Computing

© by Springer-Verlag 1985

Computing 34, 191 —219 (1985)

‘ N .
A

[}

Pt
NET
v,

; -

) X

1Y

-

L)

%
o

-
'
A

gy
[
f J WL
172 . d
L

T
7]
vy
N
L J

'l

-
» !

s
(1)
A

’
"

-
-

-,,
Nl
avh
!b-: ¥
4
-
S
.
(Y

l“
2T

TTA

ZA
=
Iy
*»
=¥,
ey
L

.
".“\‘
"

f, - AN
S0

A Systolic Array Algorithm for the Algebraic Path Problem
(Shortest Paths; Matrix Inversion)*

Giinter Rote, Graz

Received April 17, 1984

Absiract — Zusammenfassung

A Systolic Array Algorithm for the Algebraic Path Problem (Shortest Paths; Matrix Inversion). It is
shown how the GauB-Jordan Elimination algorithm for the Algebraic Path Problem can be implemented
on a hexagonal systolic array of a quadratic number of simple processors in linear time. Special instances
of this general algorithm include parallelizations of the Warshall-Floyd Algorithm, which computes the
shortest distances in a graph or the transitive closure of a relation, and of the GauB-Jordan Elimination
algorithm for computing the inverse of a real matrix,

AMS subject classifications: 68A0S5, (05C35, 05C38, 16A78, 65F05, 68E 10Y.

CR categories and subject descriptors: C.1.2 [processor architectures]: multiple data stream architectures
(multiprocessors} — systolic arrays; G.1.0 {[numerical analysis]: general — parallel algorithms; G.1.3
[numerical analysis] : numerical linear algebra — matrix inversion; (3.2.2 [discrete mathematics]: graph
theory — path problems; B.6.1 [logic design}: design styles — cellular arrays; B.7.1 [integrated circuits]:
types and design styles — algorithms implemented in hardware; YLSI (very large scale integration).

General terms. algorithms, design, performance.

Additional key words and phrases: Algebraic path problem, shortest paths, transitive closure, closed
semirings, Gaul-Jordan elimination.

Ein systolic-array-Algorithmas fiir das algebraische Wegproblem (kiirzeste Wege; Matrizeninversion). Es
wird dargestellt, wie man den Gauf-Jordanschen Eliminationsalporithinus fiir das algebraische
Wepproblem auf einem hexagonalen systolischen Feld (systolic array) mit einer quadratischen Anzahl
einfacher Prozessoren in linearer Zeit ausfilhren kann. Zu den Anwendungsheispielen dieses allgemeinen
Algorithmus gehort der Warshall-Floyd-Algorithmus zur Berechnung der kiirzesten Wege in einem
Graphen oder zur Bestimmung der transitiven Hiille einer Relation sowie der GauB-Jordansche
Eliminationsaigorithmus zur Inversion reeller Matrizen.

1. Introduction

The Algebraic Path Problem unifies three streams of evolution each of which
independently developed its own algorithms: the determination of the transitive
closure of a relation and the determination of shortest paths in networks; Kleene’s

* This work was initiated as u project in a lecture on Languages and VESI design which Professor Karel
Culik IT gave during his stay as a visiting professor at the Institutes for Information Processing,
Technical University of Graz, Austria, in the summer semester 1983, and was later supported by the
Computer Center Graz (Rechenzentrum Graz).

14 Computing 34,3

192 G. Rote:

construction of the regular expression representing the language accepted by a finite
automaton [19567] as the starting point of formal language and automata theory
with the subsequent development of regular algebra; and numerical linear algebra.

The similarity between direct and iterative methods for solving systems of linear
equations and for inverting matrices of real or complex numbers, which were known
for a long time, and the corresponding algorithms for graphs, which were relatively
new, was first noted by Carré [1971]. He introduced semirings to show that the
solution to these graph problems can be formulated in a unified manner, either as
sum of “measures” of paths or as a solution of a system of linear equations. He also
called the general graph algorithms. after their prototypes in numerical mathe-
matics; hence the name “GauB-Jordan elimination” for the algorithm which the
algorithm in this paper is a version of. In Aho, Hopcroft and Ullmann [1975] and in
Backhouse and Carré [1975], the link from the Algebraic Path Problem to regular
algebra and language theory was established. However, these authors considered
only idempotent semirings. They could therefore not provide a common algebraic
framework for the graph algorithms ard the numerical algorithms. This was only
achieved by Lehmann [1977].

Numerous applications of the Algebraic Path Problem and the algorithms for its
solutions are known in different areas; many of them were of course concetved
independently and without reference to each other. For an overview of appli-
cations see e.g. Gondran and Minoux [1979, section 3.3], Carr¢ [1979, chapter 3,
section3.2.2 and chapterd4], Zimmermann [1981, chapter 8], Brucker [1974,
chapter 4]. Several applications in global flow analysis of computer programs,
which is useful for code optimization, are discussed by Tarjan [1981].

Mahr [1982] provides a comprehensive overview of basic results concerning
semirings, as they are dealt with in the algebraic part of this paper.

Designing algorithms for many cooperating parallel processors has been made
desirable by the relative stagnation in the increase of processor speed (of single
processors); and the development of VLSI technology with the enormous reduction
of production costs has made it feasible to build special-purpose multi-processor
chips implementing these algorithms. In such algorithms special attention has to be
paid to the organization of parallelism, and difficulties arise which surpass those that
arise in connection with ordinary sequential algorithms. As one general scheme for
the organization of parallelism, systolic arrays {for VLSI) were introduced by Kung
and Leiserson [1978]. Their main characteristic is that the layout of processors and
connections is simple and regular. Every processor regularly “pumps” (hence the
name “‘systolic™) data in and out, each time performing some short computation, so
that a regular flow of data is kept up in the network of processors. A discussion of
pravious systolic arrays which are similar to the one which is the subject of this paper
is deferred until the latter has been described (see section 8).

To summarize the main result of the paper: Any of the problems mentioned at the
beginning can be solved on an array of (n+ 1)? processors in 7n—2 steps. (One step
typically requires one addition and one multiplication in the underlying algebra.)
The operations can be pipelined in such a way that a new instance of the problem
can be solved every n time steps.

A Systolic Array Algorithm for the Algebraic Path Problem 193

Outline:

The material in this paper has two quite different aspects: the algebraic issues of the
formulation of the Algebraic Path Problem and its solution, which are dealt with in
the following three sections; and the computer-oriented questions of the systolic
array algorithm, which shall occupy the remaining sections. The treatment of the
latter subject is intended to be comprehensive, whereas I discuss the algebraic
framework only as far as it is needed in the later sections, in order to make the paper
self-contained in this area.

Section 2 contains clementary definitions from graph theory and algebra which are
necessary to introduce the Algebraic Path Problem. Along with these definitions I
give three examples for the algebraic structure (the semiring) underlying the
Algebraic Path Problem, which yield its most important instances: the inverse of a
real matrix; the shortest distances in a weighted graph: and the transitive and
reflexive closure of a binary relation. The semiring of the square matrices of fixed size
over a semiring s introduced.

