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Abstract

Given a set of nonintersecting polygonal obstacles in the plane, the link distance

between two points s and t is the minimum number of edges required to form a polyg-

onal path connecting s to t that avoids all obstacles. We present an algorithm that

computes the link distance (and a corresponding minimum-link path) between two

points in time O(E�(n) log2 n) (and space O(E)), where n is the total number of edges

of the obstacles, E is the size of the visibility graph, and �(n) denotes the extremely

slowly growing inverse of Ackermann's function. We show how to extend our method to

allow computation of a tree (rooted at s) of minimum-link paths from s to all obstacle

vertices. This leads to a method of solving the query version of our problem (for query

points t).

1 Introduction

Motivation. The study of link distance problems is partially motivated by a robot motion-

planning problem. Consider a point-size robot that wants to move in a collision-free way from

a source position s to some target position t in the plane. Suppose the robot can perform
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only two types of movements | straight line motion and pure rotation | and suppose that

straight line motion is \cheap" and rotation is \expensive" (but the cost is independent

of the amount of rotation). Then a reasonable objective for the robot is to minimize the

number of turns that it must make, i. e., it should use a minimum-link path from s to t.

Related Work. Suri [19] has studied the problem of �nding minimum-link paths in a

simple polygon (without holes), obtaining a linear-time algorithm to build a shortest path

map in a triangulated polygon. His algorithm is based on the fact that the dual graph of

the triangulation is a tree and that in a tree there is a unique path between each pair of

vertices. Suri's method does not immediately generalize to polygons with holes; indeed, it is

easily seen that there may be an exponential number of paths between two nodes in the dual

graph of the triangulation of a polygon with holes. Computing link distances in a polygon

with holes has been an open problem.

Several other link distance problems within a simple polygon (without holes) have been

studied by Djidjev, Lingas, and Sack [6], by Ke [14], and by Lenhart et al. [16], including

the computation of the link radius, link center, and link diameter.

Our Problem. Let P be a polygon (with holes), and let n be the total number of vertices

describing P . Let s 2 P be a given source point, and let t 2 P be a given target point. Our

problem is to �nd a polygonal path from s to t such that the path stays within P and the

number of bend points of the path is minimized. We call such a path a minimum-link path.

Our Results. We solve the problem of �nding a minimum-link path from s to t in time

O(E�(n) log2 n) (and space O(E)), where E is the size of the visibility graph of P and �(n)

is the extremely slowly growing inverse of Ackermann's function. We show a lower bound

of 
(n log n) for the decision problem that asks if there exists a path from s to t with a

speci�ed number of links.

We also solve the problem of �nding a tree (rooted at s) of minimum-link paths from

s to every other vertex in time O((E + `n)2=3n2=3`1=3 log� n + E log3 n) (and space O(E)),

where ` is the maximum link distance from s to any vertex of P , and � is a constant less

than 3:11. We refer to this version of the problem as the SPT-problem (for Shortest Path

Tree problem).

In all of the above bounds, ` is bounded above by n, and E is bounded above by O(n2),

but frequently we may expect that both ` and E are signi�cantly smaller than their upper

bounds. In the worst case, ` = �(n) and E = �(n2), we get a bound of O(n2�(n) log2 n)

for the problem of �nding an optimal path from s to t and a bound of O(n7=3 log� n) for

the SPT-problem. In the best case, ` may be very small (e�ectively constant) and E may

be O(n), in which case our bounds are O(n�(n) log2 n) for the shortest-path problem and

O(n4=3) (times a polylog term) for the SPT-problem. Note that our algorithm for computing

the shortest path to a given destination is asymptotically faster in the worst case than the

algorithm to compute a shortest path tree to every destination. This situation is in contrast

with other problems, like shortest Euclidean-length paths in polygons or shortest paths in

general graphs, where the single-destination problem is not easier than computing a shortest

path tree.
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Our Approach. Our algorithm follows the basic methodology of Suri [19], being care-

ful to be able to do illuminations e�ciently. We iteratively consider the sets of points at

link distance k from s, but we do not try to describe these sets fully (as their boundary

descriptions may have complexity 
(n4) [20]). Rather, we describe the boundary only of

the cell relevant to �nding a minimum-link path to t (or, in the case of the SPT-problem,

we describe only those cells that contain portions of obstacle boundaries). The key to the

e�ciency of our method is the application of recent techniques (e.g., Edelsbrunner, Guibas,

and Sharir [8]) to compute a single cell in an arrangement of segments, without computing

the entire arrangement. We then employ one further trick: we \pull taut" the portions of

the cell boundary that are non-obstacle edges, thereby reducing its combinatorial complexity

without decreasing its usefulness in the next stage of illumination.

The ideas behind our algorithm are conceptually simple and admit a straightforward

implementation, applying directly several results from the existing literature.

Overview of the Paper. The paper is organized as follows. Section 2 describes some

notation and basic structural results. In Section 3, we give an outline of the algorithm.

Section 4 considers the combinatorial complexities of the occurring con�gurations. Section 5

gives the algorithmic details and analyzes the running time. Section 6 proves the lower

bound result. Section 7 describes the algorithm for the shortest path tree problem, while

Section 8 describes its application to the query version of the problem. Finally, Section 9

concludes with remarks about various extensions and open problems.

An earlier draft of this paper appeared as an extended abstract in [18].

2 Preliminaries

A polygon (or more clearly, a polygon with holes) is a subset of the plane whose boundary is

the union of �nitely many line segments or half-rays. A polygon that is simply connected or

whose complement is simply connected is called a simple polygon. Note that this de�nition

allows a polygon (with or without holes) to be unbounded.

Problem De�nition. We are given a polygon P (with holes), which we call the free space,

and two points s (the source) and t (the target) inside it. We are to �nd a polygonal path

from s to t that lies in the free space, and that consists of as few edges (\links") as possible.

This number of edges is called the link distance between s and t. For example, in Figure 1

we show an instance in which the link distance from s to t is three.

For simplicity of exposition, we assume that the free space P is bounded. The complement

of the free space is called the set of obstacles (or holes). It consists of a �nite number of

simple polygons, one of which is unbounded and surrounds the whole scene. We let n denote

the total number of edges bounding P . We also assume that the free space is closed, so

that paths are allowed to touch the obstacles or to run along an obstacle edge. We may

assume that the free space is connected, since otherwise we can restrict our attention to the

component containing s and t (if they lie in the same component). This kind of preprocessing

can be carried out in O(n) time. Thus, the obstacles are simple polygons, which are allowed
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to touch, but must be disjoint. Finally, without loss of generality, we assume that s and t

are vertices of P . (We can always make a trivial point-obstacle at s or t.)

We say that a point y is visible from another point x if the open line segment (x; y)

between x and y lies in the free space, i. e., it does not intersect (the interior of) any

obstacle. The visibility region VS for a set S of line segments consists of all points in free

space that are visible from any point x on any segment in S. For a �xed source point s,

the k-visibility region VISk contains all points in free space whose link distance from s is at

most k.

Note that VIS0 = fsg, and that VIS1 is the visibility polygon within P with respect to

s. (Thus, VIS1 can be found in time O(n log n); cf. Suri and O'Rourke [20].) Clearly, each

k-visibility region is a polygon (with holes). Imagine that VISk is a set of light sources.

