
The number of spanning trees in a planar graph
Günter Rote

(joint work with Ares Ribó, Xuerong Yong)

Theorem 1. (1) A planar graph with n vertices has at most 5.33333333 . . .n

spanning trees.
(2) A planar graph with n vertices and without a triangle has at most ( 4

8√e
)n <

3.529988n spanning trees.
(3) A three-connected planar graph with n vertices and without a face cycle of

length three or four has at most ( 3
√

36/e4/27)n < 2.847263n spanning trees.

Lower bounds that complement parts (1) and (2) come from the triangular and
square grids [7], which have asymptotically ≈ 5.029545n and ≈ 3.209912n spanning
trees, respectively, see also [6, (2.17–2.19)]. (The exact values are exp

(
3
√

3
π (1− 1

52 +
1
72 − 1

112 + 1
132 −· · · )) and exp

(
4
π (1− 1

32 + 1
52 − 1

72 + 1
92 −· · · )).) A large graph with

pentagonal faces with the regular structure shown on
the right is a candidate for the best construction in
case (3). The asymptotic number of trees of this ex-
ample can be calculated by the technique of Shrock
and Wu [6], but we haven’t done this.

Our motivation for studying this problem comes
from the task of realizing 3-dimensional polytopes with
(small) integral vertex coordinates. The combinatorial
structure of a 3-polytope is specified by a three-connected planar graph. Such a
graph always contains at least a triangular, a quadrilateral, or a pentagonal face;
this is the reason why we did not continue after part (3) of Theorem 1.

To construct a 3-polytope with a given combinatorial structure, we follow the
approach described in Richter-Gebert [5, Part IV]: we construct a planar equilib-
rium embedding for a specified self-stress and lift it to a polyhedral surface via
the Maxwell-Cremona correspondence. The analysis of the determinant of the lin-
ear system of equations which is used to define the equilibrium embedding leads
directly to the number of spanning trees of the graph, via the Matrix-Tree theorem.

With the improved bounds of Theorem 1 and some additional technique for
graphs containing a quadrilateral face, we can improve the results of Richter-
Gebert as follows:

Theorem 2. (1) A 3-polytope P with n vertices can be realized with integral
coordinates of absolute value less than 212n2

(or more precisely, n10n 210n2
).

(2) If P contains a quadrilateral face, the bound is reduced to 156n.
(3) If the graph of P contains a triangle, the bound is reduced to 29n. �

In this abstract, we will only sketch the techniques for proving Theorem 1. Full
details can be found in [4]. The proof of part (1) is rather simple: we add edges
until we obtain a triangulated supergraph G; its dual graph G∗ is 3-regular and
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has 2n−4 vertices. Applying the upper bound for regular (not necessarily planar)
graphs of McKay [3], and of Chung and Yau [1] yields our bound.

For parts (2) and (3) of Theorem 1, we introduce the Outgoing Arc Approach.
We choose an arbitrary root vertex r. In the directed graph obtained by replacing
every edge by two opposite directed arcs, we form a subset R of arcs by selecting
one outgoing arc uniformly at random for each vertex different from the root.

If R does not contain cycles, it forms a spanning tree. Each tree is generated in
exactly one way by this process. Multiplying the number of possibilities, which is
the product of the vertex degrees

∏
v∈V −{r}dv, by the “success probability” yields

the following expression for the number T of spanning trees:

Lemma 1.

