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Abstract

We consider the scheduling problems F2 j jCmax and F2 j no-wait jCmax, i.e. makespan

minimization in a two machine 
ow shop, with and without no wait in process. For both

problems solution algorithms based on sorting with O(n logn) running time are known,

where n denotes the number of jobs [Johnson 1954, Gilmore & Gomory 1964].

We prove that no asymptotically faster algorithms can solve these problems. This is

done by establishing 
(n logn) lower bounds in the algebraic computation tree model of

computation. Moreover, we develop for every " > 0 approximation algorithms with linear

running time O(n log 1

"
) that deliver feasible schedules whose makespan is at most 1 + "

times the optimum makespan.

Keywords. Flow shop, no wait in progress, computational complexity, algebraic compu-

tation tree, lower bounds.

1 Introduction

In the two machine 
ow shop, there are two machines MA and MB , and n jobs J1; : : : ; Jn.

Every job Jj (j = 1; : : : ; n) needs to be processed �rst for aj time units on machine MA and

afterwards for bj time units on machine MB . The goal is to minimize the makespan, i.e. the

point in time at which the last job is completed. In the standard scheduling notation (cf.

Lawler, Lenstra, Rinnooy Kan & Shmoys [7]) this problem is denoted by F2 j jCmax. In the

closely related two machine no wait 
ow shop, F2 j no-wait jCmax, each job, once started, has

to be processed without interruption until it is completed.

The problems F2 j jCmax and F2 j no-wait jCmax both are solvable in O(n logn) time. For

F2 j jCmax, Johnson [6] shows that the following rule yields an optimum schedule: �rst process

the jobs with aj � bj in order of nondecreasing aj , and then process the remaining jobs in order

of nonincreasing bj . F2 j no-wait jCmax can be formulated as a travelling salesman problem

whose distance matrix assumes a special combinatorial structure. The results of Gilmore &

Gomory [4] then yield an O(n logn) solution to this travelling salesman problem (cf. Reddi

& Ramamoorthy [10], or Gilmore, Lawler & Shmoys [5]). The only expensive step of the
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The two machine flow shop 2

Gilmore & Gomory algorithm is an O(n logn) sorting step, whereas the remaining steps take

O(n) overall time. Hence, the time complexity of both algorithms mainly comes from a sorting

step. Naturally the question arises whether one can do faster, without using a sorting routine.

The main contribution of this paper is that every algorithm for problems F2 j jCmax and

F2 j no-wait jCmax must use 
(n logn) time in the worst case. This is proved by establishing


(n logn) lower bounds in the algebraic computation tree model of computation, which is a

standard model in theoretical computer science for studying the time complexity of computa-

tional problems. We also investigate the strength of linear-time algorithms for these problems.

We show that for every " > 0, the value of the optimum makespan in both problems can be

approximated in linear time within an multiplicative error of 1+". These results are essentially

based on replacing the sorting steps that cost O(n logn) time by partitioning steps that cost

O(n) time.

The paper is organized as follows. In Section 2 we brie
y introduce the algebraic compu-

tation tree model, and we establish the 
(n logn) lower bounds on the time complexity of the

scheduling problems. Section 3 gives the linear-time approximation algorithms for F2 j jCmax

and for F2 j no-wait jCmax. Section 4 contains the conclusion.

2 Lower bounds in the algebraic computation tree model

In this section we prove that any algorithm for F2 j jCmax and F2 j no-wait jCmax, respectively,

must have an 
(n logn) worst case time complexity in the algebraic computation tree model

of computation.

An algebraic computation tree (ACT, for short) models a deterministic program in which

each step performs either a binary arithmetic operation z := x � y with � 2 f+;�; �; =g, a
unary arithmetic operation z :=

p
x, or a branching operation depending on whether z < 0,

z = 0 or z > 0. These operations are the atomic operations that can be performed within

one time-unit; note that computing the 
oor-function is not an atomic operation. The ACT

is one of the standard models of computation in theoretical computer science; cf. e.g. Ben-Or

[1], Ramanan [9], Seiferas [11], and Yao [12].

De�nition 2.1 An instance of the Uniform Gap problem consists of n real numbers

x1; : : : ; xn and a real number " > 0. The problem is to decide whether all gaps between

consecutive numbers are equal to ". (Two numbers xi and xj are consecutive if xi � xj and if

there exists no other number xk, i 6= k 6= j, such that xi � xk � xj).

