strict inequalities. Namely,
in hypothesis (3) of Theorem 4 and in (42), we have non-strict inequalities,
whereas for the hyperbolic case, we had strict inequalities in hypothesis (1)
of Theorem 3 and in (31).) Then, we choose (u1, u2, v1, v2) := (1, 0, 0, 1) and
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finish the proof of case 1 as in the hyperbolic case. Also here, the tetrahe-
dron T is possibly degenerate. (Observe that allowing S4 > π/2, we could

have ht,S4 > π/2. Then
∣∣A1A3(0, φ)

∣∣ , ∣∣A1A4(0, φ)
∣∣ 5 ht,S4 makes it impos-

sible to apply Lemma 11. This explains once more the inequality S4 5 π/2
of the theorem – and thus also the inequality S 5 π/2 in the construction –
for case 1.)

2. Now we consider the case when hypothesis (4) of Theorem 4 holds.
We roughly follow the lines of the proof of Theorem 3 when hypothesis (2)
holds.

As in Step 1 of this proof, our tetrahedron satisfies our convention about
the notion of a simplex in Sn (defined the beginning of Section 2.3), unless
S3 = S4 = φ = π/2. This last case will be handled below in part 3 of this
proof.

We obtain the inequalities (43) and (44) similarly to (33) and (34) in the
hyperbolic case.

Now we check that

f2(0, φ) = 0, f1(t, φ) = 0,

for all φ ∈ [0, π]. As in the hyperbolic case, this reduces to showing that

(45) s1(0, φ) = s1(0, 0), s2(t, φ) = s2(t, 0).

We will investigate s1(0, φ). (The case of s2(t,φ) is analogous.) Observe that

the distance
∣∣A3(x,φ)A4(x,φ)

∣∣ is a strictly increasing function of φ ∈ [0, π],
with ∣∣A3(x, 0)A4(x, 0)

∣∣ = ht,S4 − ht,S3 = S4 − S3,

and ∣∣A3(x, π)A4(x, π)
∣∣ = ht,S4 + ht,S3 = S4 + S3.

By the geometric interpretation (observe that
∣∣A2(0, φ)A1(0, φ)

∣∣ =∣∣A2(0, φ)A3(0, φ)
∣∣ = ∣∣A2(0, φ)A4(0, φ)

∣∣ = π/2), we have

s1(0, φ) = ∠A3(0, φ)A2(0, φ)A4(0, φ) =
∣∣A3(0, φ)A4(0, φ)

∣∣ ,
where the last term is strictly increasing for φ ∈ [0, π]. This shows (45).
Then, as in the hyperbolic case, we choose (u1, u2, v1, v2) := (0,−1,−1, 0)
and finish the proof of 2. Also here, the tetrahedron T can be degenerate.

3. It remains
1) to exclude degeneration of our tetrahedron, and
2) to verify that our tetrahedron satisfies our convention about the no-

tion of a simplex in Sn (see the beginning of Section 2.3).
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1) is done exactly as in the hyperbolic case in Theorem 3. Here we can
even have π = S4 = S3 = S2 = S1 > 0.

For 2) we have to handle the case S3 = S4 = φ = π/2 only. From Con-
struction 2 for any x ∈ [0, t] = [0, π/2] we have S 5 π/2, where equality
can be attained for any x ∈ [0, t]. The case of equality is independent of
x ∈ [0, t]: namely it is a regular spherical triangle with angles and sides
π/2. Then the fact that the angle of the facets A1(x, φ)A2(x, φ)A3(x, φ)
and A1(x, φ)A2(x, φ)A4(x, φ) is φ = π/2 uniquely determines our simplex:
it is a regular simplex in S3 of edge π/2 (thus we have also S1 = S2 = π/2
– the vertices can be e1, . . . , e4). This lies in some open half-S3, therefore is
among the simplices that we considered as simplices in S3. �

6.3. Proof of Proposition 5

For part (i), we start with n = 2 dimensions. Here, one has a convex
m-gon in a closed half-S2, with sides S1, . . . , Sm. In fact, it lies in an open
half-S2, has strictly convex angles, and is non-degenerate if Sm < S1 + · · ·+
Sm−1 and S1 + · · ·+ Sm < 2π. For the degenerate cases, i.e., when Sm =
S1+ · · ·+Sm−1 or S1+ · · ·+Sm = 2π, we have a doubly counted segment or
a great-S1, respectively. If both equations hold, then we have also a digon,
with sides subdivided to m1 and m2 sides, where m1 +m2 = m. If both
inequalities are strict, we can copy the well-known proof in [34, pp. 53–54] –
given there for the case of R2. Thus, we obtain the existence of such a convex
m-gon. Actually, one gets such a convex m-gon that is inscribed in a circle
of radius less than π/2.