Then the region VISk+1 is that part of the plane that is illuminated by VISk. Moreover,

everything that can be illuminated from some region and does not belong to this region can

be illuminated from its boundary and vice versa.

When we consider various polygonal regions and cells of the plane (such as VISk above),

we will generally distinguish between two types of boundary edges: An illumination edge

runs through free space and is a possible candidate to be used for illuminating the dark area

in later stages. This is opposed to parts of obstacle boundary edges, which are portions of

the boundaries of the original obstacles.

Assume that a polygon Q can be separated from a set of obstacles by a non-intersecting

closed polygonal curve. Then, there exists a (unique) shortest such curve 
 that encloses Q.

The relative convex hull of Q (relative to a set of obstacles) is de�ned to be the region

bounded by 
 that contains Q.

3 Outline of the Algorithm

The most natural means of solving the link-distance problem is to compute iteratively the

k-visibility regions VISk from the source point s, for k = 1; 2; : : :, until the target point t

is reached. VISk+1 consists of VISk plus all points in free space that are visible from the

boundary of VISk. Hence the (k + 1)-visibility region can be computed from the k-visibility

region.

However, following this approach in a straightforward way may lead to di�culties: Even

when the boundary of VISk consists of a single edge, the complexity of the VISk+1 may be

as high as 
(n4), as shown by Suri and O'Rourke [20]. Computing VISk+2 in turn involves

determining the set of points that are visible from any of the 
(n4) boundary segments

of VISk+1, a task which seems a priori to take even longer than 
(n4). Hence, our goal is to

avoid actually constructing a full boundary representation of VISk.

We use two ideas to avoid these problems:

(1) It may happen that the region that is not yet illuminated at stage k consists of several

connected components (cells). We restrict our attention to the cell containing t. (In the

SPT-problem, we restrict our attention to cells containing portions of obstacle edges.)
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In particular, we avoid computing the O(n4) convex \shadow" cells that contain no

obstacle vertices.

(2) Before we compute what is visible from the boundary of VISk, we simplify this bound-

ary by computing its relative convex hull VISk with respect to the obstacles. This is

allowed because a point is visible from the boundary of VISk if and only if it is visible

from the boundary of VISk (Lemma 2). Thus, for the purpose of computing VISk+1,

the simpler boundary of VISk is as good as VISk. For the boundaries of the simpli�ed

visibility regions VISk, we will be able to give a good bound on their total complexity

during the course of the algorithm (Lemma 4).

More speci�cally, our algorithm goes as follows. It goes through a number of rounds; in

round k we start from a simple polygon Gk�1, which is related to VISk�1, and we compute

Gk for the next round. G0 consists of the single point s. Each round consists of four steps:

1. Cover (part of) VISk by triangles. Given Gk�1, we compute a set of triangles Tk
that covers the relevant portion of VISk.

2. Compute the cell containing t. We compute the (single) cell containing t in the

arrangement consisting of the triangles Tk and all obstacles. We take the complement of

the computed face and and remove from it all isolated obstacles (that are completely

surrounded by the face containing t). Let the resulting simple polygon be denoted

by Fk. Thus, in addition to the portion of P that has already been illuminated, Fk

contains all obstacles whose boundary is at least partially illuminated, together with

the unimportant components of the unilluminated plane (those that do not contain t),

including all obstacles contained in these components.

In the case of the SPT-problem we compute all cells that contain portions of obstacle

edges. By dividing the region into cells, we have split our problem into separate

subproblems, and we continue with each cell as in the single-destination case.

3. Simplify Fk. We enlarge Fk by adding the relative convex hull of Fk�O with respect

to the obstaclesO that are not contained in the interior of Fk. We also add all obstacles

that are touched by the relative convex hull and denote the resulting polygon by �Fk.

( �Fk is related to the simpli�ed visibility region VISk.)

4. Clean-up. The complement of �Fk may have several cells. We �nd the cell containing t

and let Gk denote its complement. Gk is the input to the next round.

A round of the algorithm is shown in Figures 2{6.

The single-destination algorithm di�ers from the SPT-algorithm only in Steps 2 and 4,

where we need to restrict ourselves to a single cell only. The underlying ideas, however, are

the same for both problems.

Now let us look at the successive steps in more detail. In Step 1, we are given the polygon

Gk�1. When going from stage k � 1 to stage k, we are interested in representing the set of
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all points that are visible from the illumination edges of Gk�1 in such a way that we can �nd

the component of the unilluminated region that contains point t.

We accomplish this by computing a \description" of the visibility region VISk of the

illumination edges in the relevant portion of the plane. This is done by adapting a technique

of Suri and O'Rourke [20]. Suri and O'Rourke showed how to compute for some �xed edge

e, a set of O(n2) triangles that cover the complete visibility region Ve. Analogously, our

\description" of the visibility region VISk is a set Tk of a quadratic number of triangles

that cover the visibility region. The main idea is to do a rotational line sweep around each

illuminated vertex and to output each empty triangle over which the line sweeps. The details

are given in Section 5. The union of these triangles forms a set of polygons, possibly with

holes.

If one of the triangles contains the target point t (which can be checked as the triangles

are constructed), we stop with the output \The link distance from s to t is k." Otherwise,

we notice that the link distance is at least k + 1 and move on to Step 2.

In Step 2 we get rid of the empty cells that do not contain the point t. Each triangle in Tk
is composed of three sides. Moreover, we must consider a number ok of obstacle edges of all

obstacles whose boundary is partially but not completely illuminated. (Recall that obstacles

that are not yet touched by light do not play a role in de�ning Fk.) The goal is to compute

in the arrangement of these sk = 3jTkj + ok segments the face that contains the target t.

(It is easy to see that there are triangle sides that cannot contribute to the boundary of

the illuminated region. For example, every triangle contains one side that also bounds an

obstacle; the common side of two adjacent triangles need also not be considered. However,

these considerations do not reduce the asymptotic running times of our algorithms.) By

directly applying the results of Edelsbrunner, Guibas, and Sharir [8], this can be done in

time O(sk�(sk) log
2sk). However, since the sum of the terms ok over all k may be 
(n2), and

our goal is to have a bound dependent on E rather than n2, we must use some additional

tricks to avoid dealing with the same (unilluminated) obstacle segments again and again.

We let Fk denote the complement of the computed face.

In the case of the SPT-problem Step 2 computes all cells that contain portions of obstacle

edges. We apply results on computing many faces in an arrangement of segments (e.g.,

Agarwal [1]). Each of the cells that we keep can then be treated as a separate subproblem,

so we can continue exploring them independently. In this case, Fk denotes the complement

of all computed cells.

By a re
ex vertex of Fk we mean a vertex for which the interior angle (the angle pointing

towards the interior of Fk) is greater than �. If the angle is less than �, the vertex is a convex

vertex.
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Our �rst lemma characterizes the boundary of Fk:

Lemma 1

(i) For all edges e of Fk, there is either some edge s of an obstacle such that e � s or

there exists some point p on the boundary of VISk�1 such that e is part of a light ray

emerging from p.

(ii) For each convex vertex of Fk, the two incident edges are (parts of) obstacle edges.