Proposition 2.2 (Lee & Wu [8])

The Uniform Gap problem requires 
(n logn) worst case time in the algebraic computation

tree model.

The lower bounds for problems F2 j jCmax and F2 j no-wait jCmax are proved by reducing

the Uniform Gap problem in linear time to the scheduling problems. Indeed, let x1; : : : ; xn
and " constitute an instance of Uniform Gap. Without loss of generality we may assume that

the smallest of the numbers xi is zero. We determine in linear time the sum X of all values

xi. If X 6= 1
2
(n� 1)n", the answer to the Uniform Gap instance must be No. Otherwise, we



The two machine flow shop 3

construct in linear time O(n) an instance of the two machine 
ow shop: For j = 1; : : : ; n we

introduce a job Jj with processing times aj = xj on machine A and processing time bj = xj+"

on machine B. We claim that this scheduling instance for F2 j jCmax and F2 j no-wait jCmax

has a feasible schedule with makespan at most 1
2
n(n + 1)" if and only if the Uniform Gap

instance has answer Yes.

(If). In case the Uniform Gap instance has answer Yes, there exists a permutation

� 2 Sn of the jobs such that a�(i) = (i � 1)" and b�(i) = i" for all 1 � i � n. Then

the schedule (J�(1); J�(2); : : : ; J�(n)) where for i = 2; : : : ; n the operations a�(i) and b�(i�1)
always are processed in parallel is a feasible permutation schedule for F2 j jCmax and for

F2 j no-wait jCmax. Moreover, this schedule has makespan 1
2
n(n + 1)".

(Only if). Assume that a schedule exists with makespan at most 1
2
n(n + 1)". Without

loss of generality we may assume that this schedule is a permutation schedule in which both

machines process the jobs in the same order � 2 Sn. Then for every 1 � k � n, the inequality

kX

i=1

a
�(i) +

nX

i=k

b
�(i) � 1

2
n(n+ 1)" (1)

holds. By rewriting the left-hand side of this inequality, one derives

kX

i=1

a�(i) +
nX

i=k

(a�(i) + ") = X + a�(k) + (n� k + 1)" � 1

2
n(n + 1)"; (2)

which is equivalent to a�(k) � (k � 1)". Summing this over all 1 � k � n yields

X =
nX

k=1

a�(k) �
nX

k=1

(k � 1)" =
1

2
n(n � 1)" = X: (3)

This implies that for all 1 � k � n, a�(k) = (k�1)" must hold. Hence, the considered instance

of Uniform Gap has answer Yes.

Summarizing, any algorithm for F2 j jCmax or F2 j no-wait jCmax with worst case running

time O(f(n)) can be used to construct an O(n+ f(n)) algorithm for Uniform Gap. Now the

lower bound result of Lee & Wu [8] (cf. Proposition 2.2) yields that f(n) must be 
(n logn).

Theorem 2.3 Any algorithm for F2 j jCmax and any algorithm for F2 j no-wait jCmax must

have a worst case running time 
(n logn) in the algebraic computation tree model of compu-

tation.

3 A linear-time approximation algorithm

In this section, our goal is to approximate the optimum makespan of a two machine 
ow shop

(with or without no wait in process) in linear time. Let " > 0 be some small �xed real number

and de�ne g = dlog2(4" )e. We consider an instance I of F2 j jCmax or F2 j no-wait jCmax that

is speci�ed by the processing times aj and bj (j = 1; : : : ; n) of the n jobs. Let C�
max(I) denote

the optimum makespan of I . Hence, our goal is to �nd in O(ng) = O(n log 1
"
) time a feasible

schedule for I with makespan at most (1 + ")C�
max(I).
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Observation 3.1 Without loss of generality we may assume that the number n of jobs is of

the form n = 2g(2m � 1) for some integer m � 1.

Proof. If n < 2g holds, then we can solve the instance to optimality in O(n logn) = O(ng)

time. If n � 2g holds and n is not of the form 2g(2m � 1), then we add an appropriate set of

dummy jobs of length 0. By at most tripling the number of jobs, we get a number of jobs of

the desired form.

Consider the n processing times a1; : : : ; an on the �rst machine and de�ne the following

partition Ai;k, 0 � i � m� 1 and 1 � k � 2g, of the numbers aj :

� For 0 � i � m� 1 and 1 � k � 2g, the set Ai;k contains 2
i elements.

