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Abstract

In a hypergraph H = (V, E) with vertex set V and edge set E , a real-valued
function f : V → [0, 1] is a fractional transversal if

∑
v∈E f(v) ≥ 1 holds for

every E ∈ E . Its size is |f | :=
∑

v∈V f(v), and the fractional transversal number
τ∗(H) is the smallest possible |f |.

We consider a game scenario where two players have opposite goals, one
of them trying to minimize and the other to maximize the size of a fractional
transversal constructed incrementally. We prove that both players have strate-
gies to achieve their common optimum, and they can reach their goals using
rational weights.
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1 Introduction

Let H = (V, E) be a finite hypergraph, where V is the finite vertex set and E is the
edge set, a set system over the underlying set V . We assume that every edge contains
at least one vertex; that is, E ⊆ 2V \ {∅}. A hypergraph is k-uniform if |E| = k
holds for all E ∈ E . A set T ⊆ V is a transversal 1 of H if every edge is covered
by a vertex of T , which formally means that T ∩ E 6= ∅ holds for all E ∈ E . Its
real relaxation, called fractional transversal, is a function f : V → [0, 1] such that∑

v∈E f(v) ≥ 1 holds for every E ∈ E . The size of f is defined as |f | :=
∑

v∈V f(v).
The transversal number τ(H) and the fractional transversal number τ ∗(H) of H are
the minimum cardinality |T | of a transversal and minimum value |f | of a fractional
transversal, respectively.

The transversal game is a competitive optimization version of hypergraph transver-
sals, which was introduced in [9] and studied further in [10]. It is played on a hyper-
graph H by two players called Edge-hitter and Staller. They take turns choosing a
vertex. The game is over when all edges are covered, and the length of the game is
the number of vertices chosen by the players until the end of the game. Edge-hitter
wants to finish the game as soon as possible, while Staller wants to delay the end. To
prevent Staller from making completely useless moves, we stipulate that the chosen
vertex must be contained in at least one previously uncovered edge.

Assuming that both players play optimally2 and Edge-hitter starts, the length of
the game on H is uniquely determined. It is called the game transversal number of H
and is denoted by τg(H). Analogously, the Staller-start game transversal number ofH,
denoted by τ ′g(H), is the length of the game under the same rules when Staller makes
the first move. Among other results, it was proved in [9] that |τg(H) − τ ′g(H)| ≤ 1
always holds. We further recall that, denoting by n(H) and m(H) the number of
vertices and edges in H respectively, 4

11
(n(H) + m(H)) is a (sharp) upper bound on

τg(H) ifH does not contain one-element edges and it is not isomorphic to the cycle C4.

Below we shall refer to this game as the integer game, as opposed to its fractional
version which we will introduce in the next section.

1In various areas of discrete mathematics and computer science, a transversal is called vertex
cover, or hitting set, or blocking set. It is also equivalent to the set cover in the dual hypergraph.

2A strategy of a player means that every possible state of the game is associated with a move
he/she will play if that situation arises. From Edge-hitter’s point of view, the value vE(S) of a
strategy S is the smallest integer k such that, if Edge-hitter plays according to S, the transversal
game always finishes in at most k moves (no matter which strategy is applied by Staller). We say
that S is an optimal strategy for Edge-hitter, if vE(S) is the possible smallest value over the family
of all strategies. Similarly, from Staller’s point of view, a strategy S can be associated with the value
vS(S) that is the largest integer k such that, if Staller follows strategy S, the length of the game is
always at least k; further S is an optimal strategy for Staller, if vS(S) is the largest value over the
family of all strategies. The reader may find more about optimal strategies and the uniqueness of
the corresponding parameters in [5, Section 1.2].
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The important motivation of this approach are the domination game [7] and the
total domination game [17], where in fact the transversal game is played on the ‘closed
neighborhood hypergraph’ and on the ‘open neighborhood hypergraph’ of a graph,
respectively.3 Further variants studied so far include the disjoint domination [14],
connected domination [2], and fractional domination [15] games on graphs, and the
domination games on hypergraphs [13]. Some of the most recent results can be found
in [3, 4, 8, 11, 12, 16, 19, 20, 21, 22, 23, 24]. For a thorough survey and list of further
references see the book [5].

Our results

In Section 2 we introduce the rules of the game and prove that its value is well-defined.
We present some examples, showing that it makes a difference whether Edge-hitter
or Staller starts. Moreover, edges that are supersets of other edges of the hypergraph
may influence the game value, in contrast to the standard non-game version of the
transversal number.

In Section 3 we compare the game transversal number with other related param-
eters, and prove a monotonicity property, implying that changing the starting player
can affect the value of the game by at most 1.

The rules of the game allow the players to split their moves into infinitely many
submoves. In Section 4 and 5 we give some structural results showing that the full
generality of the moves allowed by our rules is not needed. Namely, any infinite move
is equivalent to a finite move, and Edge-hitter can restrict his strategy to moves in
which every permutation of submoves is equally good.

In Section 6 we prove that the game can be modeled in a way that leads to an
optimization problem solvable via the theory of piecewise linear continuous ratio-
nal functions. From this, we derive that the game value is rational for every finite
hypergraph; moreover both players can achieve their goals using rational submoves.

Consequences concerning domination games and several conjectures are given in
the concluding Section 7.

2 Fractional transversal game

Let H = (V, E) be a hypergraph. In the context of the fractional transversal game,
we will consider a cover function t : V → [0, 1] that is updated after each move
during the game. We denote by |t| the sum

∑
v∈V t(v). Given a cover function t, the

3Recall from the literature that the closed and open neighborhood hypergraphs of a graph G
are defined on the same vertex set V as G, and the closed (resp. open) neighborhood hypergraph
consists of edges corresponding to the closed (resp. open) neighborhoods of vertices in G.
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corresponding load function is ` : E → [0, 1] defined by the rule

`(E) = `(E, t) = min
{

1,
∑
v∈E

t(v)
}

for every E ∈ E . If ` ≡ 1, we say that H is fully covered. We shall write ti and `i for
the cover and load functions after the ith move.