(iii). The boundary of Fk consists alternately of two types of chains of edges:

1. chains that are part of an obstacle boundary, and

2. chains of edges in free space consisting only of re
ex vertices.

(In case of the SPT-algorithm, this statement holds for each component of the boundary

of Fk.)

Proof. To see (i), assume that e is surrounded by free space. If parts of it were illuminated

by a light ray not containing the whole edge, the light ray has to cross e and pass on into

the free space on the other side of e. This is a contradiction. For (ii), consider some convex

vertex. If one of its two incident edges does not derive from some obstacle, we get from

(i) that there is a light ray containing this edge. Since we assumed that a ray is allowed

to touch an obstacle, this ray would continue into free space and hence there would be no

convex vertex | a contradiction. Finally, the �rst part of statement (iii) follows from the

fact that the illuminated region is connected, and thus there cannot be two disconnected

pieces that have illuminated boundaries. The second part is a straightforward consequence

of (i) and (ii). 2

We will call the re
ex chains of illumination edges mentioned above in part (iii).2 of

Lemma 1 illumination chains. Note that the boundary of Fk may even consist of a single

closed illumination chain that encloses a set of isolated obstacles and the point t.

Now we proceed to Step 3. The shape of the region Fk computed in Step 2 is subject to

the restrictions of the previous lemma, but it may still be too complicated for our purposes.

We simplify it by \pulling taut" the chains of illumination edges that bound Fk. More

precisely, let O denote all obstacles that are either not contained in Fk or that belong to Fk

and share some piece of non-zero length with the boundary of Fk. Note that Fk � O is

a simple polygon. Thus, we can form the relative convex hull (as de�ned in Section 2) of

Fk �O with respect to O. �Fk is de�ned to be the union of Fk with this relative convex hull

and with all further obstacles that are touched by the relative convex hull. The following

lemma justi�es this step of the algorithm.

Lemma 2

(i). All points of free space in �Fk�Fk are illuminated from the illuminated boundary of Fk.
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(ii). A point p in free space that does not lie in �Fk is illuminated from the illuminated

boundary of Fk if and only if it is illuminated from the illuminated boundary of �Fk.

(iii). Each component of the boundary of �Fk consists alternately of chains of edges that

are parts of obstacle boundaries and of single straight edges through free space (see

Figure 5).

Proof. It follows from Lemma 1(iii) that the relative convex hull just shortcuts the chains

of edges in free space that connect re
ex vertices, replacing them by \taut-string" paths.

Thus, �Fk �Fk consists of \half-moon"-like pieces that are bounded by two chains: a convex

chain and a concave \taut-string" chain. Clearly, every point inside can be seen directly

from the convex chain, which is statement (i). Now consider some ray that emerges from

some point on the boundary of �Fk. It is clear that if we elongate this ray in the backward

direction, it will hit the (illuminated) boundary of Fk. This proves one direction of (ii). The

other direction follows by similar arguments.

Statement (iii) follows from the fact that all edges connecting re
ex vertices in free space

are shortcut by the relative hull. 2

Step 4 does some \clean-up". First, we check whether t lies inside the relative convex

hull �Fk. If this is the case, it must lie in �Fk � Fk and we stop with the message \The link

distance from s to t is k + 1." Otherwise, we observe that taking the relative convex hull

may have disconnected the cell containing t. (For an example, see Figure 6). Therefore, we

once again determine the cell that contains t (this time by a simple linear-time test). The

complement of this cell is the simple polygon Gk, the output of round k. The illumination

edges are exactly the single straight edges traversing free space mentioned in Lemma 2(iii).

In the �rst round, we start with G0 = VIS0 = fsg. Since the light source in the �rst

round is simply a point, �F1 = F1 �O, and thus Steps 3{4 are unnecessary for this round.

4 Combinatorial Complexities

In this section and the following, we deal primarily with the single-destination problem;

necessary modi�cations for the SPT-problem are deferred to Section 7. We summarize

below some notation that we need in this section.

� The underlying obstacle set contains n edges and n vertices. (Since we assume that

the free space is bounded, there can be no in�nite edges.)

� The polygon Gk is the output of the k-th round. nk of its edges are illumination edges.

Let �nk denote the number of illumination edges of �Fk.

� Tk is the triangle set constructed in Step 1.

� E is the number of edges in the visibility graph of P ; in other words, E is the number

of visible pairs of obstacle vertices.
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Lemma 4 will relate the magnitudes of these numbers to each other and give some upper

bounds. First, we need one more property of the polygons �Fk.

Lemma 3 Consider some obstacle edge e, and let k be the �rst round in which (part of)

this edge belongs to the boundary of Gk. Then

(i). As we walk along the boundary of �Fk, e is adjacent to at most four illumination edges

of �Fk, and at most two of them can touch e in its interior;

(ii). e is adjacent to no edge of �Fk+1, �Fk+2, etc.

Proof. (i) Let us �rst consider those illumination edges that terminate in the interior of e:

Those endpoints must already be endpoints of illumination edges in Fk. But since Fk is a

simple polygon, even a whole obstacle is adjacent to at most two illumination edges of Fk:

If it were adjacent to more than two, this would mean that as we go around the boundary

of Fk, we encounter the obstacle twice. We could connect these two touching points by a

curve through the (dark) cell containing t and we could close the curve using a path through

the obstacle (see Figure 7). The resulting closed curve does not pass through the illuminated

region and has illumination edges both inside and outside, contradicting the fact that the

illuminated region is connected. Those illumination edges that terminate on an endpoint of

e are handled by noting that at each of the two endpoints of e, at most one illumination edge

of �Fk can be adjacent to e when going along a piece of the boundary of �Fk. This concludes

the proof of (i).

To see (ii), note that when some point of e is illuminated in round k, in the next round

all points on e are illuminated, and thus no portion of e will belong to the boundary of �Fk+1.

2

Lemma 4 The following bounds hold, where the summation index k ranges over the number

of rounds of the algorithm.

(a)
P
nk �

P
�nk � 2n

(b)
P
jTkj = O(E)

Proof.

(a) The �rst inequality is trivial, since the boundary of Gk is essentially one \component"

of the boundary of �Fk. By part (iii) of Lemma 2, every illumination edge must be adjacent

to two obstacle edges. Together with Lemma 3 this gives the second inequality. (Actually,

the union of all polygons �Fk forms a planar map, since the illumination edges of all polygons
�Fk taken together do not cross. However, we do not need planarity to prove our bound.)

(b) will be shown in Section 5, Step 1. 2

The shortest path map with respect to a given source point s is the planar map whose

boundaries are given by the boundaries of the k-visibility regions VISk (k = 1; : : : ; `). Cells
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that do not border any obstacle or that border only part a single obstacle edge will be called

trivial cells. They are necessarily convex (by Lemma 1(iii)), surround no obstacles, and their

boundary contains a single, possibly closed, illumination chain. Such an illumination chain

will be called a trivial illumination chain. For example, the unshaded triangular cell to the

right of the pentagon and the one below the top quadrilateral in Figure 4 are be trivial cells

of the shortest path map. While the shortest path map can have 
(n4) cells, we prove below

a linear bound on the number of nontrivial cells. A consequence of this is that the total

number of illumination chains that do not \disappear" in Step 3 when we pull them taut is

at most linear in n.