In section 3 a sequential algorithm called sGJE for computing the solution of the
general Algebraic Path Problem is given. This algorithm, which is a version of
GauB-Jordan elimination, can be adapted to solve any Algebraic Path Problem.

The application of the algorithm to the three examples of semirings given in section 2
is discussed in section 4.

Section 5 presents the systolic arrary GJEO used to solve the Algebraic Path
Problem: the pattern of the processors and their connections, the operations that the
processors perform, and the data flow.

Section 6 analyzes the performance of the basic algorithm presented so far. The
possibility of pipelining and extensions and vanations of this basic design allowing
to improve processor ufilization are discussed. Questions concerning the applica-
bility are also addressed, namely the modular extensibility of the design and the
decomposability of the Algebraic Path Problem.

Section 7 contains some details about the implementation of the organization of the
data flow in the various schemes presented, which have been bypassed in the
preceding sections: the control flow (as opposed to the data flow).

In section 8 the relation to the existing literature on systolic arrays is discussed.

Proofs, additional details, and more variations are contained in [Rote 19847.

2. Definitions and Examples

A graph G =(¥, E) consists of a finite vertex set ¥ and an arc set ES V x V. Thus, 1
am considering finite directed graphs with no multiple arcs but possibly with loops.
In the following 1 shall always assume that ¥={1,2,... n}.

A path p in a graph is an alternating sequence of vertices and arcs of the form

P=(00.ay, Uy, 03,0, ..oy U =1, 1y 1)),

14

194 G. Rote:

where [0, the v; are vertices of the graph, and the g; are arcs satisfying @, =(v;_ 1, v)-
p is called a path from vertex v, to vertex v;.

A weighted graph (V, E,w) consists of a graph (¥, E) together with a weight function
w: E-» H, where H is an arbitrary set. w{a) is called the weight of the arc a. Il (H, @) is
a monoid, we can extend the function w to the set of all paths:

W((UOv al!”laazavl’ mrey vI_—l:ah U!)):=W(dl) ® W(az) ® ® W(al}'

The weight of an empty path (a path containing no arcs) is of course (D, the neutral
element of the monoid. The weight of a path can thus be computed from the
sequence of its arcs alone. '

A semiring (H, ®, ®) with zero @ and unity (D is an algebraic structure with two
binary operations, fulfilling the following four axioms:

(4,) (H,@®)is a commutative semigroup with ncutral element ©.
(4,) (H,®)is a semigroup with neutral element (.
(4;) & is distributive over &:

aRPDA=(aRb)D(a®c), and
(@@ Rc=R)DDB®c).
(A4) (The zero rule:) Zero is absorptive with respect to &:

ORa=a0=0.

Example 1:
H,=(R, +, .) the st of real numbers with ordinary addition and multiplication, is a
semiring with zero 0 and unity 1.

Example 2:

H,=(R,min, +), where R =R u {00, — o0}, the real numbers extended by plus and
minus infinity, is a semiring with zero o and unity 0, if the convention o +a= @,
(—o)+a= —cc, for all real @, and (—oo)+ 00 =00, I used.

Example 3:

Hg=({0,1}, v, A), where v =max and A =min, is semiring with zero 0 and
unity 1, the so-calied Boolean semiring. (Every bounded distributive lattice is a
semiring.) '

Remark 2.1, matrix semirings:

The n x n-matrices H"*" (n21) over a semiring (H, &, ®) with zero@ and wnity
@, with matrix addition @ and matrix multiplication ® both defined just as in
conventional linear algebra, form themselves a semiring with the matrix containing.
only @ entries as zero and I, the matrix containing (D in the main diagonal and @
otherwise, as unity.

A Systolic Array Algorithm for the Algebraic Path Problem 195

The definition of the weight of a path in terms of the arc weights involves one
algebraic operation. This link between the graph theoretical concepts and the
algebraic definitions presented in this section is now going to be exploited and
extended to define the Algebraic Path Problem (Zimmermann [1981]):

Given a weighted graph G=(¥ E, w), " E—H, with weights from a semiring
(H, ®, ®) with zero @ and unity @, find for all pairs of vertices (i, /) d;;,
where

dy = G‘) w(p). (1)

pis a path
from i to j

(@ a; is a notation for the sum of the members of an indexed family.)
iet

A solution to this problem need not exist, because the set of weights of the paths from
i to j, over which the sum in (1) is taken, may be infinite. However, there may be
semirings where such countably infinite sums may be defined in a consistent way, at
least for some cases. “Consistency™ means that the following axioms must hold in
addition to (4, — 4,):

(As) (distributive law):
Let I and J be two countable (finite or infinite) sets; then
@ a;’®bj=®af®®bj
(L elxF iel jeJ

must hold, whenever both sums on the right side are defined.

(Ae) (associative law):
Let I, K, and J, be countable (finite or infinite) sets such that {f,|ke K} is a

partition of [; then
@ a4, = @ (‘D a@;

iel kek icd,

must hold, whenever the left side of the equation is defined.

Such semirings are called partially complete semirings, or, if the sum is defined for all
countable families, (countably) complete semirings.

These axioms are sufficient for the applications in this paper and at the same time
restricted enough to accommodate the important case of the real numbers
{example 1 below). For a more extensive discussion of summability in semirings see
Mabhr [1984] and Mahr [1982, chapter 6]. '

In our computational procedure below we have to compute infinite sums of the
following kind, for which a special notation is introduced:

F=PD =D O cRRIB(CRR)D ... (2)

izn

196 G. Rote:

Example 1:

To turn H, into a partially complete semiring the value of a countably infinite sum of
elements from H, may be defined to be the sum of any corresponding infinite series,
if the latter is absolutely convergent. In particular:

c*=(1—¢c)71, if |¢|<1; otherwise undefined.

Example 2:

H, is a complete semiring, where @ a, exists always and is simply the infimum of
the set {g;} (in the extended set of real numbers).

The star operation in H, is:

if ¢=0 then ¢*=0else ¢c*=—00.

Example 3: -
In H, there are no proper infinite sums since addition in Hj is idempotent and
H_ contains only two elements. Thus, Hj is a complete semiring.
0*=1*=1.
The Algebraic Path Problem (1) can also be formulated in a different way:

With the weighted graph (¥, E, w) one can associate an n xn weight matrix

w ((i,j)), if (l,j)e E,

A=(a;;), where a,—,—={©, if (L)EE.

Let us now look at successive powers of the square matrix A:

A2 =(ay;2), Whete a0= D 6 @ ay

15ksn

3
._A =(aij(3))’ Whefe a!'j(:” = @ a‘-kl ® ak‘ k2 ® akzj- etc.
12k kyZEn

Thus, if 4 is the weight matrix of some weighted graph (V, E, w), then we have for all
m=0:
A" = {aij(m))-: where a;jim= @ w(p).

peM,,
p contains exactly m arcs

Therefore, if the matrix D = (d,) is the matrix of the elements defined in (), we get, by
the associative law (Ag), the matrix formulation of the Algebraic Path Problem:

D=A*=@D 4"

mz0 (3)
=IQAPARADARARAD ...

Note however that the infinite sum in (3) may exist even if not all sums in (1) are
defined.