The game begins with t0 ≡ 0 and therefore with `0 ≡ 0. It is finished when the
hypergraph becomes fully covered. Edge-hitter and Staller take turns making moves
under the following rules. As long as ` 6≡ 1, the next player performs a move, which
is a sequence (vi1 , w1), (vi2 , w2), . . . of arbitrary length (possibly infinite). It consists
of the submoves (vik , wk), k = 1, 2, . . . , where vi1 , vi2 , . . . are vertices of H with any
number of repetitions allowed, and the weights w1, w2, . . . are real numbers from [0, 1].

We say that a submove (vik , wk) is legal if it increases the load of some edge by wk.
In a legal move, a player makes a series of legal submoves such that the sum of the
weights equals 1 or the move completes the game, whichever comes first. Formally,
the ith move (vi1 , w1), (vi2 , w2), . . . is legal, if the following conditions hold:

(∗) For every k ≥ 1 there exists an edge E ∈ E such that vik ∈ E and

`i−1(E) +

( ∑
vis∈E
1≤s≤k−1

ws

)
+ wk ≤ 1 .

(∗∗) The total weight constraint :
∑

k≥1wk ≤ 1, and if the move does not end the
game, then

∑
k≥1wk = 1.

The cover function ti can gradually be reached from ti−1 by adding the weight
wk to t(vik) after each submove; this process converts also the corresponding load
function from `i−1 to `i.

Suppose that a fractional transversal game G finishes with the qth move. The
value |G| of the game is defined as the value |tq| of the cover function obtained at
the end, that is the sum of the weights that have been spent during the game. The
goal of Edge-hitter is to achieve a value |G| as small as possible, while Staller wants
a large |G|.

Assuming that Edge-hitter starts the fractional transversal game on H, we con-
sider the set of upper bounds,

UH = {a ∈ R : Edge-hitter has a strategy that ensures |G| ≤ a}

and the set of lower bounds,

LH = {b ∈ R : Staller has a strategy that ensures |G| ≥ b}.
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Formally the game fractional transversal number τ ∗g (H) is defined as

τ ∗g (H) = inf(UH).

The Staller-start game fractional transversal number τ ∗g
′(H) is defined similarly, under

the condition that the first move is made by Staller.

The following assertion shows that τ ∗g (H) is also equal to sup(LH), and the situa-
tion is similar if Staller starts the game. The proof is essentially the same as the one
for the game fractional domination number in [15].

Proposition 1. For every hypergraph H we have inf(UH) = sup(LH), and the anal-
ogous equality holds for the Staller-start game, too.

Proof. First, assume that inf(UH) < sup(LH) and consequently, there exist two reals
x and y satisfying inf(UH) < x < y < sup(LH). By definition, x ∈ UH and, therefore,
Edge-hitter can ensure that, under every strategy of Staller, the value of the game
is at most x. Similarly, y ∈ LH and Staller has a strategy that ensures |G| ≥ y
whatever strategy is followed by Edge-hitter. This is a contradiction that establishes
inf(UH) ≥ sup(LH).

Now, we prove the reverse inequality. By definition, z < inf(UH) implies that
Edge-hitter does not have a strategy to achieve |G| ≤ z. That is, against each
strategy of Edge-hitter there is a strategy of Staller which results in |G| > z. We may
infer that z ∈ LH and therefore z ≤ sup(LH). Since it holds for every z < inf(UH),
we conclude inf(UH) ≤ sup(LH). This completes the proof of the proposition.

Later, in Section 6, we will show that inf(UH) = min(UH) and sup(LH) =
max(LH). Therefore, Edge-hitter and Staller have optimal strategies under which,
respectively, |G| ≤ τ ∗g (H) and |G| ≥ τ ∗g (H) are achieved.

2.1 Examples for the fractional transversal game

(1) Our first example is the 4-cycle C4 = v1v2v3v4v1, which can also be considered
as a 2-uniform hypergraph. It is easy to check that τ ∗(C4) = 2, while τg(C4) = 3 and
τ ′g(C4) = 2 were proved for the integer games [9]. Now we prove that τ ∗g (C4) = 5/2.

• For the upper bound, the following strategy of Edge-hitter ensures that the
sum of the weights spent during the game is at most 5/2. His first move is
(v1,

1
4
), (v2,

1
4
), (v3,

1
4
), (v4,

1
4
); it results in `1 ≡ 1

2
and

∑
E∈E `1(E) = 2. Then,

for the first 1
2

of the weight spent by Staller, each of her submoves necessarily
increases the load of both incident edges; and each of her remaining submoves
increases the load of at least one edge. Therefore, the total load increases
by at least 1

2
× 2 + 1

2
= 3

2
to
∑

E∈E `2(E) ≥ 7
2
, and Edge-hitter can achieve∑

E∈E `3(E) = 4 by spending at most 1
2

in the final move. This proves τ ∗g (C4) ≤
5/2.
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• Let us show the reverse inequality. We note that the first move of the game has
the same effect as a sequence (v1, w1), (v2, w2), (v3, w3), (v4, w4) of submoves with∑4

i=1wi = 1.4 After this move of Edge-hitter,
∑

E∈E `1(E) = 2 and hence, there
is an edge E with `1(E) ≤ 1

2
. By symmetry, we may assume that `1(v1v2) ≤ 1

2
.

Let Staller play the move (v3, w1 + w4), (v4, w2 + w3). The move is legal as
`1(v2v3) = w2 + w3 = 1 − (w1 + w4) and `1(v4v1) = w1 + w4 = 1 − (w2 + w3).
We then have `2(v1v2) = `1(v1v2) ≤ 1

2
and Edge-hitter needs to spend at least

1
2

to finish the game. This strategy of Staller shows τ ∗g (C4) ≥ 5/2.