Lemma 5 There are O(n) nontrivial illumination chains, and hence the number of nontriv-

ial cells in the shortest path map is also O(n).

Proof. Let us �rst consider those illumination chains that are either closed or that start and

end at the same obstacle edge. They are trivial unless the cell C that they enclose contains

further obstacles. In that case at least one obstacle vertex interior to C will be illuminated

in the next round, and this vertex will then never be contained in such a cell again. Thus,

the number of non-trivial illumination chains that contain at most one obstacle edge in their

boundary is at most n. (In fact, it is bounded by the number of obstacles.)

To count the remaining nontrivial illumination chains, consider the graph whose nodes are

the n obstacle edges and whose edges are the nontrivial illumination chains that are adjacent

to two di�erent obstacle edges. An edge of the graph connects the nodes corresponding to

the two obstacle edges that are adjacent to the illumination chain, when viewed from the

side of the chain that is more distant from s. Since these chains do not cross each other, this

graph is clearly planar. By construction, the graph has no loops. Thus, our proof will be

complete once we show that there are at most two parallel edges between any pair of nodes.

Parallel edges correspond to illumination chains that connect the same pair of obstacle

edges. The proof that there cannot be three such \parallel" chains is similar to the reasoning

in the proof of Lemma 3. In fact, all illumination chains that are adjacent to the same obstacle

edge are generated in the same round, and they alternately have the illuminated side on their

left and on their right. Thus, if there were more than two such chains, we would �nd two of

them that contain some part of the illuminated region of round k between them, and these

two chains together with the two obstacle edges would separate this interior illuminated part

from the rest, contradicting the fact that the illuminated region is connected. See Figure 8.

2

5 Details of the Algorithm

Constructing visibility polygons. In Steps 1 and 3, we perform rotational sweeps

around certain points. Thus, we need the visibility polygons with respect to these points.

Given a point p in free space (not necessarily at a vertex) the visibility polygon of p is the

circular sequence of obstacle vertices and edges that are seen by p. The visibility polygons
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of all vertices can be computed in O(n log n + E) time by the visibility graph algorithm of

[11], where E is the number of visible pairs of vertices (the \size" of the visibility graph).

Given the visibility polygon of p and a point x that is visible from p, we can easily determine

the point w where the ray from p to x �rst hits an obstacle when it is extended past x. In

the case that w is di�erent from x we call w an extension point and the segment (x;w) an

extension edge.

Having the visibility polygons about vertices alone is not su�cient for our purposes,

since we have to sweep also around the non-vertex endpoints of illumination edges that lie in

the middle of obstacle edges. We will call these endpoints illumination endpoints. We now

describe how we get the visibility polygons of such points, given the visibility graph.

Clearly, there are at most 2E extension points in all the visibility polygons about the

vertices; thus, we can sort all extension points of visibility graph edges that lie on a common

obstacle edge in a total time of O(E log n).

Consider (continuously) sliding a point p along some obstacle edge (x; y) starting from

vertex x. Our goal is to maintain the visibility polygon of p during this sliding motion, since

this will allow us to determine the visibility polygons about each illumination endpoint along

(x; y). Note that the visibility polygon about p changes only when p passes an extension

point on (x; y). Since we have sorted the extension points along every obstacle edge, and

since we know for each extension point its corresponding pair of vertices, we can update the

visibility polygon of p in constant time per extension point over which p slides.

Thus, the total time to maintain visibility polygons while sliding p along every obstacle

edge is only O(E). Also, the size of the visibility polygon about a point p on some obstacle

edge (x; y) is bounded above by the size of the visibility polygon about x plus the number

of extension points along the subedge (x; p). Now, by Lemma 3, we know that there are

at most two illumination endpoints along each obstacle edge about which we will require

visibility. Thus, within overall time O(E) (after O(E log n) preprocessing) we can compute

the visibility polygons about every point that we require. For each visibility between an

illumination endpoint and a vertex that we �nd in this way, we create a visibility edge in an

angularly ordered list about the illumination endpoint, we insert this visibility edge into the

list of visibility edges about the vertex, and we also insert an extension edge from the vertex

to correspond to the newly created visibility edge.

Note that the visibility polygon that we compute about a non-vertex point p does not

include visibility information between p and other extension points or illumination end-

points. (If we were to include also the visible pairs among extension points and illumination

endpoints, we could not maintain our O(E) bound.)

Step 1: Constructing the k-visibility region. We want to compute the region of points

visible from a set of illumination edges S on the boundary of Gk. We do this by �nding a

set of triangles that cover the region illuminated (in the same spirit as the method of [20]).

Our main concern will be to identify those visibility graph edges and extension edges that

bound these triangles, i.e., that will become the illumination edges of the next round.

Given the O(E log n) preprocessing as described above, we can assume that we know
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the (extended) visibility graph, and we have the extension points in sorted order along each

obstacle edge. The illumination edges e 2 S will be line segments e that either join a (visible)

pair of obstacle vertices or that join an obstacle vertex to a (visible) extension point. Now, a

vertex will be illuminated by S if and only if it is either visible from an endpoint of some e 2 S

or there is a visibility edge or extension edge incident to it that crosses some illumination

edge e 2 S. We claim that we can identify all of the visibility edges and extension edges

that cross segment e in time proportional to the number of such edges.

The main idea is to use the method of Mitchell and Welzl [17], which allows one to update

a visibility graph when a new obstacle is inserted in time O(n +K), where K is the size of

the change. We outline here the method as it applies to our problem.

We de�ne a graph G as follows. G has a node associated with (a) each visibility graph

edge, (b) each extension edge of each visibility graph edge, and (c) each of the visibility edges

joining an illumination endpoint to the vertices seen by it. The discussion above showed how

we compute the visibility edges of type (c), and we argued that there can be only O(E) such

edges in total. Thus, the total number of nodes that can ever appear in G is O(E).

We now de�ne the edges of graph G (see Figure 9):

(1) If two nodes a and b of G correspond to two edges that are incident to a common vertex

v and are consecutive in the angular order about v, then we join a and b by an edge

in G.

(2) If visibility edges a = (u; v) and b = (z; v) are consecutive in the angular order about

vertex v, and b = (z; v) is a visibility graph edge that has an extension edge c = (w; z)

at z, then we join a and c by an edge in G.

We now �x any one illumination edge e = (u; v) 2 S. Color a node of G \blue" if its

corresponding segment intersects e (either by crossing e or by sharing an endpoint with e).

The blue nodes correspond to those segments that we wish to identify. We already know

many blue nodes: all of those visibility graph edges and extensions that are incident to an

endpoint of e are known and are blue. We want to identify the remaining blue nodes of G,

which we do by a simple linear-time depth-�rst search starting from the known blue nodes.

The two crucial facts that allow us to achieve the claimed time bound are:

(i) the degree of any node of G is bounded (at most 8); and

(ii) the blue nodes of G de�ne a connected subgraph.

Observation (i) is straightforward from the de�nition of edges of graph G, and is important

in assuring that the search can be accomplished in time proportional to the number of blue

nodes found.