A Systolic Array Algorithm for the Algebraic Path Problem 197

Example 1:

This second formulation is particularly interesting for the semiring H,, because in
this semiring we have

D=I+A4+ A2+ A%+ . =(I-A)", if D exists.

Therefore the Algebraic Path Problem amounts to finding the inverse of a real
matrix in some cases.

Example 2:

In the above example semiring H,, it. is more convenient to look at the first
formulation of the Algebraic Path Problem, which becomes then the problem of
finding the lengths d;; of shortest paths between each pair of vertices, if we interpret
the weight a;; of an arc as its length. If there is no arc from i to j then a;; is set to
infinity, the zero element of the semiring.

Since arcs of negative length are allowed, there may be circuits of negative length in
the graph and some minima d;; may then not exist, i.e. become minus infinity.

Example 3:

If we interpret the elements of an Hy-matrix A4 as representing a binary relation
R< ¥V x Vonaset Vof nelements, a;; being 1 if and only if the relation holds between
the elements { and j, then the relation represented by the matrix D is R*, the
transitive and reflexive closure of the relation R.

Remark 2.2, decomposability of the Algebraic Path Problem:

If we have a partition {I,| k€ K} of the vertex set ¥ of the graph G, a matrix A,, of
order [I | x | 1} which corresponds to the arcs of G which are elements of 1, x I, can
be associated with each pair (I, 1,). We may attach these matrices A,,, 1 <k,[<n,
which are elements of the semiring M (H) of all matrices over H, as weights to the
arcs of the graph with vertex set J (the quotient graph of G with respect to the
partition {1, })and pose the Algebraic Path Problem in this new graph. (Actually, the
set M (H) of all matrices over a semiring does not form a proper semiring, since there
is not a single zero and a single unity matrix, and addition and multiplication are
only defined for matrices of compatible sizes; it would require a few tricks to make
M (H) conform to the axioms of a semiring. In this particular Algebraic Path
Problem, however, this causes no troubles since all operations are deﬁned.) If the
solutions d;; to the Algebraic Path Problem in the original graph G exist, then the
¢lements of the matrices D,; which are the solutions for the quotient graph are just
the corresponding d;;.

The matrix formulation of the Algebraic Path Problem is just a special case of this
remark for the partition {¥'}, the trivial partition of ¥ into cone set.

198 G. Rote:
3. The GauB-Jordan Elimination Algorithm for the Algebraic Path Problem

T am going to present an algorithm for solving the general Algebraic Path Problem,
i.e. a procedure which computes the d;; from the g using only the semiring
operations @ and ® and the *_gperation. This algorithm can be used to solve any
particular instance of the Algebraic Path Problem, provided that the problem is
solvable, because then the infinite sums occurring in the algorithm (they occur
implicitly in the *-operations) exist. '

Let i and j be two vertices, and let 0<k<n; then

M = the set of all paths from i to j, which contain only
vertices x with 1=<x £k as intermediate vertices, and

di= D wip).

reMl

The intermediate vertices of a path are all vertices except the initial vertex and the
final vertex. Thus, the direct path consisting only of the arc from i to j is the one and
only path contained in M{;", and is of course also contained in every other M{?, since
these sets are isotone in k. The definition is to be understood such that the empty
path starting and ending at vertex i is not contained in MY~ ! (unlike the loop at
node #), but is contained in M.

M is the set of all paths from itoj, i.e. M;;, and therefore €7 is d;;, which we want to
compute. ¢{7’ is just the weight of the arc from i to , if it exists, and otherwise zero, i.e.
the values ¢ are the quantities that we start with.

Recursion formulas for ¢[:

A: cﬁ‘}’:cﬁ}‘”@c&‘@c‘;}“”, for 1Sk=<nand k+i, k#].

A path in M(® either does not pass vertex k at all, in which case it is a member of the
set MY, or it is uniquely decomposable into the initial segment reaching to the
last occurrence of k on the path, which is contained in M # and the rest of the path,
which is in M~ 1. By the distributive law (4s), this relation between the sets MY

etc. carries over to the sum of the path weights over these sets and yields this equation.
P =c @iV, and
The first formula is the same as above, except that a path in M 2 must always pass

through i (remember that M} contains the empty path); the second one follows by a
symmetric argument.

} for i].

C: dd=(i~ M), for 1Zign.

Every path in M{] is uniquely decomposable into a unique number of partial paths

from MY~

That the above formulas form indeed a recursion by which the ¢!} can be calculated
starting from the ¢{J’ can be seen from the following

A Systolic Array Algorithm for the Algebraic Path Probiem 199

Sequential algorithm (GauB-Jordan Elimination, sGJE):

PHASE 1;
1 forifromlton
2 forjfromlton
3 begin
4 for k from 1 to min(i,j)—1
5 =D @ ol @ i (A)
6 ifimjthen dli=(i) (©)
7 if i>] then =" @4, (B)
8 end;
PHASE 2:
9 forifromliton
10 forj from 1 ton
11 begin
12 if i<jthen =4, (B}
13 for k from min{i,j)+1 to max(,j)—1
14 dyi=ci Vo @i (A}
ig d;f i<j then =D @ A (B)
end,
PHASE 3:
17 fori from 1 ton
18 forj from1ton
19 begin
20 if i>j then =@ @clim Y (B}
21 for k from max(i,j))+1 ton
2 e D B e @ s (A)
end;

The order in which each of the three loops of the variables i and j is executed is
relevant only as to ensure that all (7,) with i’ £i and j < are processed before (i, j).

The first loop over i and j (phase 1) starts from ¢{? and computes ¢} if i > jand iV if
1<j; '

the second loop (phase 2) starts from these values and computes ¢ if i < jand ¢} " if
i>];

the final loop (phase 3) then computes the ¢{}.

In this algorithm the parenthesized superscript of each of the terms ¢;; may in fact be
understood as differentiating between successive values of one variable ¢;;.

To see this and 1o verify that each variable on the right hand side of the assignments
in each of the three great loops carries the correct superscript is now a routine task, if
you take into account in each case whether the variable has already gone through
that loop or not.

200 G. Rote:

Note that although all *-operations in the GauB-Jordan algerithm may be defined
even in the strict sense of (C) that the corresponding infinite series (2) converges, the
sum (3) and consequently the sum (1) need not exist.

The number of assignment statements that are executed in this algorithm is n*:

For each combination of i,j,k, there is exactly one assignment to ¢%. There are
n *-operations, n® —n multiplications and n - (n—1)* additions.

4. The GauB-Jordan Elimination Algorithm for Special Semirings

Example 1: Inverting a real matrix:

The operations for the semiring H, are of the following kinds:
¢:=c+ab (A)
c:=ab (B}
c‘"{ *=1/1-c¢), if —1<c<+1

(C)
undefined, otherwise

The algorithm computes (F— 4) ' if the solution to the Algebraic Path Problem
exists. This is for example the case if all elements of A are less than 1/n in absolute
value, i.e. if 4 is sufficiently close to the zero matrix, But the elements of the inverse
{1— A)~* are just rational functions in the elements of 4, and the algorithm likewise
computes rational functions in its input. Since the two rational functions coincide in
an open subset of the input space R" ", namely in a neighborhood of the zero matrix,
they must coincide everywhere in their common domain. Thus we may extend the
operations of type C as follows:

H(l—c), e+l
= C’
{undeﬁncd, ifc=1, ()

and the algorithm will now compute (J — 4)~! almost always.