If Staller starts the fractional transversal game on C4 with the move (v1, w1), (v2, w2),
(v3, w3), (v4, w4), then Edge-hitter can ensure |G| = 2 by playing (v1, w3), (v2, w4),
(v3, w1), (v4, w2). Indeed, `2 assigns w1 +w2 +w3 +w4 = 1 to every edge of the graph.
Therefore, τ ∗g

′(C4) ≤ 2. Since τ ∗g
′(C4) ≥ τ ∗(C4) = 2 also holds5, we get τ ∗g

′(C4) = 2.

v4

u4

v1

u1

v2

u2

v3

u3

Figure 1: A hypergraph H with nested edges

(2) Now we modify the previous example C4 by adding four new vertices u1, . . . , u4
and four new edges {v1, v2, u1}, . . . , {v4, v1, u4} to get the hypergraph H shown in
Figure 1. When the fractional (or integer) transversal number is considered, each edge
that is a superset of another edge can be deleted, which implies τ ∗(H) = τ ∗(C4) = 2.
We show that the situation is different for the fractional transversal game on H, that
is τ ∗g (H) = 3 6= τ ∗g (C4). Suppose that Edge-hitter starts the fractional transversal
game G on H.

• We first show that Edge-hitter can ensure that the value |G| of the game is at
most 3. An optimal first move for him is (v1,

1
4
), (v2,

1
4
), (v3,

1
4
), (v4,

1
4
). Then, in-

dependently of Staller’s reply, Edge-hitter plays (v1, w1), (v2, w2), (v3, w3), (v4, w4)
as his second move, where wi equals 1

4
or, if (vi,

1
4
) is not a legal submove, wi

4Theorem 6 and Lemma 7 will give conditions for this replacement property in general. For the
first move of the game, it is much easier to see as, for each edge E, its load `1(E) equals the sum of
the weights assigned to the vertices of E.

5See the proof of Proposition 2 (i) for a simple explanation.
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is the maximum legal weight for vi. After this move, `3 ≡ 1 and we may infer
that |G| ≤ 3. This proves τ ∗g (H) ≤ 3.

• Our second claim is that Staller has a strategy that always results in |G| ≥ 3.
As each vertex of H belongs to at most two 3-element edges, after Edge-hitter’s
first move the sum of the loads of the 3-element edges is at most 2. Thus,
Staller can play a legal move that does not assign weights to v1, v2, v3, v4. After
this move, the sum of the loads of the 2-element edges remains at most 2, and
Edge-hitter has to spend a weight of at least 1 to finish the game. This shows
τ ∗g (H) ≥ 3. We therefore conclude τ ∗g (H) = 3 > τ ∗g (C4).

(3) The removal of the edges which are subsets of other edges in a hypergraph F
may also change the values of the parameters. For instance, let F be the hypergraph
obtained from C4 by adding the 4-element edge E = {v1, v2, v3, v4}. As the load of E
equals 1 after the first move in the game, it is easy to see that τ ∗g (F) = τ ∗g (C4) = 5/2,
while the removal of all 2-element edges results in a one-edge hypergraph F ′ with
τ ∗g (F ′) = 1.

3 Some basic facts and the Continuation Principle

In this section we first observe some simple inequalities which are analogous to the
ones in other games concerning graph domination and hypergraph transversal, most
notably to the fractional domination game [15].

Proposition 2.

(i) For every hypergraph H, it holds that

τ ∗(H) ≤ τ ∗g (H) < 2τ ∗(H) and τ ∗(H) ≤ τ ∗g
′(H) < 2τ ∗(H) + 1.

(ii) There is no universal constant C with τg(H) ≤ C · τ ∗g (H), and not even with
τ(H) ≤ C · τ ∗g (H). The same holds true for τ ∗g

′(H), too.

Proof. No matter which player starts the game, at the end the cover function
tq is a fractional transversal. This implies the lower bounds τ ∗g (H) ≥ τ ∗(H) and
τ ∗g
′(H) ≥ τ ∗(H).

Concerning a fractional transversal game G on H and the upper bounds in (i), we
can write the value of the game in the form |G| = W +W ′, where W and W ′ denote
the total sum of weights assigned by Edge-hitter and Staller, respectively. To keep
the claimed bounds, first Edge-hitter can fix an optimal fractional transversal f , i.e.
one with |f | = τ ∗(H). After that, in his moves he can apply the strategy to play
submoves (vij , wj) with the largest possible weights wj which are not only allowed by
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(∗) but also respect the inequalities ti−1(vij) + wj ≤ f(vij). If such a legal submove
with a positive weight does not exist anymore, then H is fully covered and the game
is finished.

This strategy yields W ≤ τ ∗(H), with strict inequality if the game is finished by
Staller. We also have W ′ ≤ W or W ′ ≤ W + 1, depending on whether the first move
is made by Edge-hitter or Staller, both with strict inequalities if the game is finished
by Edge-hitter. Since only one of the players can make the last move, the claimed
strict upper bounds follow.

For the proof of (ii) we apply the following result of Alon [1]: For every ε > 0
and for any sufficiently large k, there is a k-uniform hypergraph H = (V, E) such that
τ(H) ≥ (1− ε) ln k

k
(|V |+ |E|). On the other hand, a very simple fractional transversal

f with |f | = |V |/k may be constructed by assigning f(v) = 1/k to each vertex v ∈ V .

Therefore, τ ∗(H) ≤ |V |
k

and we obtain

(1/2− ε) ln k < sup
H

τ(H)

2τ ∗(H)
< sup

H

τ(H)

τ ∗g (H)
≤ sup

H

τg(H)

τ ∗g (H)

due to the obvious fact τ ≤ τg and the inequality τ ∗g < 2τ ∗ from (i). For τ ∗g
′(H) the

proof is similar, by the second part of (i).

Proposition 3. The upper bounds in Proposition 2 (i) are tight apart from an additive
constant at most 2.