For observation (ii), we refer to Figure 10. Consider a blue node a that corresponds to a

segment (x; y) that crosses e = (u; v) at point z. Note that either x or y is a vertex; assume

without loss of generality that x is a vertex. Similarly, assume without loss of generality

that u is a vertex. Now, the path from x to z to u is in free space. When this path is pulled
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taut, we either get the segment (u; x) (in which case we are done, since (u; x) is blue if it is

visible), or we get a concave path from x to u that bends only at vertices (p1; p2; : : : ; pm) of

obstacles. Our goal is to exhibit a path within the graph G from blue node a = (x; y) to the

blue node (u; pm), such that every node along the path is blue.

We march through the (clockwise) list of visibility edges about x, starting at (x; y) and

stopping at the edge (x; q1) just before edge (x; p1). Each edge of this march must be blue,

since the region R bounded by the concave chain and the edges (x; z) and (u; z) must be

obstacle-free. From the edge (x; q1) (which is blue) there is a connection to the extension edge

of the (visibility graph) edge (x; p1), and this extension edge must cross e (and therefore be

blue). Starting with this extension edge (which is incident on vertex p1), we march through

the (clockwise) list of visibility edges about p1, stopping just before reaching (p1; p2). This

process continues until we reach the visibility graph edge (u; pm), which we know to be blue

since it is incident to an endpoint of e. We have exhibited a path of blue nodes from (u; pm)

to (x; y), so we have shown that the set of all blue nodes can be discovered by a depth-�rst

search in time linear in the number of blue nodes.

When carrying out the depth-�rst search, we need not construct the graph G explicitly.

We simply start with the type (c) edges and explore for each blue edge all adjacent edges,

testing each to see if it is blue. (Here, adjacency is taken with respect to G.) The adjacent

edges of an edge can be determined in constant time from the visibility graph information

that we have stored.

The illumination edges e are now considered one by one; for each e, we apply the above

method to obtain the set of all visibility edges that cross e in time proportional to the number

of crossings found, and we delete these (blue) nodes of G from further consideration. Then,

when we consider the next illumination edge, we are working with the new (modi�ed) graph

G that corresponds to having considered e as a non-transparent \obstacle". Once we have

identi�ed the set of visibility edges that cross illumination edges S, we know which obstacle

vertices are illuminated, and it is then straightforward to output a set of triangles that cover

the region illuminated by S. The number of triangles in the covering will be proportional to

the number of visibility edges that cross S. Since we delete all edges as soon as they give

rise to a triangle, and since the total number of visibility edges considered is O(E), we have

concluded a proof of Lemma 4(b).

If we consider the O(E log n) preprocessing overhead, we get for the total time spent in

Step 1 during all rounds,

O(E log n) +O(E) = O(E log n) (1)

As we generate an edge that may contribute to the boundary of VISk, we know which

side of it is illuminated and which side may be dark. This knowledge will be used in the

next step, when we compute a dark face in the arrangement of these edges.

Step 2: Computing a face. Edelsbrunner, Guibas, and Sharir [8] show how to compute

a single face in an arrangement of N line segments in time O(N�(N) log2N). However,

applying this directly would yield a complexity of O(n2�(n) log2 n), because it may happen
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that the same set of 
(n) obstacle edges is part of the boundary again and again, for 
(n)

rounds.

Thus, we �nd the cell Fk only implicitly as far as its \dark" (obstacle) boundary is

concerned. First, we look at the arrangement of the O(jTkj) segments given by the triangles

from Step 1, and we also include the O(jTkj) obstacle edges that are touched by these

illumination edges. Now we determine the cell containing t in this arrangement by the

algorithm of [8], in time O(jTkj�(jTkj) log
2jTkj). We know that all chains of illumination

edges of Fk are contained in the boundary of this cell. By Lemma 1, we can throw away

all parts of the boundary that do not belong to chains of re
ex angles between points on

an obstacle, and we can also ignore pieces that border the face from the \wrong" side, i. e.,

from the side where the light should be, or from inside an obstacle. Now we try to trace

out the boundary of the \true" cells in the complete arrangement with all obstacle segments

included. To do this, we have to solve two problems: When we \fall o�" the boundary

because we should move from an obstacle edge to an adjacent obstacle edge that isn't there,

we should know in which place we would come back to an edge of our restricted arrangement

if we were to follow the correct cell boundary along the obstacle. The second problem is to

determine which of the cells that we trace contain the point t.

In order to solve the �rst problem, we must jump over chains of obstacle edges that are

not touched by an illumination edge without looking at each edge individually. In other

words, we have to �nd the next \marked" edge around the obstacle following a given one,

where \marked" means being illuminated, i. e. being touched by an illumination edge. If

we store the edges of each obstacle as the leaves of a binary tree, with each node knowing

whether any of the leaves in its subtree are marked, we can easily accomplish such queries in

O(log n) time. Marking an edge as being touched (illuminated) takes also at most O(log n)

time. (Note that we can leave an edge marked once we have marked it, since an edge will

remain illuminated after it has been illuminated for the �rst time.) We query for the next

(or preceding) marked edge at most once for each obstacle edge, because we do it only when

we come from the left-most or right-most touching illumination edge, and in the following

round, there won't be any more illumination edges touching this obstacle edge. Thus, the

total time for all such queries is O(n log n).

The second problem amounts to testing whether t is contained in a cell that was traced

out only implicitly, as described above. The standard test for point-in-polygon containment

determines whether a given half-ray starting from t intersects the boundary of the polygon

an even or an odd number of times. We can precompute this number for a given �xed half-

ray through t, for all obstacle edges. (For a single edge this number can only be 0 or 1.) By

storing the partial sums sequence of each obstacle in a table, we can retrieve the number of

intersections with the half-ray for any connected part of the obstacle boundary in constant

time. Thus, the time for testing containment of t in a cell will not exceed the time that we

take to trace out the cell.

Note that isolated obstacles (within the unilluminated region) are implicitly ignored in

the above method, and therefore the �nal cell that we obtain is indeed the true boundary of

Fk as we de�ned it.
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For the running time of Step 2, we obtain

O(n log n) +
X

k

O(jTkj�(jTkj) log
2jTkj)

= O(E�(n) log2 n); (2)

by Lemma 4(b).

Step 3: The relative convex hull. In order to shortcut an illumination chain in free

space, we start walking along the chain at one endpoint, extending a rubber band whose

end is �xed at this endpoint. Computationally we do this by a rotational sweep around

the endpoint of the chain and a concurrent scan of the chain. Whenever we sweep over an

obstacle vertex we simply test whether it is in front of or behind the chain. In the latter

case, we simply ignore the obstacle; in the former case, we have found an edge of the relative

convex hull, and we start sweeping around the new obstacle vertex (cf. Figure 11).

There is only one case when there is a problem with this method, namely, when the

boundary of Fk consists of a single closed illumination chain. In this case, we do not have a

starting point for which we know its visibility polygon so that we could sweep around this

point. In such a case we take an endpoint of any illumination edge that contributes to the

chain, and extend the rubber band from there. Refer to Figure 12. We may need to sweep

around some obstacle vertices that are outside the illumination chain before we hit the �rst

obstacle vertex inside the chain, but eventually, after at most two full turns, we obtain the

relative convex hull (which, in this case, is simply the convex hull of the obstacles enclosed

by the chain).