Usually one wants to compute 4~ * directly for a given matrix A4 and not (I — A4)™"
This can be achieved with some simple cosmetic transformations:

ci=c+ab (A)
o (B) in lines 12 and 20 of the algorithm,
ci=—ch (Bgl in lines 7 and 15 of the algorithm,
1/e, if 0
_ { e, Mer0
undefined, if ¢ =0,

A “17 has been omitted in operation (C”), which corresponds to the missing identity
matrix, and additionally, the sign has been changed in operations (B) and (C”). The
correctness of the transformation can be proved by comparing the computations of
the two algorithms phase by phase.

In this form the algorithm corresponds to the conventional GauB-Jordan elim-
ination algorithm without pivoting of numerical mathematics.

A Systolic Array Algorithm for the Algebraic Path Problem 201

The three phases of the algorithm as arranged in sGJE have a very natural
interpretation in terms of linear algebra:

In phase 1 an LU-decomposition is performed, except that the diagonal elements

computed after phase 1 are already ¢! =(c{{™") ! instead of ¢{i ":
A s
0 0} L0 0} 40) AA0) A0
€11 €12 €13+ Cpp 1 0 Ci1 Ci2 €13 - Cqp
©) 0 A0 (D) (1) 1) AL 1
€21 €33 €23 '1(2" —eyi 1 7 F...cly
© 40 40 L]) (2 2) (2
€3y €33 €53...¢5, =} —5i—e5 | : o PN
0 0 A0 D) (1 A3 An=1}
Cal €nz Cn3 e Con chl'lics'ﬂ fcn3} e] . Cnn
A = L . U.
The two triangular matrices are then inverted in phase 2:
) A2 3) A
1 0 oy ¢ oy ... el
1) (2) (3} {n)
& 1 €33 C33.--02y
L=l 48 &8 1 and U™t = 3.
Z : : 0 :
-1 -1 m—1) ' :
D oy &)

Finally, in phase 3, the two inverted matrices are multiplied, and we have:

NPT e {3 L)
e o} %o

)
¢} b} oo
U L7 '=l e B e dp j=A"1,

noAm m A
Cal €n2 Cpa - Cun

Example 2: Shortest distances:

The operations for the semiring H, are of the following kinds:

c¢:=min(c,a+b) (A) (the so-called “triple operation™)

ci=c+b {B)
0 ife=0

c:={ , {C)
— o if e<0

This is the well-known algorithm of Floyd [1962].

202 G. Rote:

Example 3: Transitive closure:

The operations for the semiring Hp are of the following kinds:
ci=cvianb) (A)
c:=crb (B)
c:=1 (C)

Here the diagonal elements of the solution are known in advance, they will be 1, and
so will therefore be the operand b of all type (B) operations. Thus, the type (B)
operations are identity operations and can be omitted. If it is desired to compute the
transitive closure but not the transitive reflexive closure of a relation, this can be
achieved by a slight meodification of the algorithm -(omitting type B and C
operations). The resuiting algorithm is the well-known Warshall-Roy transitive
closure algorithm (Roy [1959], Warshall [1 9621).

5, Description of the Systolic Array GJEO

The systolic array which performs the computations of the sGJE algorithm of
section 3 is an (n+ 1) x (n+ 1) hexagonal array of processors which are arranged ina
diamond shape and connected in a regular way as shown in the upper part of Fig. 1.
The connections are one-way connections, as indicated by the arrows on them; the
long connections below and above the array are the {global) input and output
connections to the outside world, There are several types of processors, depending
on the location in the array (marked with different letters in Fig. 1).

In principle, the array operates synchronously in time units which 1 shall call steps.
In one step each processor performs a few simple operations on the data from its
input connections, the type of the operations depending on the processor type, and
sends the results of these operations along its output connections. In every step the
inputs of a processor are the outputs of its connected processors from the previous
step (or the data arriving from outside along the global input lines).

In the present scheme the processors need no additional memory to remember any
data between successive steps. Conceptually, it is therefore most convenient to think
of there being one register associated with each connection, capable of holding a
single value (element of the semiring).

Types of processors and their operations (see Fig.2):
Firstly, there are three types corresponding to the three types of assignments in the
sGJE algorithm:

Type A is the so-called “inner product step processor”, because it carries out one
step in the computation of the inner product of two vectors:

¢di=c®D(a®b);

A Systolic Array Algorithm for the Algebraic Path Problem 203

| | ||

I 1
I I Jennf T
] id 1_
I I i
I a1 1 Ci2 T
I | T bl
T 1 I
L fean| 1 teax) T [
| I I
1 1
€y T teas| T deaaf T e
1] | 1
1 I 1
T ofeazy T feaa| I _[€a} T
H | i
1 { i
1 Ca3 I Ciq i
i 1 i
1 I I
: Ces
] Hr
Fig. 1. GIED

The upper part shows the systolic array GIEO for a 4 x 4-matrix. In the squares the geometric shape in
which the matrix elements have to be input is shown. (The squares are not part of the array proper but
serve only to illusirate the places and times at which the input data must be presented to the array.)

Type B, which exists in two variations, B; and B,,, performs simply a multiplication:
.b’: =a®b, or
¢Ci=c®b;

and Type C performs the star operation:

204 G. Rote:

UL ==

Fig. 2. Types of processors
The diapgram shows only the data operations {the control operations are dealt with in section 7)

plus three types of processors, D, Dy, and E, which do nothing but copy their inputs
to their outputs, thus acting merely as a one-step delay, as do also the former
processors with all but one of their inputs.

In the beginning the processors are assumed to be cleared to zero such that the
operations of the processors are identity operations.

Then the matrix is input to the processors on the lower border according to Fig. 1.

When the processors on the lower (input) border (B, and D) receive input from
below they pass it upwards unaltered; this supersedes their normal computation.
However, there is no serious problem, because the input that is fed into the processor
array is organized in such a way (see immediately below and section 7) that there is
always either input from below or data arriving on the other conngctions, but not
both at the same time. Similarly, as an alternative action to sending the output (¢’ or
¢} diagonally downward, the output processors at the top (B, C, and D) pass the
data from below to the global output ports of the array unaltered. Only one of these
two actions is asked for at any time, depending on the desired data flow.

A Systolic Array Algorithm for the Algebraic Path Problem 205

@ actively involved
O passively involved
» not involved

Fig. 3. The paths that the elements of a matrix take through the array

Three elements c;; of a 6 x 6-matrix have been chosen representative of the three cases i 2/, IS). and i=}j,
The last fipure is somewhat idealized to show the essential of the situation clearly.

The figure shows the places where the elements are actively involved in computations (changing their
values), passively involved, and not involved at all for lack of other data. The two thick arrows indicate
the place where the elements ¢, ; and ¢ meet. (Their values are used to.update ¢,5 there.) Each element ¢;;
has exactly n=6 active nodes (@) along its path, where its value is updated from ¢~ " to ¥, for
k=1,2,n Wote that the active nodes lie only on the three vertical sections of the path of each element.
The labels near thé active sections denote the three phases of the sGJE algorithm ; in the case i =) phase 2
is depenerate. Observe that phases 1 and 3 are complementary on the vertical line of processors carrying
the mutrix element mitially.