� For 0 � i � m � 2 and 1 � k; ` � 2g, all elements in Ai+1;k are less or equal to all

elements in Ai;`.

� For 0 � i � m� 1 and 1 � k < ` � 2g � 1, all elements in Ai;k+1 are less or equal to all

elements in Ai;k.

Moreover, we de�ne a similar partition Bi;k, 0 � i � m � 1 and 1 � k � 2g, of the numbers

b1; : : : ; bn. For 0 � i � m� 1 and 1 � k � 2g, denote by �i;k the maximum value in Ai;k and

denote by �i;k the maximum value in Bi;k . Finally, we de�ne a new instance I 0 of F2 j jCmax,

respectively F2 j no-wait jCmax, as follows: For every job Jj in I with processing times aj 2 Ai;k

and bj 2 Br;s the instance I
0 contains a corresponding job J 0

j
with processing times a0

j
= �i;k

and b0
j
= �r;s.

Since for all j (j = 1; : : : ; n) aj � a0
j
and bj � b0

j
holds, the optimum makespan C�

max(I
0)

of instance I 0 must be greater or equal to C�
max(I). Conversely, consider an optimum schedule

for I in which each machine processes the jobs in the same order � 2 Sn. If we use � to

process the corresponding jobs in I 0, the increase in the makespan is upper bounded by the

total increase in the processing times. Summarizing, we have

C�
max(I) � C�

max(I
0) � C�

max(I) +
nX

j=1

(a0
j
� aj) +

nX

j=1

(b0
j
� bj): (4)

Observe the following statements for the smallest value in set Ai;k .

� For 1 � k � 2g, the smallest value in A0;k is equal to its only element �0;k.

� For 1 � i � m� 1 and 1 � k � 2g � 1, the smallest value in Ai;k is at least �i;k+1.

� If 1 � i � m� 1, then the smallest value in Ai;2g is at least �i+1;1. (De�ne �m;1 = 0).

� In Am�1;2g , the smallest value is at least 0.

By using these bounds on aj and by summing over all sets Ai;k , one gets that

nX

j=1

aj �
2gX

k=1

�0;k +
m�1X

i=1

2g�1X

k=1

2i�i;k+1 +
m�1X

i=1

2i�i+1;1: (5)
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By using �0;k � �1;1 together with �i;k+1 � �i+1;1 for 1 � i � m� 2 and 1 � k � 2g � 1, and

together with �m�1;k+1 � 0 for 1 � k � 2g � 1, inequality (5) leads to

nX

j=1

aj � 2g�1;1 +
m�2X

i=1

2g�1X

k=1

2i�i+1;1 +
m�2X

i=1

2i�i+1;1 = 2g
m�1X

i=1

2i�1�i;1: (6)

Moreover,

nX

j=1

a0
j
=

2gX

k=1

�0;k +
m�1X

i=1

2g�1X

k=1

2i�i;k +
m�1X

i=1

2i�i;2g : (7)

By subtracting (5) from (7) and by telescoping several sums, we get

nX

j=1

(a0
j
� aj) �

m�1X

i=1

2g�1X

k=1

2i(�i;k � �i;k+1) +
m�1X

i=1

2i(�i;2g � �i+1;1)

=
m�1X

i=1

2i(�i;1 � �i;2g) +
m�1X

i=1

2i(�i;2g � �i+1;1)

=
m�1X

i=1

2i(�i;1 � �i+1;1)

= �1;1 +
m�1X

i=1

2i�1�i;1: (8)

Finally, since the optimum makespan is greater or equal to the total processing time on the

�rst machine, we get from (6) and (8) that

C�
max(I) �

nX

j=1

aj � 2g
m�1X

i=1

2i�1�i;1

� 2g�1(�1;1 +
m�1X

i=1

2i�1�i;1) � 2g�1
nX

j=1

(a0
j
� aj) (9)

Now (9) together with the de�nition of g yields that

nX

j=1

(a0
j
� aj) � "

2
� C�

max(I): (10)

Analogous arguments yield

nX

j=1

(b0
j
� bj) � "

2
� C�

max(I): (11)

Finally, we combine (10) and (11) with (4), and thus get

C�
max(I

0) � (1 + ")C�
max(I): (12)
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Lemma 3.2 From instance I, one can compute instance I 0 in O(ng) time.