It is easy to see that we sweep around each point (obstacle vertex or illumination end-

point) at most once; hence, the total e�ort for looking at other obstacle vertices from the

points around which we sweep is O(E). In addition, we have to traverse concurrently the

chains. This can be done in time linear in the size of the chains. The total size of all il-

lumination chains is O(E�(n)), since, by Lemma 4(b), there are only O(E) segments that

participate in the boundary of the single face that we compute. This gives a total time

bound of

O(E�(n)): (3)

(We have already accounted for the preprocessing in Step 1.)

Step 4: Cleaning up. Determining the components of the boundary of �Fk and selecting

the cell in which t lies can certainly be done in linear time. Thus, we get for Step 4:

X

k

O(�nk) = O(n): (4)
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Finding a path; putting the results together. The algorithm described above will

stop after t has been reached, and it will correctly report the link distance from s to t; If we

also want to output a minimum-link path, we have to store with each illumination edge that

is generated during the algorithm a backward pointer that shows where the edge \comes

from". A path can then be found by tracing the pointers back from t.

This is no problem for edges that start at boundary edges of Fk, which were generated

in Step 2: The backward pointer simply points to the respective \source" edge, which will

have is own backward pointer. However, if an illumination edge originates at an edge of �Fk,

that was only created in the computation of the relative convex hull in Step 3, the shortest

direction to the source is not so clear. For these edges, we have to do more work. The

regions that are added to Fk to form the relative convex hull have the shape of half-moons

(see the region swept by the rubber band in Figure 12); they are bounded by a convex chain

(belonging to the boundary of Fk) and a concave chain (belonging to the boundary of �Fk).

(Here, convex and concave are taken with respect to the interior of the region.) Now, all

edges that originate at the illumination edges of �Fk have to be extended backwards until

they hit Fk. Their backward pointer has to point to the edge of Fk where they hit. The

hitting edge can be determined by binary search in the convex chain in O(log n) time per

backward pointer. Since the total number of illumination edges is O(E), by Lemma 4(b),

this adds a total of O(E log n) to the complexity of Step 1, which does not change the bound

(1).

Adding equations (1){(4) yields then the following theorem:

Theorem 6 A minimum-link path between two points in a polygon (with holes) P with n

vertices can be computed in time O(E�(n) log2 n) and space O(E), where E denotes the size

of the visibility graph of P and �(n) denotes the extremely slowly growing functional inverse

of Ackermann's function (cf. [12]). 2

6 An 
(n logn) Lower Bound

In this section we show a lower bound for the link distance problem in the algebraic com-

putation tree model (see Ben-Or [2]). We do this for the weakest possible formulation of

our problem, namely for the decision problem of deciding whether the link distance between

two points s and t in a polygon with obstacles is at most a given number L. We reduce the

following \separation problem" to the link distance problem:

INSTANCE: A set of n real numbers x1; : : : ; xn with jxi�xjj � 4 for all i 6= j.

QUESTION: Is it also true that jxi � xjj � 6 for all i 6= j?

A lower bound of 
(n log n) for this problem has been proved by �O'D�unlaing [7]. To

reduce this problem to the link distance problem, we �rst add a constant to all numbers so

that we have xi � 6 for all i. Then, for each given number x, we construct a box-shaped
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obstacle in the form of the following polygonal chain (see �gure 13): (0; x � 1), (0; x � 2),

(�x; x � 2), (�x;�x), (x;�x), (x; x), (�4x=5 � 24=5; x), (�4x=5 � 24=5; x � 1). By the

separation assumption, these boxes are disjoint. We place point s at the origin and t at, say,

(0; 5 + maxxi), and we set the bound L on the link distance to 2n + 1.

Now it is easy to see that any minimum-link path from s to t must \wiggle" its way

out through the \lids" of the boxes, implying that it will contain at least one left-to-right

edge and at least one right-to-left edge per box, plus an initial edge starting from s, adding

up to a total of at least 2n + 1 edges. Thus, to achieve this bound, we may use just one

left-to-right edge and one right-to-left edge per box. The \best" point that can be reached

in one right-to-left edge through the lid of the box for x is the point (�x0; x� 1), where x0

is the number after x in the sorted order. In order to see from this point directly to the

next horizontal right-to-left edge at y-coordinate x0 � 1, the edge leaving point (�x0; x� 1)

must pass above the obstacle corner at (�4x=5�24=5; x) and below the corner at (0; x0�2).

An easy calculation shows that this is possible if and only if x0 � x � 6, which proves the

following theorem.

Theorem 7 Computing the link distance between two points in the presence of polygonal

obstacles with a total number of n vertices takes 
(n log n) time, in the algebraic computation

tree model.

7 The Shortest Path Tree Problem

In this section, we discuss the extension of our results to the problem of computing a tree of

shortest paths from s to every obstacle vertex. We follow the structure of Section 5 in giving

the details of the successive steps of the algorithm, indicating what changes are necessary

for the SPT-problem.

Constructing visibility polygons. As before, we compute the visibility graph and the

set of extension edges in time O(E + n log n). The new complication lies in the fact that we

need visibility information about illumination endpoints in all cells, and there may be more

than just two per obstacle edge. In fact as many as 
(n) illumination endpoints may lie on

a single obstacle edge. Storing the full visibility polygon for each of these points may blow

up the complexity to at least 
(nE) in the worst case. Thus we must �nd a way to get along

with \partial" visibility polygons.

When some part of an obstacle edge is illuminated for the �rst time, we �rst identify the

illumination endpoints lying on this edge for which we need visibility information. They are

those endpoints that actually lie on the boundary between the illuminated region and the

dark region. We can ignore those endpoints such that all of free space in some neighborhood

of the endpoint is illuminated at the same time.

To be speci�c, let us look at an obstacle edge (a; b), drawn horizontally, with a on the

left, b on the right, and the obstacle above. In the round in which the edge (a; b) is �rst

hit by some illumination edge, we sort all illumination endpoints and all extension points
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of visibility graph edges that lie on (a; b). The illumination endpoints on this edge can be

classi�ed as either \left" or \right", depending on whether the illuminated side is to the left

or right of the endpoint. By simply scanning the edge (a; b), keeping track of how many left

and right illumination endpoints have been encountered, we can determine those endpoints

that lie on the boundary between the illuminated region and the dark region. (The initial

count of how many triangles cover the initial part of the edge near a can be determined as

the triangles are generated.)

Now we make two scans along (a; b) (one in each direction) in order to determine the

visibility information for the illumination endpoints on (a; b). During the right-to-left scan

we store visibility polygons for all \left" endpoints, and vice versa for the left-to-right scan.

We slide a point p from b towards a, maintaining a list of visible points as we go. We initialize

the list to be those obstacle vertices visible from b, and each time we pass an extension point,

we make the necessary (constant-size) change. Now, the di�erence between what we do here

and what was done in the single-destination case is the following: When the sliding point

p comes to a left endpoint w, we store only some part of the current list of visible vertices

about p as the visibility information for w, and we delete this part from the current list.