206 G. Rote:
The data flow:

The most characteristic feature of a systolic array algorithm, how the data move to
meet in one processor at the right times, is now going to be described.

Each element of the matrix can be regarded as a variable moving or flowing through
the processor array, preserving its identity, but possibly changing its value. The
direction in which each processor sends each of the data elements it receives is
indicated in Fig. 2 by similar names attached to corresponding inputs and outputs of
a processor {z and @', b and ¥, ¢ and ¢') or equal names if the value does not change.
From this you can see that generally data elements are passed on straight in the
direction in which they move, except when they hit an edge of the processor array:
then they are (geometrically) reflected.

The matrix Cis input from below as illustrated in the lower partofFig. I and finds its
way round the processor array as follows (to summarize what can be concluded from
Fig. 2} (see Fig. 3);

After an element of the matrix has been input from below it continues flowing
upward until it hits the top border for the first time. There it is reflected downward:
right downward, if it hits the top left edge, and left downward, if it hits the right edge
or ifit hits the middle corner (this last case has been decided arbitrarily). It continues
in this direction until it hits the opposite parallel edge, which sends it upward for the
second time. Again it reaches the top edge and is reflected downward: now it is
reflected down right if it has been reflected down Ieft the first time, and vice versa. (In
the left corner in processor E, these last two reflections appear merged into one.) It is
sent upward for the third time as soon as it hits the bottom edge. It is then in the same
vertical line where it arrived. Now, afier the data element has been reflected once at
each edge of the rhombic array of processors, it will be passed on straight upward to
the output when it hits the top edge.

Fig. 4 illustrates the positions of all elements of the matrix at one stage during the
computation.

Details about the organization of this data flow are presented in section 7.

Itis easy to see (Fig. 3) that the length of the path that is covered by an element of the
matrix is 3 n steps longer than it would be if that element had traveled right through
the processor array without being reflected, and therefore the matrix comes out at
the top in the same shape and orientation in which it was input, but with a delay of
3n steps. The first element, ¢, ,, comes out 45+ 1 steps after it has been input. The
last element, ¢,,,, comes out 7n—2 steps after ¢,, has been input.

The left half of the data (corresponding to the lower triangular half of the arc length
matrix) is reflected towards the right side when it first hits the top border, whereas
the right half inclusive of the elements ¢;; of the main diagonal of the matrix, which
come up in the middle, is reflected to the left. Thus, the matrix is cut into two haives,
which move independently of each other. However, when the elements move
upwards for the third time, the two halves are reunited.

A Systolic Array Algorithm for the Algebraic Path Problem 207

Fig. 4. The position of the elements of the matrix of Fig. 1 after 11 steps. The values are drawn in. the
processor which the respective connection comes from. Only one third of the processors are active

Since in each reflection the angle of incidence relative to the reflecting edge is equal
to the angle of reflection, the shape of the matrix is not distorted when the matrix is
reflected, and it is therefore not hard to view the data flow globally. (It may even be
modestly modeled by wrapping a piece of paper in the shape of half of the matrix
around a piece of cardboard in the shape of the array.)

Fig. 5 illustrates the global data flow of the whole matrix; it shows the space that the
matrix occupies during several phases of the computation.

During its course through the systolic array each data element is at times “actively™
involved in computation (it changes its value — during the time when it marches
upward or hits the left edge), at times “passively” involved in computation (as input
data to some other computation — when it marches along one of the two diagonal
directions), and sometimes not involved in computations at all (when it meets no
other matrix elements). These phases are indicated in Fig. 3.

The three upward (active) phases correspond to the three great loops in the
sequential algorithm above. Note that during the second active phase the two halves
of the matrix (the ¢;; with i > j, and the ¢;; with i £ j)compute separately in each half of
the array, not interacting with each other, ' '

The following considerations, in connection with Fig. 7, are intended to explain
intuitively why the data flow described above implements the sGJE algorithm of
section 3 correctly.

15 Computing 34/3

208

t=34n

Fig. 5. Successive phases of the computation

This sequence of figures provides a global view of the data flow. In each picture, the small (r x n}-rhombus
represents the processor array, and the matrix is represented by the full area which it would occupy. The
parallel lines inside the matrix indicate the current direction of movement of the elements. To show the
situation more clearly, the diagrams are idealized; actually, there is only a discrete number of processors
and matrix elements, and the timez is measured in discrete steps.

In the beginning (time t = —0.17) the matrix lies outside the array, like in Fig. 1. It moves upwards
(t =0.5n), and at time n the first elements are reflected (2 = 1.3). Only one half of the matrix is shown from
now on lest the picitres become too confusing; the other half of the matrix lies symmetrically to this one.
In each of the remaining diagrams, the picture of the full matrix conld be obtained by superimposing the
original picture with its vertically reflected image (reflected along the vertical symmetry axis of the array).
After time 2 n{# = 2.3 n), the matrix is reflected three times. To clarify this diagram, Fig. 6 shows how it can
be obtained from the original shape of the matrix by three successive foldings along the broken lines.
Between time 3n and 4n (1 = 3.4 n), the matrix is folded four times, and it is now completely inside the
processor array. At time 4 n, the matrix starts to leave the array. The remaining phases of the computation
can be ohtained by turning the pictures upside down and taking them in the opposite order; for exampile,
the diagram for time ¢ =4.3n is the reflection of the diagram for t=2.7n along the horizontal symmetry
axis of the array; in general, the diagrams for time ¢ and for time t*=7n -t are reflected images of
each other.

A Systolic Array Algorithm for the Algebraic Path Problem 209

Fig. 6. How the diagram of Fig. 5 for t =2.3 n can be obtained by a sequence of three successive foldings

The initial position of the matrix elements, before the matrix enters the array (cf.
Fig. 1) is related to their position at some later time (cf. Fig. 4) by the condition that
they have traveled the same distance, because they all travel at the same speed. Thus
it 1s possible to determine the original position in the matrix (and hence the identity)
of the elements that meet in some processor at some instant, as is done in Fig. 7.

What is shown in Fig. 7 could of course be made stricter and proved analytically. It
would be necessary to express explicitly the relation between the variables ¢, i, j, x,
and y defined by the statement: “At time t, the matrix element ¢;; is in processor P,
(and leaves in a certain direction).” Then one could derive, which elements meet at
whalt time in which type of processors, and which computations take place.in those
processors. In [Rote 1984] it is shown how the details of such a proof can be worked
out.

To implement the algorithm given in example 1 of section4 for computing the
inverse A~ of a real matrix directly, one simply has to assign the operations (B),
(Bo), and (C”) to the respective processors B, By, and C.