Proof. Blum, Floyd, Pratt, Rivest & Tarjan [2] show that the r-largest value among s numbers

can be determined in O(s) time. We use this algorithm to compute all sets Ai;k and all sets

Bi;k in O(ng) time.

In a �rst step, we computem auxiliary sets Am�1; Am�2; : : : ; A0. For 0 � i � m�1, jAij =
2g+i holds; all elements in Ai+1 are less or equal to all elements in Ai. Set Am�1 is computed

as follows: Determine the median (i.e. the n

2
-largest element) of the values a1; : : : ; an. Remove

n

2
= 2g+m�1 elements that are less or equal to the median, and put them into Am�1. From

the remaining elements, successively compute Am�2, Am�3, and so on. Since the computation

of Ai costs O(2
g+i) time, this yields an overall time complexity of O(n) for the �rst step.

In the second phase, every set Ai is split into the sets Ai;k with 1 � k � 2g. We can split

Ai by repeatedly halving it into smaller and smaller pieces. In the `-th iteration, we call the

algorithm of Blum & al. for 2`�1 sets with 2g+i�`+1 elements each, which takes O(jAij) time.
After g iterations, we are done. Hence, the overall time complexity for splitting Ai is O(gjAij),
and the overall time complexity for splitting all sets is O(ng).

Analogously, we compute all sets Bi;k in O(ng) time. It is straightforward to determine

the values �i;k and �i;k, and the values a0
j
and b0

j
in linear time. Hence, instance I 0 can be

computed in O(ng) time from instance I .

Lemma 3.3 For any instance I of F2 j jCmax or F2 j no-wait jCmax, one can compute an

optimum solution to the corresponding instance I 0 in O(n) time.

Proof. First consider the case where I is an instance of F2 j jCmax. Johnson's algorithm [6]

mainly relies on sorting the jobs according to their processing times. Since we already know

the partitions Ai;k and Bi;k , the sorting of the jobs in I 0 can easily be done in O(n) time.

For the case where I is an instance of F2 j no-wait jCmax, we refer the reader to the work

of Gilmore & Gomory [4] (see also Gilmore, Lawler & Shmoys [5]). The �rst step of the

Gilmore & Gomory algorithm consists in sorting the values a0
j
and in sorting the values b0

j
.

Similarly as above, we observe that this sorting can be done in O(n) time. The remaining

steps of the Gilmore & Gomory algorithm { i.e. computing an optimum assignment, �nding

the subtours, computing a patching tree of minimum cost for the subtours, and performing

the subtour patching { all can be done in O(n) time. We stress the fact that in the Gilmore &

Gomory case any spanning tree for the subtours is an optimum patching tree (cf. Section 5.3

in Burkard, Deineko, van Dal, van der Veen & Woeginger [3]).

Theorem 3.4 For each real " > 0 and for each n job instance I of F2 j jCmax, respectively

F2 j no-wait jCmax, one can compute in O(n log 1
"
) time a feasible schedule whose makespan is

at most 1 + " times the optimum makespan.

Proof. Compute instance I 0 as described in Lemma 3.2, and solve it as described in

Lemma 3.3. Let J 0
�(1)

; : : : ; J 0
�(n)

denote the job ordering in the optimum schedule for I 0.

Then by (12), the job ordering J�(1); : : : ; J�(n) gives a schedule for instance I with makespan

at most (1 + ")C�
max(I).
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4 Conclusion

In this paper we have shown that any algorithm for the two machine 
ow shop problems

F2 j jCmax and F2 j no-wait jCmax needs 
(n logn) time in the algebraic computation tree

model of computation. We remark that this does not exclude the existence of linear-time

algorithms which use the 
oor-function, indirect addressing, or similar tricks (In fact, the

Uniform Gap problem can be solved in linear time by bucket sort, using the 
oor-function).

Moreover, we have shown that the optimum solution of these problems can be approximated

in linear time with arbitrarily good precision.

Finally, we remark that also the problem 1 j jLmax of minimizing the maximum lateness,

the problem 1 j jTmax of minimizing the maximum tardiness, and the problem 1 j jPUj of

minimizing the number of tardy jobs have 
(n logn) lower bounds in the algebraic computation

tree model of computation. These three problems possess well-known O(n logn) algorithms

(cf. Lawler, Lenstra, Rinnooy Kan & Shmoys [7]).

Acknowledgement. We thank Walter Bucher, Bettina Klinz, and Ulrich Pferschy for valu-

able discussions.
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