Proof. Consider the complete bipartite graph G = Kk,k2 on k + k2 vertices as a
2-uniform hypergraph. Clearly, τ ∗(G) = k. In any submove of a fractional transversal
game, while G is not fully covered, Staller can always select a vertex from the bigger
partite class. Following this strategy, during k − 1 moves, Staller increases the sum
of the loads by at most (k−1)k. As G has maximum degree k2, k−1 moves of Edge-
hitter increase the loads by at most (k− 1)k2. Hence, no matter whether Edge-hitter
or Staller starts the game, after 2k − 2 moves we have∑

E∈E

`2k−2(E) ≤ (k − 1)k + (k − 1)k2 = k3 − k < |E| ,

therefore the game is not over yet. This shows τ ∗g (G) > 2k − 2 = 2τ ∗(G) − 2 and,
similarly, τ ∗g

′(H) ≥ 2τ ∗(G)− 1 follows if Staller starts the game.

A monotone property of the game fractional transversal number is expressed in
the following idea, which provides a useful tool in simplifying several arguments. Let
a hypergraph H with a pre-defined load function ` be given, which we consider as a
non-zero starting configuration. We ask about the value |G| of the game started by
Edge-hitter, where the game is finished when ` is completed to a load function under
which H is fully covered. The rules are the same as they were in the case of `0 ≡ 0,
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but here we have `0 = `, while the value of the game is still computed by starting
with the cover function t0 ≡ 0. Under these conditions and assuming that Edge-hitter
starts the fractional transversal game G on hypergraph H with the pre-defined `, we
consider the sets

UH|` = {a ∈ R : Edge-hitter has a strategy that ensures |G| ≤ a} ,
LH|` = {b ∈ R : Staller has a strategy that ensures |G| ≥ b}.

Then the game fractional transversal number with predefined load function ` is de-
fined as τ ∗g (H|`) = inf(UH|`). It can be shown with a proof analogous to that of
Proposition 1 that inf(UH|`) = sup(LH|`) always holds.

The corresponding value τ ∗g
′(H|`) is defined analogously for the Staller-start game

on H|`.
The imagination strategy is a useful technique applied in many proofs when dom-

ination and transversal games are considered (see e.g. [3, 6, 9, 15, 17, 21]). It was
introduced and first used in [7]; for a detailed explanation and examples we refer the
reader to [5, Chapter 2.2].

Theorem 4 (Continuation Principle). If ` and `′ are load functions on the hyper-
graph H = (V, E) such that `(E) ≤ `′(E) holds for every E ∈ E, then τ ∗g (H|`) ≥
τ ∗g (H|`′), and similarly τ ∗g

′(H|`) ≥ τ ∗g
′(H|`′).

Proof. Assume for a contradiction that τ ∗g (H|`) < τ ∗g (H|`′), and choose two reals
t1, t2 with τ ∗(H|`) < t1 < t2 < τ ∗g (H|`′). We use the imagination strategy between
the following two games:

Game 1: Edge-hitter plays on H|` applying a strategy which ensures that the
value of the game is at most t1. Staller’s moves in Game 1 are defined according to
her moves in Game 2.

Game 2: Staller plays on H|`′ applying a strategy which ensures that the value of
the game is at least t2. Edge-hitter’s moves in Game 2 are defined according to his
moves in Game 1.

Assume that Edge-hitter starts the game. He chooses his first move in Game 1
according to the prescribed strategy. We copy this move into Game 2 if it is a legal
move there, or choose an appropriate replacement move for Edge-hitter in Game 2.
In the next turn, Staller replies with a move according to her prescribed strategy in
Game 2 and we copy the same move into Game 1. (We will see that it is always
legal.) Then, Edge-hitter replies in Game 1 and we copy it or make the according
move for Edge-hitter in Game 2. The two parallel games continue this way until at
least one of them is finished.

The moves essentially are copied (or interpreted) between Game 1 and Game 2
such that `(E) ≤ `′(E) remains true for all E ∈ E after every move. If this inequality
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is valid before Staller’s move in Game 2, then her next move in H|`′ is legal in H|`
as well, so that we can simply copy it into Game 1. The condition `(E) ≤ `′(E) for
all E ∈ E clearly remains valid for the new load functions.

Suppose now that the inequality `(E) ≤ `′(E) is true for all E ∈ E before Edge-
hitter’s move in Game 1. If it is legal, we simply copy it into Game 2 and the inequality
remains valid. In the other case one or more submoves (vik , wk) made in Game 1 are
not legal in Game 2. We then choose the maximum w′k such that (vik , w

′
k) is a legal

submove in Game 2. The remaining weight wk − w′k can be distributed between
arbitrary vertices such that the submoves are legal. Observe, however, that if this
happens, all loads on the edges incident with vik reach 1 after the submove (vik , w

′
k)

in Game 2. We infer that `(E) ≤ `′(E) remains true for all E ∈ E after Edge-hitter’s
move.

It follows that the loads will never become smaller in Game 2 than the correspond-
ing ones in Game 1. Thus, the values g1 and g2 of Games 1 and 2 satisfy g1 ≥ g2. By
the strategies of the players, it is true that t1 ≥ g1 and g2 ≥ t2. We therefore obtain

t1 ≥ g1 ≥ g2 ≥ t2 > t1

and this contradiction proves τ ∗g (H|`) ≥ τ ∗g (H|`′).
The analogous conclusion can be reached in the Staller-start game as well, literally

by the same argument, deriving a contradiction from the assumption τ ∗g
′(H|`) <

τ ∗g
′(H|`′).

We obtain the following immediate consequence.

Theorem 5. The game fractional transversal numbers for the Staller-start and for
the Edge-hitter-start games on H may differ by at most 1.

Proof. Consider the Staller-start game. Whatever Staller moves first, she assigns
total weight 1, and creates a situation which is at least as favorable for Edge-hitter
as the all-zero load at the beginning of the original transversal game. Then, due to
Theorem 4, Edge-hitter can ensure that the game ends using at most τ ∗g (H) further
weight. This proves τ ∗g

′(H) ≤ τ ∗g (H) + 1.

Similarly, if Edge-hitter starts, after his first move he is in at least as favorable
position as with the all-zero load at the beginning of the Staller-start game. This
proves the reverse inequality τ ∗g (H) ≤ τ ∗g

′(H) + 1.