6. Performance Analysis and Improvements.

When the action of the array on a matrix is analyzed one can observe that not all
processors are active in computation at any moment. Always at least two thirds of
them are idle computing @ ® @ ®@ @ . This comes because the matrix does not fill
up the processor array densely (see Figs. 1| and 4). This fact can be exploited,
however, to allow some restricted form of pipelining: One step after inputing the first
element of a matrix at the bottom corner of the array you may start inputing the first
element of another matrix (at the same position in the array) and continue feeding in
elements of this matrix straight after you have input the corresponding elements of
the first matrix. The computations on the two matrices will then be completely
independent of each other and each element of the second matrix will be output

15+

210 G. Rote:

Loy

2 elements that meet ¢;;

* the processors where they mest

Fig. 7. The paths of some elements that meet in the same. processor
The pictures show some element ¢;; and four pairs of elements that meet ¢;;. Correctness might be verified
by counting the distance along the paths from the initial position of the elements to the processor where
they meet, in units of processing steps.
By generalization, one can see that the elements that meet ¢, are pairs (cy, &) of corresponding elements
of the i-th row and the j-th column of the matrix. In the left picture, k ranges from 1 to min (i, /), as long as
t;;is on the first vertical {active) section of its path: in the right picture, ¢;; is in its second active phase, and
k ranges from min (i, j) to max(i,j). For the third phase, an analogous picture could be drawn.
It can also be seen that ¢,, enters the processor always from the top left and c¢,; from the top right.

exactly one step after the corresponding element of the first matrix. There is still
room for a third matrix right after the second one, but after that one you have to wait
until the first matrix leaves the processor array before you can input another one.

Thus, the array can be regarded as consisting of three independent “tracks” for
computation. Each processor belongs in turn to gach of the three tracks.

A Systolic Array Algorithm for the Algebraic Path Problem 211

How long does one have to wait to put in another matrix on one track? The two
matrices must not overlap, so element ¢, of the second matrix can be input to the
processor at the bottom corner of the array just when element c,, of the previous
matrix has left this processor for the second time, i.¢. three steps after this event, to
arrive in the same track. Therefore, since ¢, and c,, of the same matrix are 3(n—1)
steps apart, and since it takes 3 n steps for c,, to come back to the processor where it
has entered, element ¢, ; of the next matrix can be input 6 n steps after ¢,, of the first
matrix has been input. '

Taking into account the three tracks, every three (n x n) input matrices occupy n*
processors (not counting the types Dy, D, and E, which do not perform any
operations) for 6 n steps to carry out 3n° operations. Thus, processor utilization is
one half. The other half of the time the processors compute the identity operation,
1.e. they simply move the data about. The following considerations show how this
can be improved such that the processors are fully utilized.

If we examine which processors are active and which are passive during the course of
the matrix, we find that the processors on the same horizontal level are at the same
time either all active or all passive (cf. Fig. 5). Fig. 8 shows at what time which levels
are utilized. (An analytic proof that the active processors do not exceed the area
indicated in Fig.8 can be found in Rote [1984, section 7].)

LA Yy
p-rr ke,
\"Frarsxen

t=0 n 2n In 4nd43n 5n on 7‘n t (time)

Fig. 8. Processor utilization in GJEO

This diagram expresses which processors are used at what time to compute new values for elements of the
matrix (active) and which are used simply to shuffle the data about (passive). Since all processors (of onc
track) that lie on one horizontal line are identical in this respect, the diagram has been drawn in such a
way that its vertical dimension corresponds to the vertical dimension of the processor array. The
horizontal axis denotes time measured in steps since the input of the first element of the matrix. To show
the situation more clearly the diagram is idealized, like in Fig. 5. At time 7 », the last element has left the
array. The cross-shaded area shows the active processors.

The picture to the right illustrates the position of the matrix elements after about 4.3 n steps; it is
reproduced from Fig. 5. The relation with the shaded area on the left is indicated by the broken line. The
active processors are those where three matrix elements from all three directions meet, i.e. three layers of
{both halves of) the matrix lie on top of each other.

The shape of the shaded region in Fig. 8 suggests that another specimen of it for a
second matrix can be appended without conflict after 3 » steps, not only after 61
steps. The elements of the second matrix will then occupy the same processors as the
corresponding elements of the first matrix until these cross the top edge to be output
and to leave the array where the elements of the second matrix are reflected. From
then on the elements of the second matrix are single again on their ways. So all we

212 G. Rote:

have to do is double the vertical connection lines to allow two numbers to travel in
parallel. There must now be two c-registers instead of one, four registers all in all for
each type A processor. Fig. 9 shows the situation of Fig. 8 when another matrix has
closely followed the first one. The resulting array design shatl be called GJE! in the
sequel. The only question left to decide is which of the two numbers to compute with
and which simply to pass on. This issue is discussed in section 7.

P
N

"

Fig. 9. Systolic array GJIE?

The situation in the right part of Fig. 8 with an additional matrix following the first one, This figure is a
superposition of the twe diagrams from Fig. 5 with t=43nand t=13n

Solving problems of different sizes:

A systolic array should be usable for problems of different sizes without changes in
the single processors.

It is easy to use an (n-+ 1) x{n+ 1) GIJE1 array for a matrix of size smaller than n.
Continving the discussion of how to optimize processor utilization and adapting the
shape of the shaded region in Fig.8 (see Fig. 10), one verifies that it is possible to
input the first element of a new matrix in the next free place on the same track {i.e.
three steps) after the last element of the previous matrix regardless of the size of these
matrices. Each one of the three tracks acts on an infinite block diagonal matrix of the
form depicted in Fig. 11a. Thus we get the result that an mx m-matrix (m=nj
occupies a truck for 3 m steps (the maximum horizontal width of the shaded area in
Fig. 10), i.e. it occupies the whole array for m steps only, in the sense that the time
that a great number of matrices take to compute is ronghly the sum of the times cach
one occupies the array.

But with GJE1 it still takes 4n+3m— 2 steps for an m x m-matrix between the input
of the first element and the output of the last element of the matrix. For smali
matrices. this is a relatively long time. Next I shall show how this time can be
reduced to 7m— 2, which is the time which would be needed if we had an array

A Systolic Array Algorithm for the Algebraic Path Problem 213

i=n n+mu+2mn+im 4n+3m
i ‘
. R
e o - <
e, - Af |[i1Tl(‘.")
T T T
[=0 n n 3,,3n+m3n’+2m'3n+3m4n;_3m
In+1ldm)

Fig. 10. Processor utilization with a smaller matrix

The diagram of Fig. 8 in the case of an m x m-matrix smaller than the array. mis approxitately 0.4 n. It is
no tonger true that a whole horizontal line of processors is completely active or completely passive, The
horizontal lines where the processors are only partially active are represented by the vertically shaded
area. The three disjoint shaded regions of the diagram correspond to the three active phases of the
algorithm. When m becomes larger than /2 the vertically shaded regions start to overlap.