T =
∏

v∈V −{r}
dv · Prob(R does not contain a cycle) �

From the product of vertex degrees
∏

dv and the arithmetic-geometric mean
inequality we already get an easy upper bound of 6n for the number of spanning
trees of planar graphs. We improve this by estimating the probability that some
cycle appears. The probability that a particular cycle c appears can be easily
calculated as the reciprocal of the product of the degrees. However, cycles do not
appear independently. Cycles are independent if they have disjoint vertex sets, and
hence we expect that “most” short cycles will be independent of each other. We
use Suen’s inequality for this case of controlled dependence. Suen’s inequality uses
the concept of a dependency graph. Let {Xi}i∈I be a family of random variables.
A dependency graph is a graph L with node set I such that if A and B are two
disjoint subsets of I with no edge between A and B, then the families {Xi}i∈A

and {Xi}i∈B are mutually independent. In particular, two variables Xi and Xj

are independent unless there is an edge in L between i and j. If there exists such
an edge, we write i ∼ j. Suen’s inequality is useful in cases in which there exists a
sparse dependency graph. The expected value of a random variable X is denoted
by EX . The following theorem is a special case of Suen’s inequality, see [2]:

Theorem 3. Let Ii, i ∈ I, be a finite family of Bernoulli random variables with
success probability pi, having a dependency graph L. Let X =

∑
i Ii and λ = EX =∑

i pi. Moreover, let ∆ = 1
2

∑
i

∑
j:i∼j E(IiIj) and ζ = maxi

∑
k∼i pk. Then

Prob(X = 0) ≤ exp(−λ + ∆e2ζ).

In our case, the nodes of the dependency graph are all directed cycles in the
graph that avoid r. We connect two cycles by an edge if they share some vertex.
The independent choice of an outgoing arc for each vertex in R the ensures that
this dependency graph is valid for our model.

Two directed cycles c and c′ that share a vertex can never occur together in R,
because every vertex has only one outgoing arc in R. Hence, i ∼ j implies that
E(IiIj) = 0, which means that ∆ = 0 in Theorem 3. Therefore, we have

Prob(R does not contain a cycle) = Prob(X = 0) ≤ exp(−λ),
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where λ is the sum of probabilities for all directed cycles c that can appear in R:

(1) λ =
∑

c

(1/
∏
v∈c

dv) =
∑

(i,j)∈C2

1
didj

+
∑

(i,j,k)∈C3

2
didjdk

+
∑

(i,j,k,l)∈C4

2
didjdkdl

+ · · ·

Here Cb denotes the set of undirected cycles of length b that don’t contain r. To
prove an upper bound on

∏
dv · e−λ we truncate the sum (1) after C2. We let

the variable fij , with i ≤ j, stand for the number of edges connecting a vertex of
degree i and a vertex of degree j. The logarithm of

∏
dv · e−λ can then be written

as a linear function in the variables fij :

Z =
∑
v∈V

ln dv −
∑

(i,j)∈E

1
didj

=
∑
i≤j

fij

(
ln i

i
+

ln j

j
− 1

ij

)

We maximize Z under constraints that reflect the total number n of vertices and
the total number of edges in a planar graph (at most 3n):

(2)
∑
i≤j

fij

(
1
i

+
1
j

)
= n, and

∑
i≤j

fij ≤ 3n

The optimum Z = ln 6 − 1
12 with eZ ≈ 5.5203 is achieved when f66 = 3n and all

other fij = 0. However, this bound for part (1) is not as strong as the easy bound
that comes from the dual graph. If we replace the edge bound 3n in (2) by 2n and
5n/3, respectively, we obtain parts (2) and (3) of Theorem 1. The corresponding
optimal solutions are f44 = 2n (corresponding to the square grid), and f33 = n/3,
f34 = 4n/3 (corresponding to the grid graph with pentagonal faces shown on the
first page). Planarity enters this proof only via the bound on the number of edges.

As a next step, one can include in the sum (1) larger cycles C3, C4, and C5. If we
consider only face cycles and introduce corresponding variables fijk, fijkl, fijklm

for the number of faces with vertices of degree i, j, k, l, m, calculations indicate
that this would reduce the bound in part (2) of Theorem 1 to 3.5026. (In this
case, no cycles of length 3 appear.) However, this appears quite complicated to
prove. Also, it appears that one cannot beat the current bound for part (1) with
this technique, even if longer and longer cycles are included.
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