4 Infinite moves are not necessary

The definition of a legal move in the transversal game admits the option that a player
splits the value 1 into an infinite number of pieces; e.g., wk = 2−k. It turns out,
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however, that each legal move on H = (V, E) is equivalent to a move which consists
of at most |V | submoves.

Theorem 6. Every legal move in a fractional transversal game can be replaced with
a legal move such that each vertex occurs in at most one submove of it and the two
moves result in the same load function.

Proof. First, consider a vertex v which occurs in two different submoves (vij , wj) and
(vik , wk) of a move. That is, v = vij = vik and we may assume j < k. By the condition
(∗), there exists an edge E ∈ E such that v ∈ E and the second submove (vik , wk)
increases the load of E by exactly wk. If the submove (vij , wj) is deleted from the
sequence and the weight wk is replaced by wj + wk in the kth submove, the submove
and the whole move remain legal and result in the same load function as before.
Performing this modification repeatedly we can achieve that every vertex occurs in
either zero or exactly one or infinitely many submoves of the move in question. This
already proves the statement if the move contains only a finite number of submoves.

Now, assume that the move is infinite. Then, the sequence of submoves can be
split into two, such that the first part is finite, and in the second infinite part every
vertex (which is present there) is repeated infinitely many times. Consider this infinite
subsequence S = (vis , ws), . . . . By renaming the vertices of H if necessary, we may
assume that {v1, . . . , v`} is the set of the vertices which are present in S. We prove
that the finite sequence S ′ = (v1,

∑
j: ij=1wj), . . . , (v`,

∑
j: ij=`

wj) is equivalent to

S. Clearly, S and S ′ yield the same load function after the move. So, it is enough
to prove that S ′ is legal. Assume for a contradiction that (vk,

∑
j: ij=k

wj) is not a

legal submove in S ′, and let k be the smallest such index. Then, after the (k − 1)st

submove of S ′, every edge E which contains vk has a load `(E) > 1−
∑

j: ij=k
wj and,

moreover, there is a positive constant ε such that minvk∈E `(E) +
∑

j: ij=k
wj = 1 + ε.

Now, consider S again. There is an index p = p(ε) such that
∑

j≥pwj < ε and hence,

before the pth submove of S, each edge containing vk is fully covered. As vk occurs
infinitely often in S, and also the occurrences after the pth submove are legal, this is
a contradiction.

5 Edge-hitter’s moves are transposable

We say that a finite move (vi1 , w1), . . . , (vik , wk) is transposable if for any permutation
β(1), . . . , β(k) of 1, . . . , k, the move (viβ(1) , wβ(1)), . . . , (viβ(k), wβ(k)) is legal. We will
show that from the point of view of Edge-hitter, we can restrict our attention to
transposable moves. Note that every transposable move is legal, but not conversely.

We first give a characterization of transposable moves:
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Lemma 7. A move (vi1 , w1), . . . , (vik , wk), where wj > 0 for all 1 ≤ j ≤ k and no
vertices are repeated, is transposable if and only if the total weight constraint (∗∗) is
satisfied, and after performing the entire move, for every vertex vij ,

min
E3vij

∑
vi∈E

t(vi) ≤ 1. (1)

Proof. A legal move must satisfy the two constraints (∗) and (∗∗).
The total weight constraint (∗∗) for a legal move is explicitly required in the

lemma, and it is insensitive to permuting the submoves.

Let us turn to (∗). If
∑

vi∈E t(vi) ≤ 1 for an edge E containing vij , then omitting
the submove (vij , wj) from the move we obtain

∑
vi∈E\{vij }

t(vi) ≤ 1 − wj. Hence

(vij , wj) is a legal submove no matter when it is performed during the move. This
means that the move is transposable whenever the condition (1) is satisfied for all j.

In the other direction, assume that for some vij , the left-hand side of (1) is bigger
than 1. Consider a permutation in which (vij , wj) is the last submove. Then (vij , wj)
is not legal because (∗) is violated. Consequently the move is not transposable.

Theorem 8. If a finite legal move m = (vi1 , w1), . . . , (vik , wk) is not transposable in
the fractional transversal game, then it can be replaced by a transposable (and legal)
move after which no edge gets smaller load than after m.

Proof. First, consider the legal move m = (vi1 , w1), . . . , (vik , wk) and the move
m′ = (vi2 , w2), . . . , (vik , wk), (vi1 , w1) that is obtained by the cyclic permutation β =
2, . . . , k, 1. It is clear that condition (∗) in the definition remains true for the first
k − 1 submoves of m′ and consequently, these submoves are legal. For the last (and
not necessarily legal) submove, determine w∗1 as the maximum weight which results
in a legal submove with vi1 . If w∗1 ≥ w1, then m′ is legal and gives exactly the same
load function as m. If w∗1 < w1, then the same load function is obtained after the
submove (vi1 , w

∗
1) as after m, because in both cases every edge incident with vi1 is

fully covered and the loads of the other edges are unchanged.

In the latter case, the sum of the weights is decreased by w1−w∗1. After this change,
the submove (vi1 , w

∗
1) will be legal in any permutation of (vi1 , w

∗
1), (vi2 , w2), . . . , (vik , wk).

That is, if a permutation is not legal after this replacement, this is due to another
vertex. The same is true if some weights ws are replaced by smaller weights.

We repeat this step for the modified sequence with permutation β = 3, . . . , k, 1, 2,
then with β = 4, . . . , k, 1, 2, 3, and so on, finally with β = k, 1, 2, . . . , k−1, keeping all
modifications incrementally. Decreasing the weight of the last submove in each step if
necessary, at the end a legal transposable move m∗ is obtained, which yields the same
load function as m and satisfies

∑k
j=1w

∗
j ≤

∑k
j=1wj. If ∆ =

∑k
j=1wj −

∑k
j=1w

∗
j is

positive, we use the weight ∆ to increase the loads of some non-fully covered edges in
an arbitrary way. The total absolute change of weights is 2∆, or possibly less if the
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game is over. Finally, we normalize the move by eliminating any multiple occurrences
of vertices, using Theorem 6.