On the right side the position of the matrix after about 3 n+ 1.4 m steps is shown in the fashion of Figs. 5
and R.

especially for m x n-matrices, by a variation of the array, which I shall refer to as.
GJE((the “(” is suggestive of the shape of the array). Imagine that the array is
(physically) folded along the vertical symmetry line. There are then in general two
processors on top of each other, or we could say, one processor that carries out the
action of two; the action of the processors is similar as before, except that the
connections of the processors at the folding line point to other directions as before:
These processors now reflect the data passing through them. It is now a small step to
think of this folded array as part of a large (potentially infinite) wedge (Fig. 12) in
which the function of the reflecting processors along the vertical folding line is
programmed, 1.¢. all processors are able to act either like central processors or like
the processors on the folding line, and this choice is not hard-wired, depending on
the location of the processor, but is programmable, for example by a signal that is
input with the elements on the main diagonal of the matrix and travels on with them.
In this way it is possible to have an array of appropriate size for any (not too large)
matrix. How matrices of different sizes can be arranged consecutively on one track is
shown in Fig. 11 b. The shape of the shaded region in Fig. 8 does not change, it only
shrinks or grows proportionally to the size of the matrix and still Lies equally above
and below the horizontal symmetry line of the array. One further advantage of the
array GJE(is that it is open to the right and thus readily extensible.

Processing of a matrix larger than the array:

A different question is how a matrix larger than the array can be processed. Here the
decomposability principle {remark 2.2) becomes useful. By this principle, which is
the analogue of the fact that matrix multiplication can be carried out with matrices
made up of matrix blocks just as with ordinary matrices, we can decompose a too
farge matrix into blocks, apply the GauB-Jordan algorithm on the block level and,
whenever the *-operation is nceded on the higher tevel, use the algorithm on the
level ofa matrix consisting of single elements. Thus one way to process a large matrix
15 to apply sequential Gauf-Jordan climination (or any other similar algorithm) on

214 3. Rote:

| |
| i
| t
! i
| i
t I
! I
! I
I |

al b} |

Fig. 11. Processing a sequence of matrices. a) GJEL, b} GIE{
The shapes and relative positions of three of an unbounded sequence of matrices of different sizes before
(= below) and after { = above} passing through the systolic array (hatched) on one of the three tracks. The
matrices are shown on a (conceptual) band of one-step delay processors that extend the array below and

above like in Figs. 1, §, 7, and 12
a) Rhombic array GJE1 with a fixed upper bound on the size of the matrix
The input stream can be regarded as an infinite block diagonal matrix. The position of a matrix after the
array is 3 n steps behind where it would be had it gone straight through the array without reflections,
where n is the dimension of the array
b) Open wedge GJE{, extensible to the right

The matrices are folded along their main diagonal and aligned by their left corners. Observe that the
relative positions of the matrices have changed when they have passed the array, and that smaller
matrices have advanced relative to the larger ones, The position of a matrix of size m x m after the array is
3 m steps behind where it would be bad it gone straight through the array without reflections, which is just

the length of the main diagonal :

the higher level, resorting to systolic arrays for the single steps of this algorithm:
multiplication of two blocks (see Kung and Leiserson [1978] or Kung [1980]) and
the *-operation. The time is reduced by a factor proportional to n® compared with
the sequential algorithm, where n is the size of the arrays.

A Systolic Array Algornthm for the Algebraic Path Problem 215

HllHllH

| } H
i O
il :q: IT
i '! H
1 O ;.
) -
\ N
' o
1
]
i "
1 .
B! -
L.l | -
i i -
T I
11
A i I
1 T
1 1T il i
P ez | I II I
Cl3

It 11
i 2 i HE
i % It 1 11
i I I
il I I
1 | fas HH 11

M=l el 1l T

Fig. 12. The systolic array GJE(

A 3 x 3-matrix folded along its main diagonal is input to a wedge of processors which is open to the right.

By a signal which is input together with ¢, and propagates upwards the processors along the broken line

are temporarily programmed to act as reflecting processors. The matrix has the impression of passing
through an array for 3 x 3-matrices

7. Notes on the Implementation

The processors B, and D, which accept the input from the outside world, present a
little difficulty, since their outputs b', or &', resp., are determined in two ways: in the
beginning they should pass on the inputs from below, and the second time they

216 G. Rote;

should calculate their output from their top left and top right inputs, or copy the top
left input, respectively (see Fig. 2).

B,. C, and Dy, the output processors at the top, have a similar ambiguity: they
should perform their calculation and reflect the data downwards the first time, and
output the data unaltered the second time, since we don’t want the data to continue
bouncing from corner to corner, disturbing the flow and computations of data
coming behind, but we need the processors to be in a cleared state afterwards.

A solution which needs only local control is to give a bit (actually, at least two bits
are necessary) more intelligence to the processors, providing each data element with
a flag that counts how often it has been reflected at the top line, and letting the
processors act accordingly.

This device can also be used for the improved version GIE1 of section 6, where two
data elements are allowed to travel upwards in parallel, but only one of them is to be
modified by computations with the data from the other input lines. Of those two
data elements, one has been reflected twice and the other one nonce. By looking at
the flags of the other two inputs the question may be decided.

Similar techniques can be used in the array GJE(, where the signals indicating
whether a processor has to act as a reflecting processor must be organized somehow.
For more details sce [Rote 1984, section 6].

8. Conclusion and Review

The processors of the presented arrays are of few types independent of the total size
of the array and the size of the problem, and thus the arrays GJEO and GJEL meet
one design objective for systolic arrays.

Moreover, the inner product step processor (type A), which is the “work horse™ in
the array GJEO, is also the only processing clement in the systalic array for forming
the inner product of two vectors and in the well-known systolic array which
multiplies two matrices (Kung and Leiscrson [19787; also described in Kung [1980]
or Rote [19847). By restricting the array of this paper appropriately, one can obtain
systolic arrays for the three phases of the algorithm, i.e. in the case of the ordinary
real matrices (see example 1 in section 4) for LU-decomposition, inversion of an
upper or lower triangular matrix, and the multiplication of an upper triangular with
a lower triangular matrix. The last of these three is not so interesting, as it is also a
restriction of the ordinary matrix multiplication array. The first one has been
previously described by Kung and Leiserson [1978] and by Kung [1980]. The nice
property of this family of systolic arrays is that they all consist of an area filled
homogeneously with the same processors, and by bordering this area with different
chains of processors one gets the different arrays.

In the literaturc there have been two systolic arrays, to my knowledge, solving
instances of the Algebraic Path Problem. Both are n x nrectangular arrays. The first
one by Guibas, Kung and Thompson [19797] computes the transitive closurc of a
Boolcan matrix, the second one by Kramer and van Lecuwen [19827 inverts a real

A Systolic Array Algorithm for the Algebraic Path Problem 217

matrix. Both arrays are constructed as implementations of Gaufi-Jordan elim-
ination (i.e. the Warshall-Roy algorithm in the case of the transitive closure). The
array of this paper was developed independently of these other arrays, but there are
relations to both of them.

The sequence of computations in the array of Guibas, Kung and Thompson [1979]
is akin to that of GJEO, in the sense that the rendez-vous among data elements,
which may then be combined in computations, correspond roughly. However, this
sequence of computations is realized by a different data flow: There are three copies
of the matrix, one remains fixed and the two others simultaneously move across the
array in perpendicular directions. Normally, the resident elements are updated
using in the computations the siable values of the moving copies that are passing
over them. However, when a moving element meets its resident copy then it assumes
the updated value of the resident element; this has an effect on the data flow which is
achieved by reflection in GJEO. Three identical passes over the array have to be run
until the solution is stable. However, the array computes “too much”, i.e., roughly
speaking, it does carry out all steps of the sGJE algorithm in the right sequence but
some steps of that algorithm occur repeatedly; thus some paths occur more than
once instead of exactly once in the computed sum (1). This is the reason why the
algorithm can in fact be extended to compute shortest distances, but not to solve
Algebraic Path Problems in semirings in which addition 1s not idempotent.