The part that we store is the part that is directed into the dark sector in the neighborhood

of w. It is clear that those visibility edges that are directed to the side that has already

been illuminated, are not important for determining future visibility regions. The only other

thing that has to be checked is that we do not commit an error by deleting too much. This

is formulated in the following lemma:

Lemma 8 Let w and w0 be two \left" illumination endpoints on the obstacle edge (a; b), as

above, with w to the right of w0 (see Figure 14). Let (w; v) and (w0; v) be visible pairs such

that the edges (w; v) and (w0; v) are directed into the (local) dark sector about w and w0,

respectively. Then the pair (w0; v) will not generate an illumination edge in the next round

of the algorithm.

Proof. In order for a visibility edge (w; v) to generate an illumination edge in the next

round of the algorithm, the segment (w; v) must lie entirely within the \dark" region on

which w is a boundary point.

Let H be the connected component of the dark region on which w0 is a boundary point.

Assume that (w; v) and (w0; v) leave w and w0 to enter the dark sector about these points.

We will show that the segment (w0; v) cannot lie within H, thereby proving that (w0; v)

cannot generate an illumination edge at the next round of the algorithm.

There is a k-link path � from s to w; there is also a k-link path �0 from s to w0. In the

neighborhood of w, the path � lies within the triangle 4vww0, while in the neighborhood of

w0 the path �0 lies outside 4vww0. Thus, the path � from w to w0 obtained by appending

paths � and �0 must either cross the edge (v;w) or cross the edge (v;w0). If the path � crosses

(v;w) at a point z, then z must be at link distance at most k�1 from s (see Figure 14). But

then the segment (z;w) belongs to the illuminated region and (w; v) does not really enter

the dark sector about w | a contradiction to our assumption. Thus, the path � must cross

(exactly once) the boundary of 4vww0 along the edge (v;w0). This implies that the path �,
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together with the segment (w0w), forms a closed Jordan curve separating w0 from v, so that

v cannot be in the dark region H.2

The following lemma extends Lemma 4 to the SPT algorithm:

Lemma 9 The total number of illumination edges determined in all rounds of the algorithm

is O(E).

Proof. As we march along (a; b) from b to a, we start with the visibility polygon of b as the

current list of visible points, and we add or delete a point whenever we pass an extension

point of the original extended visibility graph. Since every visibility edge that we store with

a left illumination endpoint is deleted from the current list, the total number of visibility

edges that are stored with left illumination endpoints on this edge is therefore bounded by

the size of the visibility polygon of b plus the number of extension points on (a; b). Since

there is at most one left-to-right sweep and one right-to left sweep for each obstacle edge, the

total number of visibility edges that are stored for illumination endpoints in the middle of

obstacle edges is at most twice the total size of the visibility polygons of all obstacle vertices

plus twice the total number of extension points of the original visibility graph. Since both of

these numbers are O(E), we get a bound of O(E) for the total number of visibility edges that

we store about illumination endpoints; the number of visibility edges that are stored about

obstacle vertices is clearly O(E). Since an illumination edge can arise only as an extension

of a visibility edge, the lemma follows. 2

Lemma 10 Finding the necessary visibility edges about all illumination endpoints, as de-

scribed above, can be carried out in O(E log n) time.

Proof. When processing an obstacle edge, we �rst have to sort all points on that edge, i. e.,

all extension points of the original visibility graph and all illumination endpoints (whether or

not they actually lie on the boundary between the illuminated and the dark regions). By the

previous lemma, the total number of illumination endpoints is O(E), and the total number of

extension points is clearly O(E). Thus, the sorting can be done in O(E logE) = O(E log n)

time. The remaining steps can be carried out in linear (O(E)) time. 2

Step 1: Constructing the k-visibility region. This step of the algorithm is exactly as

in the single-destination case.

If we consider the O(E log n) preprocessing overhead for the visibility calculations, we

get for the total time spent in Step 1 during all rounds,

O(E log n) +O(E) = O(E log n) (5)
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Step 2: Computing the interesting faces. This step requires the greatest change,

since now we do not restrict our attention to just a single cell in the arrangement of the

sk = 3jTkj+ok segments of the covering triangles and obstacle edges. (Actually, we would not

have to look at obstacle boundaries that are already fully illuminated. However, in the worst

case, the number of obstacle edges that we have to consider could still not be as big as 
(n).)

Instead, we appeal to the results of Agarwal [1] to compute many faces in this arrangement.

The faces that we want to compute are those that contain unilluminated vertices (of which

there are ok at stage k). A straightforward application of [1] then yields a (deterministic)

time bound of O(o
2=3

k
s
2=3

k
log sk log

!=3+1 skp
ok

+ sk log
3 sk + ok log sk), where ! is a constant

less than 3:33. Since sk = O(n2) and ok = O(n), the bound is O(n2=3s
2=3

k
log� n+ sk log

3 n),

where � = 2 + !

3
is a constant less than 3:11. Since

P
k
sk � E + `n, and the index k runs

from 1 to ` (the maximum link distance from s to a vertex), we get a total bound of

O(`(
E + `n

`
)2=3n2=3 log� n+ E log3 n)

= O((E + `n)2=3n2=3`1=3 log3:11 n+ E log3 n) (6)

on the work involved in doing Step 2 (using H�older's inequality).

Note that we are computing (explicitly) the exact cells containing unilluminated vertices,

rather than using the method of implicitly �nding a cell (as we did in the single-target case).

It should be possible to use the implicit method of �nding the cells of interest, in which case

the term (E + `n)2=3 can be replaced by E2=3. However, we do not know of a way to avoid

the term O(E + `n) in the time complexity of Step 3, so making this slight improvement

here would yield only a minimal improvement in the overall time bound.

To remain consistent with our de�nition of Fk, we would have to scan the boundary

of Fk and remove each boundary component that is just the boundary of a single \isolated"

obstacle, in a total time of O(n`). However, in contrast to the single-destination algorithm,

it has no impact on the time complexity whether we de�ne Fk \without isolated obstacles"

or with them. Thus we can also omit this scan for simplicity.

Step 3: The relative convex hull. The set Fk will in general have many holes, with

each hole corresponding to a connected component of unilluminated space that contains one

or more vertices. In this step, we want to \pull taut" each component of the boundary of

Fk.

For a boundary component that consists of a single (closed) illumination chain, the taut

version of the chain is simply the convex hull of the obstacles inside this chain. We can

�nd this convex hull easily once we know one vertex that is on the hull: we simply use the

visibility graph information to trace out the hull. The problem is to obtain a single vertex

on the convex hull. This can be done in time linear in the number of vertices inside the chain

(e.g., by �nding the lowest vertex within each such chain). The overall cost is then O(`n),

since this must be done at each of the ` rounds of the algorithm.
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For a boundary component of Fk that includes at least some portion of some obstacle

boundary, we can proceed as in the single-destination case to pull taut each illumination

chain, knowing that the work can be charged o� to edges of the visibility graph and the turn

points of the illumination chains. Thus, for this step of the algorithm, we get a total time

bound of

O(E + `n) (7)

plus the total boundary complexity of all illumination chains, which is dominated by the

time necessary to compute the interesting faces (Step 2).

Step 4: Cleaning up. This step is not relevant for the SPT-problem.

Finding a path; putting the results together. If we want to output minimum-link

paths, not just link distances, we simply store a backward pointer with each illumination edge

that is generated during the algorithm, in a manner similar to that of the single-destination

case. With this information, we can trace back to s from any vertex to output a path.