The redistribution of ∆ and the normalization may lead to a move that is not
transposable. If so, we repeat the modification described above.

If the process terminates after a finite number of iterations, then the last version
of the move is transposable by construction, and the proof is complete. Otherwise
we obtain an infinite sequence ∆(1),∆(2), . . . of re-distributions from the total unit
weight of the move. The total load of edges increases by at least

∑
i≥1 ∆(i); hence

this sum converges because altogether the total load is at most |E|.
On the other hand, the weight of a vertex changes by at most ∆(i) in the ith

iteration, hence the local changes in weight (at least one of which is negative in each
iteration) in absolute value sum up to at most 2

∑
i≥1 ∆(i), and therefore their sum

also converges.

Let m(i) denote the move constructed in the ith iteration, before the re-distribution
of the weight ∆(i). We know that this move is transposable. Let w

(i)
v denote the weight

used for vertex v in the corresponding submove of m(i), and set w
(i)
v = 0 if v does not

appear in this move.

We have shown that the limit of these weights w∗v = limi→∞w
(i)
v = 0 exists. Let p

denote the number of vertices with a positive weight in w∗. Relabeling these vertices
in an arbitrary order, we define a move m∗ = (v1, w

∗
1), . . . , (vp, w

∗
p) with p submoves.

By continuity, the loads achieved by the moves m(i) converge to the corresponding
loads after the move m∗.

We claim that m∗ is transposable. This will complete the proof because the loads
never decrease, hence under w∗ no edge gets smaller load than by move m.

For showing that m∗ is transposable, we use the characterization of Lemma 7. The
inequality (1) follows from the fact that its left-hand side is a continuous function of
the weights.

Let us finally check that the total weight constraint (∗∗) is satisfied: Since
∑

v w
(i)
v ≤

1 for all i, this inequality is satisfied in the limit. If in some iteration, the current
move terminates the game (i.e., each edge gets load at least 1 while the total weight
in the move is at most 1), this will hold in all successive moves, since the loads never
decrease, and hence it holds also for m∗, by continuity. Therefore, we need to show∑

v w
∗
v = 1 only when none of the moves terminate the game. In this case, the dif-

ference 1−
∑

v w
(i)
v is bounded by ∆i, which goes to 0, and hence

∑
v w
∗
v = 1 in the

limit.

Remark 9. Based on Theorem 8, Edge-hitter may restrict his strategy to transposable
moves. On the other hand, the result suggests that Staller is advised to perform moves,
if possible, which are ‘very non-transposable’ in a sense.
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6 Algorithm for computing the value of the game

We consider an equivalent version of the game, the structured game, which is easier
to analyze.

Each move consists of n + 1 rounds. Each round consists of n submoves, which
are dedicated to the vertices v1, . . . , vn in succession. In each submove, the player
whose turn it is can decide the amount w, the weight spent in the submove, by which
the cover value of t(vi) is increased, subject to the usual rules: The increase must
be useful, i.e. each submove must satisfy the condition (∗), and it must be within
the budget constraint of total weight 1 to be spent per move. It is possible to skip a
submove by simply choosing w to be zero.

The first n rounds are identical, but the last round is special: In each submove,
the weight is greedily chosen as the largest possible legal weight, hence not allowing
any freedom in choosing w for the player in those submoves. This ensures that the
whole move spends a total weight of 1 unless a cover is obtained.

There are n moves, alternating between the two players. This is enough to ensure
that a cover is constructed when the game terminates. Every move consists of n2 +n
submoves, and in total, the game consists of N = n3+n2 submoves. We illustrate this
for a small example with n = 4 vertices, where the Edge-hitter starts. The sequence
of submoves is

H1, H2, H3, H4; H1, H2, H3, H4; H1, H2, H3, H4; H1, H2, H3, H4; G1, G2, G3, G4;
S1, S2, S3, S4; S1, S2, S3, S4; S1, S2, S3, S4; S1, S2, S3, S4; G1, G2, G3, G4;
H1, H2, H3, H4; H1, H2, H3, H4; H1, H2, H3, H4; H1, H2, H3, H4; G1, G2, G3, G4;
S1, S2, S3, S4; S1, S2, S3, S4; S1, S2, S3, S4; S1, S2, S3, S4; G1, G2, G3, G4.

Here Hi denotes a move of Edge-hitter for vertex i, and Si denotes a move of Staller
for vertex i. The greedy moves are denoted by Gi.

We do not stipulate as part of the rules that the whole budget of 1 unit must
be spent during a move. This capacity is only an upper bound. It is still true that
the whole budget is spent in each move if the game is played from the beginning.
However, this arises as a consequence of the new setup, due to the greedy moves.

As soon as a cover is found, the rules imply that no more weight can be spent,
and thus the game is effectively over.

Lemma 10. The structured game has the same value as the original game.

Proof. According to Theorem 6, we can assume that every vertex occurs at most once
in a move. We can realize this in the structured game by selecting one vertex per
round and leaving the weight at 0 otherwise. Thus, the structured game does not
restrict the players’ strategies, when compared to the original game. On the other
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hand, the structured game does not give the players more power: The greedy moves
ensure that the total weight of 1 is used as long as it is possible.

Example for the structured game. Consider an Edge-hitter-start game on C4

with strategies of the players as described in Section 2.1. A corresponding structured
game, where we follow the idea in the proof of Lemma 10, can be given as follows.

Edge-hitter’s first move: (v1,
1
4
), (v2, 0), (v3, 0), (v4, 0)

(v1, 0), (v2,
1
4
), (v3, 0), (v4, 0);

(v1, 0), (v2, 0), (v3,
1
4
), (v4, 0);

(v1, 0), (v2, 0), (v3, 0), (v4,
1
4
);

(v1, 0), (v2, 0), (v3, 0), (v4, 0).