Now we show how this construction can be lifted to higher dimensions.
For S3, we embed the above m-gon in its equator, which is an S2. Each side
of this polygon is then replaced by a facet that is the union of all meridians
(whose lengths are π) meeting that side. The vertices are replaced similarly
by edges that are meridians meeting these vertices. Additionally, there are
two new vertices at the North and South Poles. Then the ratio of the areas
of the spherical digons and the lengths of the corresponding edges of our
polygon is V2(S2)/V1(S1), where Vi denotes i-volume. Moreover, the dihedral
angles are the same as for the spherical m-gon in S2.

The inductive step is performed analogously for all n > 3. The other
stated properties are obvious.

Part (ii) about simplices is proved by induction on n. For n = 2, we
have a spherical triangle, and we have the same degenerate cases as in
part (i) for m = n+ 1 = 3 (with {m1,m2} = {1, 2}). Let n = 3, and as-
sume that the statement of the theorem holds for n− 1. With the factor
α := Vn−2(Sn−2)/Vn−1(Sn−1), the numbers α(S1 + S2), αS3, . . . , αSn+1 sat-
isfy the hypotheses of the proposition for n− 1. Arguing as in the second
proof of Theorem 2 in Section 4.4 part 1, we establish that Snew := S1+S2 5
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S3+ · · ·+Sn+1, since n+1 = 4, and, for j = 3, Sj 5 Snew+S3+ . . .+Sj−1+
Sj+1 + . . .+ Sn+1.

Therefore, we have on Sn−1 a polyhedral complex that is a combinato-
rial simplex with these facet areas. Again we consider Sn−1 as the equator
of Sn. We replace each facet and each lower-dimensional face of this poly-
hedral complex on Sn−1 by the union of all meridians (whose lengths are π)
meeting it. The resulting facets and also lower-dimensional faces are of of
one dimension higher than the original ones. Additionally, there are two new
vertices at the North and South Poles. Thus, we have obtained a polyhedral
complex on Sn with facet areas S1 + S2, S3, . . . , Sn+1.

This polyhedral complex has only two vertices at the two poles, and n
edges joining them. Its n facets are obviously not simplices. The facet of
area S1 + S2 has n− 1 edges. On each of these n− 1 edges, we add an ex-
tra vertex at the same geographic latitude. Also we add an extra (convex)
simplicial (n− 2)-face with these vertices, together with its faces of lower di-
mensions, that subdivides the facet of area S1 + S2. For a suitable choice
of the latitude, the facet of area S1 + S2 is subdivided into two (n− 1)-
dimensional simplicial facets of areas S1 and S2. These two facets with all
their lower-dimensional faces are added as well. In each of the other facets
(of areas S3, . . . , Sn+1), one (n− 2)-face has been subdivided into two sim-
plicial (n− 2)-faces. Thus, these other facets also become combinatorial
(n− 1)-simplices, by induction with respect to n.

The other stated properties follow by the construction. �
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Abteilung: Math. Monographien, 8, Akademie Verlag, Berlin, 1958,
MR 19,1192; English translation: A. D. Alexandrov Convex polyhedra, transl.
by N. S. Dairbekov, S. S. Kutateladze, A. B. Sossinsky, with comments and
bibliography by V. A. Zalgaller and appendices by L. A. Shor, Yu. A. Volkov,
Springer Monographs in Math., Springer, Berlin, 2005, MR 2005j:52002.

[4] Aleksandrov, V. A., How to crumple a regular tetrahedral packet of milk, so
that it could contain more (Russian), Sorosovskij Obrazovatel’nyj Zhurnal, 6
(2000), 121–127. Zbl 947.52012.

[5] Alekseevskij, D. V., Vinberg, E. B. and Solodovnikov, A. S., Geometry of
spaces of constant curvature, in: Geometry II (Ed. E. B. Vinberg), Ency-
clopaedia Math. Sci., 29, 1–138, Springer, Berlin, 1993, MR 95b:53042.

[6] Auluck, F. C., The volume of a tetrahedron, the areas of the faces being given,
Proc. Indian Acad. Sci., Sect. A, 7 (1938), 279–281, Zbl 18.37106.
Online access:
http://www.ias.ac.in/j_archive/proca/7/4/279-281/viewpage.html.

[7] Baldus, R., Nichteuklidische Geometrie, Hyperbolische Geometrie der Ebene,
Vierte Aufl., Bearb. und ergänzt von F. Löbell, Sammlung Göschen,
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Krystallflächen, Zeitschr. für Krystallographie und Mineralogie, 34 (1901),
449–530.