Adding equations (5){(7) yields then the following theorem:

Theorem 11 Let P be a polygon (with holes) with a total of n vertices. A tree of minimum-

link paths from a given point s to every other vertex of P can be computed in time O((E +

`n)2=3n2=3`1=3 log� n + E log3 n) and space O(E), where E denotes the size of the visibility

graph of P , ` denotes the link length of the longest path from s to a vertex of P , and � is a

constant less than 3.11. 2

Note that the \tree of minimum-link paths" is not a tree when it is laid out geometri-

cally in the plane, since di�erent branches may cross each other. It is a tree when viewed

topologically, or as a data structure with backward pointers.

8 Link Distance Queries

When we solve the SPT-problem we end up knowing the link distance from s to every point on

every visibility graph edge and every illumination edge. Thus, if we compute the arrangement

A of obstacle boundary segments together with all the illumination edges produced during

the solution to the SPT-problem, we will end up with an arrangement of segments such that

if we locate a query point t within a cell of A, we will be able to report the link distance

to t (and follow back pointers to retrieve a minimum-link path). Using an output-sensitive

algorithm (e. g., Chazelle and Edelsbrunner [5]) to build A, then, we can construct the full

shortest path map for our problem in the same complexity as our solution to SPT-problem

plus the size of the map, which is no worse than O(E2), since O(E) is an upper bound on

the number of illumination edges. The map can be preprocessed in time O(jAj) = O(E2) to

support O(log(jAj)) time point location queries, using the results of Edelsbrunner, Guibas,

and Stol� [8], together with the recent triangulation result of Chazelle [4] to perform the
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regularization of the map. (It is not hard to see that the regularization can also be done

within the O(E2) bound by methods other than applying [4].) The worst-case running time

of this method is O(n4). We have thus proved the following theorem:

Theorem 12 Given a �xed source point s, one can compute the shortest path map (with

respect to s) in time O(K + (E + `n)2=3n2=3`1=3 log3:11 n + E log3 n) and space O(K), where

K = O(E2) is the size of the map. Given the shortest path map with respect to s, the link

distance from s to any query point t 2 P can be found in time O(log n), and a minimum-link

path from s to t can be reported in time O(log n+ k), where k is the length of the path.

If we are willing to give up the logarithmic query time, we can get an algorithm for

the query version of the problem that uses, in the worst case, much less preprocessing time

and much less space than the method outlined above. In particular, we construct the map

M consisting of obstacle edges and the taut versions of nontrivial illumination chains. By

Lemma 5, we know that the size ofM is onlyO(n). Furthermore,M can be found by running

the algorithm for the SPT-problem, in time O((E + `n)2=3n2=3`1=3 log3:11 n+E log3 n). This

time bound includes the time necessary to triangulateM and preprocess it for point location.

GivenM, we can determine the link distance to a query point t in time O(n) as follows. We

�rst locate t within a cell C of the map (in time O(log n)). Knowing C already tells us the

link distance to t within an accuracy of 1: The link distance from s to any point t in C is

either k or k + 1, where k is the round in which C was generated, depending on whether t

belonged to the k-visibility region VISk originally or whether it got \across the boundary"

because it was contained in the relative convex hull VISk. The boundary of C consists of

parts of the boundary of VISk, parts of the boundary of VISk�1, and parts of obstacle edges.

In order to tell if the true link distance of t is k or k+1, we must know whether or not t can

see any part of that portion of the boundary of C coming from VISk�1 (by Lemma 2(ii)).

Thus, we just have to compute the visibility polygon of t within C, which can be done in

time linear in the size of C. (See El Gindy and Avis [10] and Lee [15]; see also Joe and

Simpson [13], for a correction to [10, 15].)

Theorem 13 Given a �xed source point s, one can compute a planar map of size O(n) in

time O((E + `n)2=3n2=3`1=3 log3:11 n + E log3 n), such that, given the map, the link distance

from s to any query point t 2 P can be found to within accuracy 1 in time O(log n), and can

be found exactly in time O(n) (after which a minimum-link path from s to t can be reported

in time O(k), where k is the length of the path).

9 Conclusion

We have shown that minimum-link paths in multiply-connected domains can be found in

nearly quadratic time. Our algorithms are conceptually simple and apply several recent

techniques from the literature. The time bottleneck in our algorithms is the computation

of cells in an arrangement (Step 2), both for the single-destination case and for the SPT-

problem. An improved time complexity for the computation of a single cell or of many cells
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in an arrangement of line segments would immediately translate into an improvement for

computing the link distance. Also, it may be that through more careful analysis or use of data

structures our bounds could be improved (e.g., toO(E log n) orO(E+n log n)). In particular,

if we could perform the illumination step (Step 1) for a set of crossing illumination edges

in the same output-sensitive time bound as we currently do for non-crossing illumination

edges, the algorithms would simplify greatly, since we would not need to compute cells and

relative convex hulls at all.

Our algorithm relies very much on the structural information that is provided by the

visibility graph of the given polygon. The visibility graph or some related structure is

also used in most algorithms for computing Euclidean shortest paths in the presence of

obstacles. The visibility graph, as well as the link distance, is invariant under arbitrary a�ne

transformations and even under some projective transformations (assuming that they do

not turn the bounding polygon inside out). Such transformations, however, may drastically

change the metric (Euclidean) structure of a problem. In this sense, the visibility graph is a

more naturally suited tool for computing the link distance than for computing the Euclidean

distance.

Our methods should permit e�cient solutions to various other problems (e.g., link radius,

link diameter, and link center) involving link distances in multiply-connected regions.

We are also interested in the three-dimensional problem of computing minimum-link

paths. While Canny and Reif [3] have shown that Euclidean shortest path problems in

three dimensions is NP-hard, it is open whether or not methods similar to ours may yield

a polynomial-time solution for the link-distance problem in higher dimensions. In higher

dimensions, however, the visibility regions (VISk) will be bounded by curved surfaces, which

may make it di�cult to extend our method in an easy way.
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Figure 1: A polygon with holes, and a path from s to t with three links.
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Figure 2: The 1-visibility region VIS1.

27



t

Figure 3: The polygon G1. Illumination edges are drawn with fat broken lines. (The

outside of the room is also included in G1.)
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Figure 4: Step 1: Constructing VIS2. The shaded area is the newly illuminated region

VIS2 �VIS1.
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Figure 5: Steps 2 and 3: The set F2 (hatched area) is the complement of the cell containing

t. The relative convex hull �F2 (hatched area plus cross-hatched area) and F2 include also

the outside of the room.
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Figure 6: Step 4: The polygon G2.
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Figure 7: Proof of Lemma 3(i).
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Figure 8: Proof of Lemma 5: There cannot be three illumination chains between the same

pair of obstacles.
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Figure 9: De�nition of graph G.
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Figure 10: Proving connectivity of the \blue" subgraph.

35



Figure 11: Shortcutting a chain in the construction of the relative convex hull.

36



Figure 12: Shortcutting a closed (convex) chain in the construction

of the relative convex hull.
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Figure 13: The boxes for the lower bound construction.
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Figure 14: Computing visibilities along edge (a; b).
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