Staller’s first move: (v1, 0), (v2, 0), (v3,
1
2
), (v4, 0);

(v1, 0), (v2, 0), (v3, 0), (v4,
1
2
);

(v1, 0), (v2, 0), (v3, 0), (v4, 0);
(v1, 0), (v2, 0), (v3, 0), (v4, 0);
(v1, 0), (v2, 0), (v3, 0), (v4, 0).

Edge-hitter’s second move: (v1, 0), (v2,
1
6
), (v3, 0), (v4, 0);

(v1, 0), (v2, 0), (v3, 0), (v4, 0);
(v1, 0), (v2, 0), (v3, 0), (v4, 0);
(v1, 0), (v2, 0), (v3, 0), (v4, 0);
(v1,

1
3
), (v2, 0), (v3, 0), (v4, 0).

For demonstration, the last move makes use of a greedy submove.

By Theorem 8, it is not a disadvantage for Edge-hitter restricting himself to
transposable moves. Consequently, his submoves can always be performed in the
order (v1, w1), . . . , (vk, wk), and a single round H1, H2, . . . , Hn followed by n greedy
submoves would be a sufficient model for Edge-hitter’s moves. For simplicity, we have
however chosen to treat the two players uniformly. Note that the greedy submoves
are necessary also in case of Edge-hitter. Otherwise, for example, he might pass on
the first move and transform the game to the Staller-start version, which sometimes
admits a smaller game value (as in the example of C4).

Consider the situation after the jth submove, 0 ≤ j ≤ N . Let ~x ∈ [0, 1]E be an
arbitrary load vector, and let r ∈ [0, 1] be the budget for the current move that is
still available. If j is written in the form j = k(n2 + n) + i, i.e. k = b j

n2+n
c and

0 ≤ i < n2 + n, then 1− r is the total weight spent in the last i submoves.

We define
Tj(~x, r)

as the sum of weights spent during the remaining part of the game, if both players
play optimally, starting from the current situation. If j is large and the entries of ~x
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are small, it may happen that a complete fractional cover is not reached, because the
game necessarily ends after the nth round. Nevertheless, we have chosen our definition
because it makes Tj well-defined for arbitrary ~x and r. (The definition of Tj(~x, r) is
related to the game fractional transversal number with predefined load function used
in the proof of the Continuation Principle (Theorem 4)6.)

The value of the original game is T0(~0, 1).

We will derive a backward recursion for the functions Tj, and thus show that they
are piecewise linear and continuous.

Given j, we know the type of the jth submove (H, S, or G) and the vertex vi to
which it applies. We denote the maximum permitted weight by

wmax
i (~x, r) = min{r,max{ 1− xE | E 3 vi }} , (2)

where xE denotes the entry of ~x that corresponds to the edge E ∈ E . For the result
of increasing the cover value of vi by w we write

updatei(~x, w) = ~x ′ with x′E =

{
xE, if vi /∈ E,

min{1, xE + w}, if vi ∈ E.
(3)

With these definitions, the recursion for a submove Hi for Edge-hitter can be written
easily:

Tj−1(~x, r) = min{w + Tj(updatei(~x, w), r − w) | 0 ≤ w ≤ wmax
i (~x, r) } (4)

If the submove is for the Staller (Si), the recursion is the same as (4), except that min
is replaced by max. In the greedy submoves Gi, we always choose w = wmax

i (~x, r):

Tj−1(~x, r) = wmax
i (~x, r) + Tj(updatei(~x, w

max
i (~x, r)), r − wmax

i (~x, r)) (5)

The last greedy submove Gn of each move is an exception: Since a different move is
about to start, the budget r is reset to 1. Thus, when j is a multiple of n2 + n, then

Tj−1(~x, r) = wmax
n (~x, r) + Tj(updaten(~x, wmax

n (~x, r)), 1). (6)

As the recursion anchor, we use the value after the final move, which is simply

TN(~x, r) = 0. (7)

Theorem 11. Each function Tj(~x, r) for 0 ≤ j ≤ N is a piecewise linear continuous
function with finitely many linear pieces defined on [0, 1]E × [0, 1]. Moreover, all Tj
are rational in the sense that each linear piece has rational coefficients and rational
constant part. As a consequence, the boundaries between regions of the domain with
different linear functions can be described by linear equations with rational coefficients.

6In particular, if the jth submove is the last submove in a move of Staller and ` is the load
function corresponding to ~x, then we would expect Tj(~x, 1) to be τ∗g (H|`). However this does not
hold in general because, as just discussed, the structured game may terminate too early.
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Proof. We will call a function with all the desired properties — piecewise linear,
continuous, and rational, with finitely many linear pieces — a PLCR function.

The proof proceeds by backward recursion from TN down to T0. The function TN
from (7) is obviously PLCR.

The sum, difference, maximum, or minimum of two PLCR functions is again
PLCR, and the same holds true when substituting one PLCR function into another.
It follows directly that the functions wmax

i and updatei are PLCR functions on the
domain [0, 1]E × [0, 1]. This allows us to perform the induction step in the recursions
(5)–(6) for Gi.

In the recursion (4) we additionally have a minimization (or, in the analogous
recursion for Staller, a maximization) over some range of values w. It has the form

min{F (~x, r, w) | 0 ≤ w ≤ wmax
i (~x, r) }

with the PLCR function

F (~x, r, w) := w + Tj(updatei(~x, w), r − w)

To get rid of the varying upper bound on w, we rewrite the recursion in terms of
another PLCR function

F̂ (~x, r, w) = F (~x, r,min{w,wmax
i (~x, r)}

as
Tj−1(~x, r) = min{ F̂ (~x, r, w) | 0 ≤ w ≤ 1 }.

Lemma 12 below establishes that Tj−1 is a PLCR function.

The same argument applies to the recursion for the Staller (Si), where min is
replaced by max.

Lemma 12. Suppose that F̂ (y, w) : [0, 1]m × [0, 1] → R is a PLCR function. Then
the function T (y) : [0, 1]m → R defined by minimizing over w:

T (y) := min{ F̂ (y, w) | 0 ≤ w ≤ 1 } (8)

is also a PLCR function.