The array by Kramer and Leeuwen [1982] is more like the one in this paper. Itis a
true parallelization of Gaul3-Jordan elimination. One copy of the matrix moves
through the array in three directions and is reflected when it hits the boundary. Each
element goes through the same sequence of active and passive phases as in GIEQ.
However, since the connections in a rectangular array have only two directions the
third direction is simulated by zig-zagging along the two existing directions. Besides
yielding a different sequence of computations (the algorithm is a parallelization of
GauB-Jordan elimination “different” from GIEOQ) this causes some inconvenience:
Each processor goes through four different cycles communicating with its four
neighboring processors one at a time.

Hexagonal and rectangular (and also triangular) systolicarrays are computationally
equivalent in that each type can simulate the other within a constant factor of time
and space, but il seems that the hexagonal array is the most naturally suited
structure for a parallelization of the GauB-Jordan elimination algorithm, at least of
the version sGJE of section 3.

The extensive report [Rote 198471 contains more details about the material in this
paper, and it includes the following additional features:

The solution to the general Algebraic Path Problem in section3 {the sGJE
algorithm)is formulated differently, using the free semiring generated by the edges of
the graph.

It is shown how the data flow in the systolic array GJEQ can be derived from the data
flow in the systolic urray for the multiphcation of two matrices (Kung and Leiserson
[1978], Kung [19807) by successive steps of foldings, simplifications and com-
binations of systolic arrays.

218 G. Rote:

There is a unidirectional hexagonal version of GJEQ in which the data flow only
upwards, i.e. straight upwards or in one of the two diagonal directions. It contains
approximately 5n* processors. The main advantage of this array over GJEO is that
the initial and final traveling phases of the matrix in GJEO, where the head or the
tail, respectively, of the matrix has to travel from the bottom end to the top end of
the array for n steps without any computations going on, are eliminated, and that it
therefore takes the new array only § n — 2 steps to process an # X n matrix completely
instead of 7n—2 steps.

The drawbacks are that the data flow is not as regular as before, and processor
actions are not as uniform, . g., the type (C) operations are carried out at different
places for each diagonal element.

It is also proved that any parallelization of the sGJE algorithm must take at least
5n—3 steps if each of the n? data elements is used only once in each step.

Acknowledgements

I thank Mr. Karel Culik and especially Mr. Jozef Gruska for helpful discussions through which they let
me share some of their knowledge in the field of systolic arrays.

References

Aho, A. V., Hoperoft, J. E., Ullmann, J. D.: The Design and Analysis of Computer Algorithms.
Reading (Mass.)-London-Amsterdam: Addison-Wesley Publishing Co. 1975.

Backhouse, R. C., Carré, B, A.: Regular algebra applied to path-finding problems. J. Inst. Math. Appl.
15, 161 — 186 (1975).

Brucker, P.: Theorie of Mairix Algorithms. Mathematical Systems in Economics 13. Meisenbeim am
Glan: Verlag Anton Hain 1974

Carmré, B. A.: An algebra for network routing problems. §. Inst. Math. Appt. 7, 273—294 {1971).

Carré, B. A.: Graphs and Networks. Oxford: The Clarendon Press, Oxford University Press, 1979.

Floyd, R. N,: Algorithm 97 — shortest path. Comm. ACM 5, 345 (1962).

Gondran, M., Minoux, M.: Graphes et Algorithmes. Paris: Editions Eyrolles 1979.

Guibas, L. J., Kung, H. T., Thompson, C. D.: Direct VLSI Implementation of Combinatorial
Algorithms. Proc. CalTech Conference on Very Large Scale Integration: Architecture, Design,
Fabrication. California Institute of Technology, January 1979, Pasadena; Architecture session,
pp. 509 —525.

Kleene, S. C.: Representation of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J.
{2ds.), Automata Studies, pp. 3—40, Princeton (New Jersey): Princeton University Press 1956.

Kramer, M. R, van Leeuwen, J.: Systolic computation and VLSL In: de Bakker, J. W, van Leeuwen, J.
{eds.), Foundations of Computer Science IV, part 1, pp. 75 —103. Math. Centre Tracts 158. Math.
Centre, Amsterdam, 1983. '

Kung, H. T.: The structure of parallel algorithms. In: Advances in Computers /9, pp.65—112.
New York-London-Toronto-Sydney-San Francisco: Academic Press 1980,

Kung, H. T., Leiserson, C. E.: Systolic arrays (for VLSI). In: Duff, [. 8., Stewart, G. W. {eds.), Sparse
Matrix Proceedings 1978 {Sympos. Sparse Matrix Camput., Knoxville, Tenn., 1978), pp. 256 —282.
— S1AM, Phitadelphia 1979. — (A slightly different version has appeared as section 8.3 of the
book: Mead, C. A., Conway, L. A_, Introduction to VLSI Systems. Reading (Mass.)-London-
Amsterdam: Addison-Wesley Publishing Co. 1979. '

Lehmann, D. 1.: Algebraic structures for transitive closure. Theoret. Comput. Sci. 4, 59 —76 (1977).

Makr, B.: Seminings and Transitive Closure. Technische Universitat Berlin, Fachbereich 20, report g2-5
(1982).

A Systolic Array Algorithm for the Algebraic Path Problem 219

Mahr, B.: Iteration and summability in semirings. In: Burkard, R. E., Cuninghame-Green, K. A.,
Zimmermann, U. (eds.), Algebraic and Combinatorial Methods in Operations Research
(Proceedings of the Workshop on Algebraic Structures in Operations Research, Bad Honnef,
Federal Republic of Germany, April 13 —17, 1982), Ann. Discrete Math. 19, 229 — 256 (1984).

Rote, G.: A Systolic Array for the Algebraic Path Problem (which Includes the Inverse of a Matrix and
Shortest Distances in a Graph). Rechenzentrum Graz, Bericht RZG-101 (1984).

Roy, B.: Transitivité et connexité. C. R. Acad. Sci. Paris Ser. A—B 249, 216218 (1959).

Tarjan, R. E.: A unified approach to path problems. J. Assoc. Comput. Mach. 28, 577—593 (1981).

Warshall, S.: A theorem on Boolean matrices. }. Assoc. Comput. Mach. 9, 11 —12 (1962).

Zimmesmann, U. : Linear and combinatorial optimization in ordered algebraic structures. (Especiaily
chapter 8: Algebraic path problems.) Ann. Discrete Math. 10, 1 —380 (1981).

Dipl-Ing. Gilinter Rote
Institut fiir Mathematik
Technische Universitit Graz
Kopernikusgasse 24

A-8010 Graz

Austria

Printed in Austria
Druck: Paul Gerin, A-1021 Wien