Proof. We first show that T is continuous. Since F̂ is PLCR, it is Lipschitz-continuous.
Let L be its Lipschitz constant with respect to the ∞-norm. (We can compute
L as the maximum L1-norm of all coefficient vectors of the linear pieces of F̂ .)
It follows that the function T in (8) is also Lipschitz-continuous with Lipschitz-
constant L. To see this, let ‖y0 − y1‖ ≤ ε, and let T (y0) = F̂ (y0, w0) for some w0.
Then T (y1) ≤ F̂ (y1, w0) ≤ F̂ (y0, w0) + Lε = T (y0) + Lε. The converse bound
T (y0) ≤ T (y1) + Lε follows in the same way.
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We still need to show that T is piecewise linear. For an intuitive way to see this, one
can interpret the minimization over w geometrically. The graph of F̂ : [0, 1]m×[0, 1]→
R is a subset of Rm+2. Taking the minimum over all w amounts to projecting away
the coordinate corresponding to w and taking the lower envelope (with respect to
the last coordinate) in the projection in Rm+1. Figure 2 shows a two-dimensional
illustration. This picture can also be interpreted as a three-dimensional view of the
graph of a bivariate function F̂ (y, w) when the viewing direction is parallel to the
w-axis. (In this hypothetical example, the resulting minimum is discontinuous; this
cannot happen when F̂ is continuous and its domain is the box [0, 1]m × [0, 1].)

y

{ (y, F̂ (y, w)) | 0 ≤ w ≤ 1 }
F̂

0 1

Figure 2: The lower envelope of a polyhedral set in 2 dimensions (m = 1).

Formally, we conduct the proof as follows. We know that the domain [0, 1]m+1 of
F̂ splits into finitely many rational convex (m+1)-dimensional polytopes P on which
F̂ is linear:

F̂ (y, w) = aPy + bPw + cP , for (y, w) ∈ P
for some rational coefficient vector aP and rational coefficients bP and cP . We can
thus write T (y) as the minimum of finitely many functions TP (y) of the form

TP (y) := min{ aPy + bPw + cP | 0 ≤ w ≤ 1, (y, w) ∈ P }, (9)

where the minimum of an empty set is taken as ∞.

For fixed y, the minimum in (9) depends on the sign of bP . If bP > 0, the minimum
is achieved on a boundary point that lies on some facet P ′ of P whose outer normal
has negative w-coordinate. On such a facet, w can be expressed as a linear function
of y, and thus, TP can be written as a linear function

TP ′(y) = aP ′y + cP ′ , for y ∈ P̄ ′, (10)

where P̄ ′ is the projection of the facet P ′ to [0, 1]m. Thus, TP (y) is the minimum
of finitely many functions TP ′(y), with the understanding that TP ′(y) is taken as ∞
when y is outside its domain P̄ ′.
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The situation is similar for bP < 0. When bP = 0, then F̂ does not depend on w
and we can simply write

TP (y) = aPy + cP , for y ∈ P̄ , (11)

where P̄ is the projection of P .

In summary, the function T (y) can be written as the minimum of finitely many
pieces TP (y), each of which can in turn be written as the minimum of finitely many
linear pieces (10) or (11). All these pieces have rational coefficients and rational
domain boundaries, and since continuity of T has already been established, the PLCR
property of T follows.

The proof of Theorem 11 is constructive and, in principle, it provides an algorithm
for computing the value T0(~0, 1) of the game. From this, we obtain the following
important corollary.

Theorem 13. For every finite hypergraph H = (V, E), the game fractional transversal
number τ ∗g (H) and its Staller-start version τ ∗g

′(H) are rational. Moreover, each player
in every step has an optimal move with only rational weights, provided that the weights
in all previous submoves were rational.

Remark 14. It is not true in general that every optimal strategy uses only rational
weights. A simple counterexample is the graph C4 (Example 1 from Section 2.1),
where Staller can start by placing x and 1− x on two vertices with any x ∈ [0, 1], no
matter if x is rational or irrational.

7 Concluding remarks and open problems

Putting the fractional domination game [15] into a more general context, in this paper
we introduced the fractional transversal game on hypergraphs. Among other results,
we proved that the game value is rational, and both players have optimal strategies
using rational weights and with a finite number of submoves. Since a dominating set
is a transversal of the closed neighborhood hypergraph, and total a dominating set
is a transversal of the open neighborhood hypergraph, the following consequence is
immediate.

Theorem 15. The fractional versions of both the domination game and the total
domination game have rational game values on every hypergraph. Moreover, in either
of these games, both players can achieve their common optimum using only rational
weights and within finitely many submoves.

We conclude this paper with some conjectures and open questions.
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Conjecture 1. If each of the first 2k − 1 (k ≥ 1) moves was an integer move in the
fractional transversal game, i.e. of the form (vi1 , 1), then Staller has an integer move
in the (2k)th turn, which is optimal in the fractional transversal game.

This means that fractional moves would be advantageous for Edge-hitter only. If
true then this conjecture implies the following weaker one.

Conjecture 2. For every hypergraph H, τ ∗g (H) ≤ τg(H).

Perhaps the following stronger version of Conjecture 1 is also true.

Conjecture 3. Starting from any cover function, there is an optimal strategy for
Staller where, in every submove, she always spends the largest legal weight.

These conjectures could be approached by implementing the algorithm that is
implicit in the proof of Theorem 11 by computer. We have not derived an estimate
for the complexity (number of pieces) of the piecewise linear continuous functions
Tj(~x, r) that are involved in the construction. If the growth of the complexity is not
too steep, there is hope to solve some examples of moderate size, beyond the range
of small examples that we considered in Section 2.1, and this could shed some light
on the conjectures.

One would naturally expect that T0(~x, r) is monotonically decreasing in ~x, for
fixed r, and moreover, that it is Lipschitz-continuous with Lipschitz constant 1. In
other words, in every linear piece, the coefficient of each variable xi is between 0
and −1. We have not explored these properties.
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